Skip to content
Snippets Groups Projects
licDump.ml 22.1 KiB
Newer Older
(** Time-stamp: <modified the 25/02/2009 (at 15:14) by Erwan Jahier> *)

open Printf
open Lxm
open Eff
let (long : Ident.long -> string) = Ident.string_of_long
(*   fun id ->  *)
(*     let str = Ident.string_of_long id in *)
(*       Str.global_replace (Str.regexp "::") "__" str *)
let type_alias_table = Hashtbl.create 0

(******************************************************************************)    
(******************************************************************************)    
let  (get_rank : 'a -> 'a list -> int) =
  fun x l -> 
    let rec aux i l =
      match l with
        | [] -> assert false
        | y::l -> if x = y then i else aux (i+1) l
    in
      aux 1 l
let _ = assert (get_rank 5 [1;3;5] = 3)

(* check it is a non-singleton tuple *)
let rec (is_a_tuple : Eff.val_exp -> bool) =
    | CallByPosEff ({ it = TUPLE }, OperEff [ve]) -> is_a_tuple ve
    | CallByPosEff ({ it = TUPLE }, OperEff vel) -> List.length vel > 1
(******************************************************************************)    
(* prefix used to prefix user type name in order to avoid name clashed with
   the alias type name that are generated by the compiler. *)
let prefix = "_"

let rec string_of_const_eff =
  function
    | Bool_const_eff true -> "true"
    | Bool_const_eff false -> "false"
    | Int_const_eff i -> sprintf "%d" i
    | Extern_const_eff (s,t) -> (long s)
    | Abstract_const_eff (s,t,v,_) -> (long s) ^ (string_of_const_eff v)
(*     | Abstract_const_eff (s,t,v,false) -> (long s)  *)
    | Enum_const_eff   (s,t) -> 
        if !Global.expand_enums then
          match t with
            | Enum_type_eff(_,l) -> string_of_int (get_rank s l)
            | _ -> assert false
        else 
          (long s)
    | Struct_const_eff (fl, t) -> (
	let string_of_field = 
	  function (id, veff) -> 
	    (Ident.to_string id)^" = "^ (string_of_const_eff veff) 
	in
	let flst = List.map string_of_field fl in
	  (string_of_type_eff t)^"{"^(String.concat "; " flst)^"}"
      )
    | Array_const_eff (ctab, t) -> (
	let vl = List.map string_of_const_eff ctab in
	  "["^(String.concat ", " vl)^"]"

and string_ident_of_const_eff c = 
  (* that version generates a string that is a valid lic ident, in order to use it
     to generate a node name using static parameters *)
  match c with
    | Bool_const_eff _
    | Int_const_eff _
    | Real_const_eff _
    | Extern_const_eff _
    | Enum_const_eff _  -> string_of_const_eff c
    | Struct_const_eff (_, t) -> (
        match t with 
          | Struct_type_eff (sn,_) -> Ident.string_of_long sn
          | _ -> assert false
      )
    | Array_const_eff (ctab, t) -> string_of_type_eff t
and string_of_const_eff_opt = function
  | None -> ""
  | Some val_exp_eff -> string_of_const_eff val_exp_eff

and string_def_of_type_eff = function
  | Bool_type_eff -> "bool"
  | Int_type_eff  -> "int"
  | Real_type_eff -> "real"
  | External_type_eff (i) -> long i
  | Abstract_type_eff (i, t) -> string_def_of_type_eff t ^ " -- abstract in the source "
  | Enum_type_eff (i, sl) ->
      assert (sl <>[]);
      if !Global.expand_enums then "int" else
      let f sep acc s  = acc ^ sep ^ (long s) in
Erwan Jahier's avatar
Erwan Jahier committed
        (List.fold_left (f ", ")  (f "" "enum {" (List.hd sl)) (List.tl sl)) ^ "}"
  | Array_type_eff (ty, sz) -> sprintf "%s^%d" (string_of_type_eff ty) sz
  | Struct_type_eff (name, fl) -> 
      assert (fl <>[]);
      let f sep acc (id, (type_eff, const_eff_opt))  = 
	acc ^ sep ^ (Ident.to_string id) ^ " : " ^
	  (string_of_type_eff type_eff) ^
	  match const_eff_opt with
	      None -> ""
	    | Some ce -> " = " ^ (string_of_const_eff ce)
	  (List.fold_left (f "; ")  (f "" " {" (List.hd fl)) (List.tl fl)) ^ "}"
	  
(* exported *)
and string_of_type_eff = function
  | Bool_type_eff -> "bool"
  | Int_type_eff  -> "int"
  | Real_type_eff -> "real"
  | External_type_eff (name) -> prefix ^ (long name)
  | Abstract_type_eff (name, t) -> prefix ^ (long name)
(*       string_of_type_eff t *)
  | Enum_type_eff (name, _) -> prefix ^ (long name)
  | Array_type_eff (ty, sz) -> array_alias ty sz
  | Struct_type_eff (name, _) -> prefix ^ (long name)
  | Any -> string_of_type_eff (Polymorphism.get_type ())
  | Overload -> string_of_type_eff (Polymorphism.get_type ())


and string_of_type_eff4msg = function
  | Bool_type_eff -> "bool"
  | Int_type_eff  -> "int"
  | Real_type_eff -> "real"
  | External_type_eff (name) -> prefix ^ (long name)
  | Abstract_type_eff (name, t) -> prefix ^ (long name)
(*       string_of_type_eff4msg t *)
  | Enum_type_eff (name, _) -> prefix ^ (long name)
  | Array_type_eff (ty, sz) -> (string_of_type_eff4msg ty) ^ "^" ^(string_of_int sz)
  | Struct_type_eff (name, _) -> prefix ^ (long name)
  | Any -> "'a"
  | Overload -> "'o"

(******************************************************************************)
(** Stuff to manage generated type alias 
    
    Indeed instead of printing:

       node toto(x: int ^ 4) ... 
       type int4 = int ^ 4;
       node toto(x: int4) ... 
    
    That may occur only for array actually.

    To do that, we maintain a table of type alias that we fill each time
    we want to print (via string_of_type_eff) a type that is not a named type.
    Then, at the end, we will dump that table in the lic file.

    This table is filled by [array_alias].    
and (array_alias : Eff.type_ -> int -> string) = 
  fun t size -> 
    let array_t = Array_type_eff(t,size) in
      try Hashtbl.find type_alias_table array_t 
      with Not_found -> 
        let alias_t = string_of_type_eff t in
        let res = Name.array_type array_t (alias_t ^ "_" ^(string_of_int size)) in
          Hashtbl.add type_alias_table array_t res;
          res

(* exported *)
and dump_type_alias oc =
  let p = output_string oc in
    if Hashtbl.length type_alias_table > 0 then p "-- automatically defined aliases:";
    Hashtbl.iter
      (fun type_eff alias_name -> 
         try
           p ("\ntype " ^ alias_name ^ " = "  ^ (string_def_of_type_eff type_eff)^";")
(******************************************************************************) 
(* exported  *)
and (type_eff_list_to_string : Eff.type_ list -> string) =
    let str_l = List.map string_of_type_eff4msg tel in
and string_of_type_eff_list = function
  | []  -> ""
  | [x] -> string_of_type_eff x
  | l   -> String.concat " * " (List.map string_of_type_eff l)

(* for printing recursive node *)
and string_of_node_key_rec (nkey: node_key) = 
  match nkey with
    | (ik, []) -> long ik
    | (ik, salst) ->
        let astrings = List.map static_arg2string salst in
	let name = sprintf "%s_%s" (long ik) (String.concat "_" astrings) in
          Name.node_key nkey name

(* for printing iterators *)
and string_of_node_key_iter lxm (nkey: node_key) = 
  match nkey with
    | (ik, []) -> long ik
    | (ik, salst) ->
	let astrings = List.map (static_arg2string) salst in
	  sprintf "%s<<%s>>" (long ik) (String.concat ", " astrings)
(* for printing recursive node and iterators *)
and static_arg2string (sa : Eff.static_arg) =
    | ConstStaticArgEff (id, ceff) -> sprintf "%s" (string_ident_of_const_eff ceff)
    | TypeStaticArgEff  (id, teff) -> sprintf "%s" (string_of_type_eff teff)
    | NodeStaticArgEff  (id, (long, _, _)) ->
	sprintf "%s" (Ident.string_of_long long)
and (string_of_var_info_eff4msg: Eff.var_info -> string) =
  fun x -> 
    (Ident.to_string x.var_name_eff) ^ ":"^(string_of_type_eff4msg x.var_type_eff)

and (string_of_var_info_eff: Eff.var_info -> string) =
  fun x -> 
    (Ident.to_string x.var_name_eff) ^ ":"^(string_of_type_eff x.var_type_eff)
and (type_string_of_var_info_eff: Eff.var_info -> string) =
  fun x -> (string_of_type_eff x.var_type_eff) ^ 
    (string_of_clock2 (snd x.var_clock_eff))
and string_of_decl var_info_eff = 
  let vt_str = 
    (Ident.to_string var_info_eff.var_name_eff) ^ ":" ^ 
      (string_of_type_eff var_info_eff.var_type_eff) 
  in  
  let clk_str = (string_of_clock (snd var_info_eff.var_clock_eff)) in
  let vt_str = 
    if !Global.ec && snd var_info_eff.var_clock_eff <> BaseEff 
    then "(" ^ vt_str ^ ")" 
    else vt_str 
  in
    vt_str ^ clk_str
and (string_of_type_decl_list : Eff.var_info list -> string -> string) =
    let str = String.concat sep (List.map string_of_decl tel) in
and string_of_slice_info_eff si_eff =
  "[" ^ (string_of_int si_eff.se_first) ^ " .. " ^ (string_of_int si_eff.se_last) ^
    (if si_eff.se_step = 1 then "" else " step " ^ (string_of_int si_eff.se_step)) ^
    "]"

and (string_of_leff : Eff.left -> string) =
  function
    | LeftVarEff  (vi_eff,_) -> Ident.to_string vi_eff.var_name_eff  
    | LeftFieldEff(leff,id,_) -> (string_of_leff leff) ^ "." ^ (Ident.to_string id)
    | LeftArrayEff(leff,i,_)  -> (string_of_leff leff) ^ "[" ^ (string_of_int i) ^ "]"
    | LeftSliceEff(leff,si,_) -> (string_of_leff leff) ^ (string_of_slice_info_eff si)
and (string_of_leff_list : Eff.left list -> string) =
  fun l -> 
    (if List.length l = 1 then "" else "(") ^ 
      (String.concat ", " (List.map string_of_leff l)) ^ 
      (if List.length l = 1 then "" else ")") 

and sov ve = string_of_val_exp_eff ve
and (string_of_by_pos_op_eff: Eff.by_pos_op srcflagged -> Eff.val_exp list -> string) =
  fun posop vel -> 
    let tuple vel = (String.concat ", " (List.map string_of_val_exp_eff vel)) in
    let tuple_par vel = "(" ^ (tuple vel) ^ ")" in
    let tuple_square vel = 
      "[" ^ (String.concat ", " (List.map string_of_val_exp_eff vel)) ^ "]"
	| Predef (Predef.DIESE_n,_), [ve1] ->
            if !Global.lv4 
            then sov ve1 (* lv4 does no accept to apply # on One var only ! *)
            else ((op2string Predef.DIESE_n) ^ (tuple_par [ve1]))
            
	| Predef (Predef.IF_n,_), [ve1; ve2; ve3] ->
	    let ve2str = string_of_val_exp_eff ve2 in 
	    let ve2str = if is_a_tuple ve2 then "("^ve2str^")" else ve2str in
	    let ve3str = string_of_val_exp_eff ve3 in 
	    let ve3str = if is_a_tuple ve3 then "("^ve3str^")" else ve3str in
	      " if " ^ (string_of_val_exp_eff ve1) ^ 
	      " then " ^ ve2str ^ " else " ^ ve3str

	| Predef(op,sargs), vel -> 
	    if Predef.is_infix op then (
	      match vel with 
		| [ve1; ve2] -> 
		    (string_of_val_exp_eff ve1) ^ " " ^ (op2string op) ^ 
		    " " ^ (string_of_val_exp_eff ve2)
		| _ -> assert false
	    ) 
	    else 
	      ((op2string op) ^
	       (if sargs = [] then 
                  match op with
                    | Predef.ICONST_n _ | Predef.RCONST_n _   | Predef.NOT_n
                    | Predef.UMINUS_n | Predef.IUMINUS_n | Predef.RUMINUS_n
                    | Predef.FALSE_n | Predef.TRUE_n -> tuple vel 
                    | _ -> tuple_par vel 
                   (String.concat ", " (List.map (static_arg2string) sargs))
		   ^ ">>" ^ (tuple_par vel)))

	| CALL nee, _  -> (
	    if nee.it.def_eff = ExternEff then
	     if !Global.lv4 then
	       (match nee.it.node_key_eff with 
		  (* predef op that are iterated are translated into node_exp ;
		     hence, we need to do (again) a particular threatment to have
		     a node ouput (i.e., "2>a" vs "Lustre::lt(2,a)" *)
		| ("Lustre","uminus"),  [] -> " -" ^ sov (hd vel)
		| ("Lustre","iuminus"), [] -> " -" ^ sov (hd vel)
		| ("Lustre","ruminus"), [] -> " -" ^ sov (hd vel)

		| ("Lustre","lt"),  [] -> sov (hd vel) ^ " < " ^ sov (hd (tl vel))
		| ("Lustre","lte"),  [] -> sov (hd vel) ^ " <= " ^ sov (hd (tl vel))
		| ("Lustre","gt"),  [] -> sov (hd vel) ^ " > " ^ sov (hd (tl vel))
		| ("Lustre","gte"),  [] -> sov (hd vel) ^ " >= " ^ sov (hd (tl vel))
		| ("Lustre","eq"),  [] -> sov (hd vel) ^ " = " ^ sov (hd (tl vel))
		| ("Lustre","diff"),  [] -> sov (hd vel) ^ " <> " ^ sov (hd (tl vel))
		| ("Lustre","plus"),  [] -> sov (hd vel) ^ " +  " ^ sov (hd (tl vel)) 
		| ("Lustre","iplus"),  [] -> sov (hd vel) ^ " +  " ^ sov (hd (tl vel)) 
		| ("Lustre","rplus"),  [] -> sov (hd vel) ^ " +  " ^ sov (hd (tl vel)) 
		| ("Lustre","minus"),  [] -> sov (hd vel) ^ " - " ^ sov (hd (tl vel)) 
		| ("Lustre","iminus"),  [] -> sov (hd vel) ^ " - " ^ sov (hd (tl vel)) 
		| ("Lustre","rminus"),  [] -> sov (hd vel) ^ " - " ^ sov (hd (tl vel)) 
		| ("Lustre","div"),  [] -> sov (hd vel) ^ " / " ^ sov (hd (tl vel)) 
		| ("Lustre","idiv"),  [] -> sov (hd vel) ^ " / " ^ sov (hd (tl vel)) 
		| ("Lustre","rdiv"),  [] -> sov (hd vel) ^ " / " ^ sov (hd (tl vel))
		| ("Lustre","times"),  [] -> sov (hd vel) ^ " * " ^ sov (hd (tl vel)) 
		| ("Lustre","rtimes"),  [] -> sov (hd vel) ^ " * " ^ sov (hd (tl vel)) 
		| ("Lustre","itimes"),  [] -> sov (hd vel) ^ " * " ^ sov (hd (tl vel)) 
		| ("Lustre","slash"),  [] -> sov (hd vel) ^ " / " ^ sov (hd (tl vel)) 
		| ("Lustre","rslash"),  [] -> sov (hd vel) ^ " / " ^ sov (hd (tl vel)) 
		| ("Lustre","islash"),  [] -> sov (hd vel) ^ " / " ^ sov (hd (tl vel)) 

		| ("Lustre","impl"),  [] -> sov (hd vel) ^ " => " ^ sov (hd (tl vel)) 
		| ("Lustre","mod"),  [] -> sov (hd vel) ^ " mod " ^ sov (hd (tl vel)) 
		| _ -> 
		    ((string_of_node_key_iter nee.src nee.it.node_key_eff) ^ (tuple_par vel))
	       )
	     else
 	       ((string_of_node_key_iter nee.src nee.it.node_key_eff) ^ (tuple_par vel))
	    else
	      (* recursive node cannot be extern *)
	      ((string_of_node_key_rec nee.it.node_key_eff) ^ (tuple_par vel))
	  )
	| IDENT idref, _ -> Ident.string_of_idref idref
	| PRE, _ -> "pre "  ^ (tuple_par vel)
	| ARROW, [ve1; ve2] -> 
	    (string_of_val_exp_eff ve1) ^ " -> " ^ (string_of_val_exp_eff ve2)
	| FBY, [ve1; ve2] -> 
            if !Global.lv4 then
              (string_of_val_exp_eff ve1) ^ " -> pre " ^ (string_of_val_exp_eff ve2)
            else
	      (string_of_val_exp_eff ve1) ^ " fby " ^ (string_of_val_exp_eff ve2)
	| WHEN clk, vel -> (tuple vel) ^ (string_of_clock_exp clk)

	| CURRENT,_ -> "current " ^ tuple_par vel 
	| TUPLE,_ -> (tuple vel)
	| WITH(ve),_ -> (string_of_val_exp_eff ve)
	| CONCAT, [ve1; ve2] ->  
	    (string_of_val_exp_eff ve1) ^ " | " ^ (string_of_val_exp_eff ve2)
	| HAT (i, ve), _ -> (string_of_val_exp_eff ve) ^ "^" ^ (string_of_int i)
	| ARRAY vel, _ -> tuple_square vel
	    (string_of_val_exp_eff ve1) ^ "." ^ (Ident.to_string id)

	| ARRAY_ACCES(i, type_eff), [ve1] ->
	    (string_of_val_exp_eff ve1) ^ "[" ^ (string_of_int i) ^ "]"

	| ARRAY_SLICE(si_eff, type_eff), [ve1] -> 
	    (string_of_val_exp_eff ve1) ^ (string_of_slice_info_eff si_eff)

	| ARRAY_SLICE(_,_), _ -> assert false (* todo *)
	| MERGE _, _ -> assert false (* todo *)
            (* 	| ITERATOR _, _ -> assert false (* todo *) *)
	| ARROW, _ -> assert false
	| FBY, _ -> assert false
	| CONCAT, _ -> assert false
	| STRUCT_ACCESS(_), _ -> assert false
	| ARRAY_ACCES(i, type_eff), _ -> assert false
    in
    let do_not_parenthesize = function 
      | IDENT _,_ 
      | Predef((Predef.ICONST_n _), _),_
      | Predef((Predef.RCONST_n _), _),_
      | Predef((Predef.FALSE_n), _),_
      | Predef((Predef.TRUE_n), _),_
      | ARRAY_ACCES _,_
      | STRUCT_ACCESS _,_ -> true   
      | _,_ ->  false 
    in 
      if 
        (* already parenthesized *)
        ( Str.string_match (Str.regexp "^(") str 0 && 
            Str.string_match (Str.regexp ")$") str 0 ) 
        || 
          (* ident or predef constants *)
          (do_not_parenthesize (posop.it,vel)) 
and string_of_val_exp_eff = function
  | CallByPosEff (by_pos_op_eff, OperEff vel) ->
      (string_of_by_pos_op_eff by_pos_op_eff vel) 
  | CallByNameEff(by_name_op_eff, fl) -> 
      (match by_name_op_eff.it with
	 | STRUCT (pn,idref) -> prefix ^ (
             match Ident.pack_of_idref idref with
               | Some pn -> Ident.string_of_idref idref
               | None -> 
                   let idref = Ident.make_idref pn (Ident.of_idref idref) in
                     Ident.string_of_idref idref
           )
	 | STRUCT_anonymous -> "") ^
	"{" ^ (String.concat ";" 
		 (List.map 
		    (fun (id,veff) -> 
		       let str = string_of_val_exp_eff veff in 
			 (Ident.to_string id.it) ^ "=" ^ 
			 (if is_a_tuple veff then ("("^ str^")") else str)
and wrap_long_line str = 
  if String.length str < 75 then str else
    let str_list = Str.split (Str.regexp " ") str in
    let new_str, reste =
      List.fold_left
	(fun (accl, acc_str) str ->
	   let new_acc_str = acc_str ^ " " ^ str in
	     if 
	       String.length new_acc_str > 75
	     then
	       (accl ^ acc_str ^ "\n\t" , str)
	     else
	       (accl, new_acc_str)
	)
	("","")
	str_list
    in
      new_str ^ " " ^ reste

and string_of_eq_info_eff (leff_list, vee) =
  let str = string_of_val_exp_eff vee in
    wrap_long_line (
      (string_of_leff_list leff_list) ^ " = " ^ 
      (if is_a_tuple vee then ("("^ str^")") else str) ^ ";")
and (string_of_assert : Eff.val_exp srcflagged -> string ) =
  fun eq_eff -> 
    wrap_long_line (
      "assert(" ^ string_of_val_exp_eff eq_eff.it ^ ");")
and (string_of_eq : Eff.eq_info srcflagged -> string) =
  fun eq_eff ->
    string_of_eq_info_eff eq_eff.it



and wrap_long_profile str = 
  if String.length str < 75 then str else
    "\n"^(
      Str.global_replace (Str.regexp "returns") "\nreturns"
	(Str.global_replace (Str.regexp "(") "(\n\t"
	   (Str.global_replace (Str.regexp "; ") ";\n\t" str)))  
and (profile_of_node_exp_eff: Eff.node_exp -> string) =
  fun neff ->
    ("(" ^ (string_of_type_decl_list  neff.inlist_eff "; ") ^ ") returns (" ^
       (string_of_type_decl_list neff.outlist_eff "; ") ^ ");\n")
and (string_of_node_def : Eff.node_def -> string list) =
  function
    | ExternEff
    | AbstractEff -> []
    | BodyEff node_body_eff -> 
	List.append
	  (List.map string_of_assert node_body_eff.asserts_eff)
	  (List.map string_of_eq node_body_eff.eqs_eff)
(* exported *)
and (type_decl: Ident.long -> Eff.type_ -> string) =
  fun tname teff -> 
    "type " ^ prefix ^ (long tname) ^ 
      (match teff with
	 | External_type_eff (_) 
	 | Abstract_type_eff(_,External_type_eff (_)) -> ";\n"
	 | _ -> " = " ^ (string_def_of_type_eff teff) ^ ";\n"
(* exported *)
and (const_decl: Ident.long -> Eff.const -> string) =
  fun tname ceff -> 
    let begin_str = ("const " ^ (long tname)) in
    let end_str = (string_of_const_eff ceff) ^ ";\n" in
      (match ceff with 
         | Enum_const_eff _  -> 
             if !Global.expand_enums then
               (begin_str ^ " = " ^ end_str)
             else 
             (* do not print those const, because there were
                introduced by the compiler *)
         | Extern_const_eff _
         | Abstract_const_eff _ ->
             begin_str ^ ":" ^ (string_of_type_eff (Eff.type_of_const ceff)) ^ 
               (if !Global.ec then ".\n" else ";\n")
         | Struct_const_eff _
         | Array_const_eff _
         | Bool_const_eff _
         | Int_const_eff _
         | Real_const_eff _ -> begin_str ^ " = " ^ end_str
(* exported *)
and (node_of_node_exp_eff: Eff.node_exp -> string) =
  fun neff -> 
      (if
         neff.def_eff = ExternEff 
         && not (!Global.lv4) (* no extern kwd in v4... *)
       then "extern " 
       else "") ^
        (if !Global.lv4 then
           (* node and function does not have the same meaning in v4... *)
           (if neff.def_eff = ExternEff then "function " else "node ")
         else 
           (if neff.has_mem_eff  then "node " else "function ") 
        ) ^
        (string_of_node_key_rec neff.node_key_eff) ^
        (profile_of_node_exp_eff neff)) ^ 
      (match neff.def_eff with
	 | ExternEff ->  ""
	 | AbstractEff -> ""
	 | BodyEff _ ->  
	     ((match neff.loclist_eff with None -> "" | Some [] -> ""
		 | Some l ->
		     "var\n   " ^ (string_of_type_decl_list l ";\n   ") ^ ";\n") ^
		"let\n   " ^
		 (String.concat "\n   " (string_of_node_def neff.def_eff)) ^
		 "\ntel\n-- end of node " ^
		 (string_of_node_key_rec neff.node_key_eff) ^ "\n"
	     )
and (string_of_clock_exp : SyntaxTreeCore.clock_exp -> string) = 
  function
    | SyntaxTreeCore.Base -> ""
    | SyntaxTreeCore.NamedClock clk -> 
        " when " ^ (string_of_ident_clk clk.it)

and (string_of_ident_clk : Ident.clk -> string) =
  fun clk -> 
      let (cc,v) = clk in
      let clk_exp_str =
(*         if !Global.lv4 then  *)
          match Ident.string_of_idref cc with
            | "True" -> (Ident.to_string v)
            | "False" ->  "not " ^ (Ident.to_string v)
            | _ -> Ident.string_of_clk clk
(*         else *)
(*           Ident.string_of_clk clk *)
      in
        clk_exp_str


(* exported *)
and string_of_clock2 (ck : Eff.clock) =
  match ck with
    | BaseEff -> " on base"
    | On(clk_exp,ceff) ->
        let clk_exp_str = string_of_ident_clk clk_exp in
          " on " ^ clk_exp_str ^ (string_of_clock2 ceff)
    | ClockVar i ->  "'a" ^ string_of_int i
        
 
and string_of_clock (ck : Eff.clock) =
  match ck with
    | On(clk_exp,_) -> 
        let clk_exp_str = string_of_ident_clk clk_exp in
          " when " ^ clk_exp_str
    | ClockVar _ ->  assert false
        (*     | ClockVar i -> "_clock_var_" ^ (string_of_int i) *)


(*---------------------------------------------------------------------
Formatage standard des erreurs de compil
----------------------------------------------------------------------*)
let node_error_string lxm nkey = (
   Printf.sprintf "While checking %s" (string_of_node_key_iter lxm nkey)
)

(*---------------------------------------------------------------------
Message d'erreur (associé à un lexeme) sur stderr
----------------------------------------------------------------------*)
let print_compile_node_error nkey lxm msg = (
   Printf.eprintf "%s\n" (node_error_string lxm nkey);
  Errors.print_compile_error lxm msg ;
   flush stderr
)

let print_global_node_error lxm nkey msg = (
   Printf.eprintf "%s\n" (node_error_string lxm nkey);
  Errors.print_global_error msg ;
   flush stderr
)