Skip to content
Snippets Groups Projects
licDump.ml 16 KiB
Newer Older
(** Time-stamp: <modified the 21/08/2008 (at 16:34) by Erwan Jahier> *)

open CompiledData
open Printf
open Lxm

let (long : Ident.long -> string) = Ident.string_of_long
(*   fun id ->  *)
(*     let str = Ident.string_of_long id in *)
(*       Str.global_replace (Str.regexp "::") "__" str *)
let type_alias_table = Hashtbl.create 0

(* prefix used to prefix user type name in order to avoid name clashed with
   the alias type name that are generated by the compiler. *)
let prefix = "_"

let rec string_of_const_eff = (
  function
    | Bool_const_eff true -> "true"
    | Bool_const_eff false -> "false"
    | Int_const_eff i -> sprintf "%d" i
    | Real_const_eff r -> sprintf "%f" r
    | Extern_const_eff (s,t,vopt) -> (long s) ^ (string_of_const_eff_opt vopt)
    | Enum_const_eff   (s,t) -> (long s)
    | Struct_const_eff (fl, t) -> (
	let string_of_field = 
	  function (id, veff) -> 
	    (Ident.to_string id)^" = "^(string_of_const_eff veff)
	in
	let flst = List.map string_of_field fl in
	  (string_of_type_eff t)^"{"^(String.concat "; " flst)^"}"
      )
    | Array_const_eff (ctab, t) -> (
	let vl = Array.to_list(Array.map string_of_const_eff ctab) in
	  "["^(String.concat ", " vl)^"]"
      )
)

and string_of_const_eff_opt = function
  | None -> ""
  | Some val_exp_eff -> string_of_const_eff val_exp_eff

and string_def_of_type_eff = function
  | Bool_type_eff -> "bool"
  | Int_type_eff  -> "int"
  | Real_type_eff -> "real"
  | External_type_eff i -> long i
  | Enum_type_eff (i, sl) -> 
      assert (sl <>[]);
      let f sep acc s  = acc ^ sep ^ (long s) in
	(List.fold_left (f ", ")  (f "" "enum {" (List.hd sl)) (List.tl sl)) ^ "}"
  | Array_type_eff (ty, sz) -> sprintf "%s^%d" (string_of_type_eff ty) sz
  | Struct_type_eff (name, fl) -> 
      assert (fl <>[]);
      let f sep acc (id, (type_eff, const_eff_opt))  = 
	acc ^ sep ^ (Ident.to_string id) ^ " : " ^
	  (string_of_type_eff type_eff) ^
	  match const_eff_opt with
	      None -> ""
	    | Some ce -> " = " ^ (string_of_const_eff ce)
	  (List.fold_left (f "; ")  (f "" " {" (List.hd fl)) (List.tl fl)) ^ "}"
(* exported *)
and string_of_type_eff = function
  | Bool_type_eff -> "bool"
  | Int_type_eff  -> "int"
  | Real_type_eff -> "real"
  | External_type_eff name -> prefix ^ (long name)
  | Enum_type_eff (name, _) -> prefix ^ (long name)
  | Array_type_eff (ty, sz) -> array_alias ty sz
  | Struct_type_eff (name, _) -> prefix ^ (long name)
  | Any -> "a"
  | Overload -> "o"

(******************************************************************************)
(** Stuff to manage generated type alias 
    
    Indeed instead of printing:

       node toto(x: int ^ 4) ... 

    we want to print something like :

       type int4 = int ^ 4;
       node toto(x: int4) ... 
    
    That may occur only for array actually.

    To do that, we maintain a table of type alias that we fill each time
    we want to print (via string_of_type_eff) a type that is not a named type.
    Then, at the end, we will dump that table in the lic file.

    This table is filled by [array_alias].

    In order to avoid name clashes, we prefix all user name type by [prefix] (cf
    at the top of this file).
    
*)
and (array_alias : type_eff -> int -> string) = 
  fun t size -> 
    let array_t = Array_type_eff(t,size) in
      try
        Hashtbl.find type_alias_table array_t 
      with Not_found -> 
        let alias_t = string_of_type_eff t in
        let res = "A_"^ alias_t ^ "_" ^(string_of_int size) in
          Hashtbl.add type_alias_table array_t res;
          res

(* exported *)
and dump_type_alias oc =
  let p = output_string oc in
    if Hashtbl.length type_alias_table > 0 then p "-- automatically defined aliases:";
    Hashtbl.iter
      (fun type_eff alias_name -> 
         p ("\ntype " ^ alias_name ^ " = "  ^ (string_def_of_type_eff type_eff)^";")
      )
      type_alias_table
    
(******************************************************************************)    

(* exported  *)
and (type_eff_list_to_string :type_eff list -> string) =
  fun tel -> 
    let str_l = List.map string_of_type_eff tel in
      String.concat "*" str_l    

and string_of_type_eff_list = function
  | []  -> ""
  | [x] -> string_of_type_eff x
  | l   -> String.concat " * " (List.map string_of_type_eff l)


(* for printing recursive node *)
and string_of_node_key_rec (nkey: node_key) = 
  match nkey with
    | (ik, []) -> long ik
    | (ik, salst) ->
	let astrings = List.map static_arg2string_rec salst in
	  sprintf "%s_%s" (long ik) (String.concat "_" astrings)

(* for printing iterators *)
and string_of_node_key_iter (nkey: node_key) = 
  match nkey with
    | (ik, []) -> long ik
    | (ik, salst) ->
	let astrings = List.map static_arg2string salst in
	  sprintf "%s<<%s>>" (long ik) (String.concat ", " astrings)

(* for printing recursive node *)
and static_arg2string_rec (sa : static_arg_eff) =
    match sa with
      | ConstStaticArgEff (id, ceff) -> sprintf "%s" (string_of_const_eff ceff)
      | TypeStaticArgEff  (id, teff) -> sprintf "%s" (string_of_type_eff teff)
      | NodeStaticArgEff  (id, opeff) ->
	  sprintf "%s" (string_of_node_key_rec opeff.node_key_eff)

(* for printing iterators *)
and static_arg2string (sa : static_arg_eff) =
    match sa with
      | ConstStaticArgEff (id, ceff) -> sprintf "%s" (string_of_const_eff ceff)
      | TypeStaticArgEff  (id, teff) -> sprintf "%s" (string_of_type_eff teff)
      | NodeStaticArgEff  (id, opeff) ->
	  sprintf "%s" (string_of_node_key_iter opeff.node_key_eff)
and (string_of_var_info_eff: var_info_eff -> string) =
  fun x -> 
    (Ident.to_string x.var_name_eff) ^ ":"^(string_of_type_eff x.var_type_eff)
and string_of_decl var_info_eff = 
  (Ident.to_string var_info_eff.var_name_eff) ^ ":" ^ 
    (string_of_type_eff var_info_eff.var_type_eff) ^
    (string_of_clock var_info_eff.var_clock_eff)
and (string_of_type_decl_list : var_info_eff list -> string -> string) =
    let str = String.concat sep (List.map string_of_decl tel) in
and string_of_slice_info_eff si_eff =
  "[" ^ (string_of_int si_eff.se_first) ^ " .. " ^ (string_of_int si_eff.se_last) ^
    (if si_eff.se_step = 1 then "" else " step " ^ (string_of_int si_eff.se_step)) ^
    "]"

and (string_of_leff : left_eff -> string) =
  function
  | LeftVarEff  (vi_eff,_) -> Ident.to_string vi_eff.var_name_eff  
  | LeftFieldEff(leff,id,_) -> (string_of_leff leff) ^ "." ^ (Ident.to_string id)
  | LeftArrayEff(leff,i,_)  -> (string_of_leff leff) ^ "[" ^ (string_of_int i) ^ "]"
  | LeftSliceEff(leff,si,_) -> (string_of_leff leff) ^ (string_of_slice_info_eff si)

and (string_of_leff_list : left_eff list -> string) =
  fun l -> 
    (if List.length l = 1 then "" else "(") ^ 
      (String.concat ", " (List.map string_of_leff l)) ^ 
      (if List.length l = 1 then "" else ")") 




and (string_of_by_pos_op_eff : by_pos_op_eff -> val_exp_eff list -> string) =
  fun posop vel -> 
    let tuple vel = (String.concat ", " (List.map string_of_val_exp_eff vel)) in
    let tuple_par vel = "(" ^ (tuple vel) ^ ")" in
    let tuple_square vel = 
	"[" ^ (String.concat ", " (List.map string_of_val_exp_eff vel)) ^ "]"
    in
      match posop,vel with
	| Predef_eff (Predef.IF_n,_), [ve1; ve2; ve3] ->
	    " if " ^ (string_of_val_exp_eff ve1) ^ 
	    " then " ^ (string_of_val_exp_eff ve2) ^ 
	    " else " ^ (string_of_val_exp_eff ve3)
	| Predef_eff(op,sargs), vel -> 
	    if Predef.is_infix op then (
	      match vel with 
		| [ve1; ve2] -> 
		    (string_of_val_exp_eff ve1) ^ " " ^ (Predef.op2string op) ^ 
		      " " ^ (string_of_val_exp_eff ve2)
		| _ -> assert false
	    ) 
	    else 
	      ((Predef.op2string op) ^
		 (if sargs = [] then 
                    match op with
                      | Predef.ICONST_n _ | Predef.RCONST_n _   | Predef.NOT_n
                      | Predef.UMINUS_n | Predef.IUMINUS_n | Predef.RUMINUS_n
                      | Predef.FALSE_n | Predef.TRUE_n -> tuple vel 
                      | _ -> tuple_par vel 
                  else 
		    "<<" ^ (String.concat ", " (List.map static_arg2string sargs))
	| CALL_eff nee, _  -> (
	    if nee.it.def_eff = ExternEff then
	      ((string_of_node_key_iter nee.it.node_key_eff) ^ (tuple_par vel))
	    else 
	      (* recursive node cannot be extern *)
	      ((string_of_node_key_rec nee.it.node_key_eff) ^ (tuple_par vel))
	| IDENT_eff idref, _ -> Ident.string_of_idref idref
	| CONST_eff (idref,pn), _ -> 
            Ident.string_of_idref (
              match Ident.pack_of_idref idref with
                | Some _ ->  idref
                | None -> Ident.make_idref pn (Ident.of_idref idref)
            )
	| PRE_eff, _ -> "pre "  ^ (tuple vel)
	| ARROW_eff, [ve1; ve2] -> 
	    (string_of_val_exp_eff ve1) ^ " -> " ^ (string_of_val_exp_eff ve2)
	| FBY_eff, [ve1; ve2] -> 
	    (string_of_val_exp_eff ve1) ^ " fby " ^ (string_of_val_exp_eff ve2)
	| WHEN_eff _, [ve1; ve2] -> 
	    (string_of_val_exp_eff ve1) ^ " when " ^ (string_of_val_exp_eff ve2)
	| WHENOT_eff _, [ve1; ve2] -> 
	    (string_of_val_exp_eff ve1) ^ " when not " ^ (string_of_val_exp_eff ve2)
	| CURRENT_eff,_ -> "current " ^ (tuple vel)
	| TUPLE_eff,_ -> (tuple vel)
	| WITH_eff(ve),_ -> (string_of_val_exp_eff ve)
	| CONCAT_eff, [ve1; ve2] ->  
	    (string_of_val_exp_eff ve1) ^ " | " ^ (string_of_val_exp_eff ve2)
	| HAT_eff (i, ve), _ -> (string_of_val_exp_eff ve) ^ "^" ^ (string_of_int i)
	| ARRAY_eff, _ -> tuple_square vel
	| STRUCT_ACCESS_eff(id), [ve1] ->
	    (string_of_val_exp_eff ve1) ^ "." ^ (Ident.to_string id)

	| ARRAY_ACCES_eff(i, type_eff), [ve1] ->
	    (string_of_val_exp_eff ve1) ^ "[" ^ (string_of_int i) ^ "]"

	| ARRAY_SLICE_eff(si_eff, type_eff), [ve1] -> 
	    (string_of_val_exp_eff ve1) ^ (string_of_slice_info_eff si_eff)

	| ARRAY_SLICE_eff(_,_), _ -> assert false (* todo *)
	| MERGE_eff _, _ -> assert false (* todo *)
(* 	| ITERATOR_eff _, _ -> assert false (* todo *) *)

(* Cannot happen *)
	| ARROW_eff, _ -> assert false
	| FBY_eff, _ -> assert false
	| CONCAT_eff, _ -> assert false
	| STRUCT_ACCESS_eff(_), _ -> assert false
	| ARRAY_ACCES_eff(i, type_eff), _ -> assert false
    in
    let do_not_parenthesize = function 
      | IDENT_eff _,_ 
      | Predef_eff((Predef.ICONST_n _), _),_
      | Predef_eff((Predef.RCONST_n _), _),_
      | Predef_eff((Predef.FALSE_n), _),_
      | Predef_eff((Predef.TRUE_n), _),_
      | ARRAY_ACCES_eff _,_
      | STRUCT_ACCESS_eff _,_ -> true   
      | _,_ ->  false 
    in 
      if 
        (* already parenthesized *)
        ( Str.string_match (Str.regexp "^(") str 0 && 
            Str.string_match (Str.regexp ")$") str 0 ) 
        || 
          (* ident or predef constants *)
          (do_not_parenthesize (posop,vel)) 
      then 
        str 
      else 
        ("(" ^ str ^ ")")

and string_of_val_exp_eff = function
  | CallByPosEff (by_pos_op_eff, OperEff vel) ->
      (string_of_by_pos_op_eff by_pos_op_eff.it vel) 

  | CallByNameEff(by_name_op_eff, fl) -> 
      (match by_name_op_eff.it with
	 | STRUCT_eff (pn,idref) -> prefix ^ (
             match Ident.pack_of_idref idref with
               | Some pn -> Ident.string_of_idref idref
               | None -> 
                   let idref = Ident.make_idref pn (Ident.of_idref idref) in
                     Ident.string_of_idref idref
           )
	 | STRUCT_anonymous_eff -> "") ^
	"{" ^ (String.concat ";" 
		 (List.map 
		    (fun (id,veff) -> 
		       (Ident.to_string id.it) ^ "=" ^ (string_of_val_exp_eff veff)
		    )
		    fl)) ^
	"}"

and wrap_long_line str = 
  if String.length str < 75 then str else
    let str_list = Str.split (Str.regexp " ") str in
    let new_str, reste =
      List.fold_left
	(fun (accl, acc_str) str ->
	   let new_acc_str = acc_str ^ " " ^ str in
	     if 
	       String.length new_acc_str > 75
	     then
	       (accl ^ acc_str ^ "\n\t" , str)
	     else
	       (accl, new_acc_str)
	)
	("","")
	str_list
    in
      new_str ^ " " ^ reste

and string_of_eq_info_eff (leff_list, vee) =
  wrap_long_line (
    (string_of_leff_list leff_list) ^ " = " ^ (string_of_val_exp_eff vee) ^ ";")

and (string_of_assert : val_exp_eff srcflagged -> string ) =
  fun eq_eff -> 
  wrap_long_line (
    "assert(" ^ string_of_val_exp_eff eq_eff.it ^ ");")

and (string_of_eq : eq_info_eff srcflagged -> string) =
  fun eq_eff ->
    string_of_eq_info_eff eq_eff.it



and wrap_long_profile str = 
  if String.length str < 75 then str else
    "\n"^(
      Str.global_replace (Str.regexp "returns") "\nreturns"
	(Str.global_replace (Str.regexp "(") "(\n\t"
	   (Str.global_replace (Str.regexp "; ") ";\n\t" str)))  

and (profile_of_node_exp_eff: node_exp_eff -> string) =
  fun neff ->
    wrap_long_profile 
      ((if neff.def_eff = ExternEff then "extern " else "") ^
	 (if neff.has_mem_eff then "node " else "function ") ^
	 (string_of_node_key_rec neff.node_key_eff) ^
	 "(" ^ (string_of_type_decl_list  neff.inlist_eff "; ") ^ ") returns (" ^
	 (string_of_type_decl_list neff.outlist_eff "; ") ^ ");\n")
and (string_of_node_def : node_def_eff -> string list) =
  function
    | ExternEff
    | AbstractEff -> []
    | BodyEff node_body_eff -> 
	List.append
	  (List.map string_of_assert node_body_eff.asserts_eff)
	  (List.map string_of_eq node_body_eff.eqs_eff)

    

(* exported *)
and (type_decl: Ident.long -> type_eff -> string) =
  fun tname teff -> 
    "type " ^ prefix ^ (long tname) ^ 
      (match teff with 
	 | External_type_eff _ -> ";\n"
	 | _ -> " = " ^ (string_def_of_type_eff teff) ^ ";\n"
(* exported *)
and (const_decl: Ident.long -> const_eff -> string) =
  fun tname ceff -> 
      (match ceff with 
	 | Extern_const_eff _ -> 
             str^":" ^ (string_of_type_eff (type_of_const_eff ceff))^ ";\n"
	 | Enum_const_eff _  -> "" (* do not print those const *)
	 | Struct_const_eff _ -> assert false 
	 | Array_const_eff _
	 | Bool_const_eff _
	 | Int_const_eff _
	 | Real_const_eff _ -> str^" = " ^ (string_of_const_eff ceff)^ ";\n"
      ) 
(* exported *)
and (node_of_node_exp_eff: node_exp_eff -> string) =
  fun neff -> 
    (profile_of_node_exp_eff neff) ^ 
      (match neff.def_eff with
	 | ExternEff ->  ""
	 | AbstractEff -> ""
	 | BodyEff _ ->  
	     ((match neff.loclist_eff with None -> "" | Some [] -> ""
		 | Some l ->
		     "var\n   " ^ (string_of_type_decl_list l ";\n   ") ^ ";\n") ^
		"let\n   " ^
		 (String.concat "\n   " (string_of_node_def neff.def_eff)) ^
		 "\ntel\n-- end of node " ^
		 (string_of_node_key_rec neff.node_key_eff) ^ "\n"
(* exported *)
and string_of_clock2 (ck : clock_eff) =
  let rec string_of_clock2_aux ck =
    (* to avoid printing the first level var name *)
    match ck with
      | BaseEff -> " on base"
      | On(veff,ceff) ->" on " ^ (Ident.to_string veff) ^ 
	  (string_of_clock2_aux ceff)
      | ClockVar i ->  "'a" ^ string_of_int i
  in
    match ck with
      | BaseEff -> " on base"
      | On(_,ceff) -> (string_of_clock2_aux ceff)
      | ClockVar i ->  "'a" ^ string_of_int i
and string_of_clock (ck : clock_eff) =
  match ck with
    | On(_,BaseEff) -> ""
    | On(v,On(id,_)) ->" when " ^ (Ident.to_string id)
(*     | On(v,ClockVar i) -> " when _clock_var_"^ (string_of_int i) *)
(*     | ClockVar i -> "_clock_var_" ^ (string_of_int i) *)
    | _ ->  assert false
and string_of_clock_list cl = 
  "(" ^ (String.concat ", " (List.map string_of_clock cl)) ^ ")"

(*---------------------------------------------------------------------
Formatage standard des erreurs de compil
----------------------------------------------------------------------*)
let node_error_string nkey = (
   Printf.sprintf "While checking %s" (string_of_node_key_iter nkey)
)

(*---------------------------------------------------------------------
Message d'erreur (associé à un lexeme) sur stderr
----------------------------------------------------------------------*)
let print_compile_node_error nkey lxm msg = (
   Printf.eprintf "%s\n" (node_error_string nkey);
  Errors.print_compile_error lxm msg ;
   flush stderr
)

let print_global_node_error nkey msg = (
   Printf.eprintf "%s\n" (node_error_string nkey);
  Errors.print_global_error msg ;
   flush stderr
)