Newer
Older
(** Time-stamp: <modified the 12/03/2009 (at 10:24) by Erwan Jahier> *)
(* Replace structures and arrays by as many variables as necessary.
Since structures can be recursive, it migth be a lot of new variables...
For instance, a variable
v : Toto { f1 : int ; f2 : int ^ 3 ; f3 : t^2 }
where
type t = T { x:int ; y:int }
will be expanded into
_v_f1 : int;
_v_f2_0 : int;
_v_f2_1 : int;
_v_f2_2 : int;
_v_f3_1_x : int;
_v_f3_1_y : int;
_v_f3_2_x : int;
_v_f3_3_y : int;
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
nb : if 't' was a type that does not contain any struct type, we would just
have 3 variables.
*)
open Lxm
open Eff
open Predef
type acc =
Eff.val_exp srcflagged list (* assertions *)
* (Eff.eq_info srcflagged) list (* equations *)
* Eff.var_info list (* new local vars *)
(********************************************************************************)
(* stuff to create fresh var names.
XXX code dupl. with Split.new_var
*)
let new_var str node_env type_eff clock_eff =
let id = Ident.of_string (Name.new_local_var str) in
let var =
{
var_name_eff = id;
var_nature_eff = SyntaxTreeCore.VarLocal;
var_number_eff = -1; (* this field is used only for i/o.
Should i rather put something sensible there ? *)
var_type_eff = type_eff;
var_clock_eff = clock_eff;
}
in
Hashtbl.add node_env.lenv_vars id var;
var
(* returns a new var based on [vi] with type [type_eff]. *)
let clone_var node_env vi str type_eff =
let str = (Ident.to_string vi.var_name_eff) ^ str in
let id = Ident.of_string (str) in
let clk_id = Ident.of_string str in
let type_eff = match type_eff with
Any | Overload -> Polymorphism.get_type ()
| _ -> type_eff
in
let var =
{
var_name_eff = id;
var_nature_eff = vi.var_nature_eff;
var_number_eff = vi.var_number_eff; (* this field is useless: to be removed. *)
var_type_eff = type_eff;
var_clock_eff = clk_id, snd vi.var_clock_eff;
}
in
(* Hashtbl.add node_env.lenv_vars id var; *)
var
let rec (is_a_basic_type : Eff.type_ -> bool) =
function
| Array_type_eff _ | Struct_type_eff _ -> false
| Any | Overload -> is_a_basic_type (Polymorphism.get_type ())
| Abstract_type_eff(_, teff) -> is_a_basic_type teff
| External_type_eff(_)
| Enum_type_eff (_, _)
| Real_type_eff
| Int_type_eff
| Bool_type_eff -> true
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
let soi = string_of_int
let (index_list_of_slice_info : Eff.slice_info -> int list) =
fun si ->
let rec aux acc cpt =
if ((si.se_step > 0 & cpt > si.se_last) || (si.se_step < 0 & cpt < si.se_last))
then acc else aux (cpt::acc) (cpt + si.se_step)
in
List.rev (aux [] si.se_first)
(** left expr expansion.
The objective is to generate the set of vars defined by a left expr.
First step: var_trees_of_left recursively traverse the left structure
to compute the left expr variable. E.g., in the left expr "X.f2[4]" we
want to find "X" (and its type).
Second step: Using the type of X, we compute the set of variables defined
by "X" (gen_var_trees). The set is actually structured into a tree-like
data struture var_tree (to be able to deal with slices).
Third step (var_trees_of_left again): cut off some branches of the tree using
the left filter ("f2[4]") to keep only the variable effectivily defined
by the left expr (exercise for the reader: try to do the same with a flat data
type ; it's just a nigthmare because of slices).
In other words:
- when we find a left leave, we generate all the possible names
corresponding to that var, in a data structure (a tree) that reflect
the lustre data structure (w.r.t. array and struct)
- Then, struct or array accesses remove some branches of that tree
*)
(* var_trees are used to represent left var_tree, and val_exp var_tree *)
type 'a var_tree =
A of 'a var_tree list (* should i use an array there? *)
| S of (Ident.t * 'a var_tree) list (* A Map.t ? *)
| L of 'a
(* Quite similar to UniqueOutput.var_def_state, which is logic. *)
let rec (flatten_var_tree : 'a var_tree -> 'a list) =
function
| A array -> List.flatten (List.map flatten_var_tree array)
| S fl -> List.flatten (List.map (fun (id,vt) -> flatten_var_tree vt) fl)
| L str -> [str]
let rec (gen_var_trees :
(string -> Eff.type_ -> 'a) -> string -> Eff.type_ -> 'a var_tree) =
fun make_leave prefix teff ->
let loop = gen_var_trees make_leave in
match teff with
| Any | Overload ->
let teff = Polymorphism.get_type () in
L (make_leave prefix teff)
| Bool_type_eff | Int_type_eff | Real_type_eff
| Enum_type_eff(_) | External_type_eff(_)
->
| Abstract_type_eff(_,teff) -> loop prefix teff
| Array_type_eff(teff_elt,i) ->
let rec unfold acc cpt =
if cpt < 0 then acc else
let prefix = prefix ^ "_" ^ (soi cpt) in
let vt = loop prefix teff_elt in
unfold (vt::acc) (cpt-1)
in
A (unfold [] (i-1))
| Struct_type_eff(_, fl) ->
S (List.map
(fun (fn, (steff, _const_opt)) ->
let prefix = prefix^"_"^(Ident.to_string fn) in
(fn, loop prefix steff )
)
fl)
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
let (expand_left : Eff.local_env -> left -> left list) =
fun nenv left ->
let rec (var_trees_of_left : left -> left var_tree) =
fun left ->
match left with
| LeftVarEff (vi,lxm) ->
let make_left nenv lxm vi prefix teff =
LeftVarEff (clone_var nenv vi prefix teff, lxm)
in
gen_var_trees (make_left nenv lxm vi) "" vi.var_type_eff
| LeftFieldEff (l,id,t) ->
(match var_trees_of_left l with
| S fl -> List.assoc id fl
| A _ | L _ -> assert false
)
| LeftArrayEff (l,i,t) ->
(match var_trees_of_left l with
| A array -> List.nth array i
| S _ | L _ -> assert false
)
| LeftSliceEff (l,si,t) ->
(match var_trees_of_left l with
| A array ->
let index_list = index_list_of_slice_info si in
let l = List.map (fun i -> List.nth array i) index_list in
A l
| S _ | L _ -> assert false
)
in
let vt = try var_trees_of_left left
with _ -> assert false
(* should not occur: just a defense against nth and assoc *)
in
flatten_var_tree vt
Erwan Jahier
committed
(********************************************************************************)
(** build a new loc that will alias ve, and add its definition in the
set of equations (cf acc) *)
let rec (make_new_loc : Eff.local_env -> Eff.id_solver -> Lxm.t -> acc ->
Eff.val_exp -> acc * var_info) =
fun nenv id_solver lxm acc ve ->
let teff = List.hd ve.typ in
Erwan Jahier
committed
let ceff = List.hd (EvalClock.lookup ve) in
let nv = new_var "v" nenv teff ceff in
let neq = [LeftVarEff(nv,lxm)], ve in
let neq = flagit neq lxm in
let nvl, (asserts,eqs,locs) = expand_var_info nenv id_solver ([],acc) nv in
let acc = (asserts,eqs, List.rev_append nvl locs) in
expand_eq nenv id_solver acc neq, nv
and (var_trees_of_val_exp : Eff.local_env -> Eff.id_solver -> acc -> Eff.val_exp
-> acc * Eff.val_exp var_tree) =
fun nenv id_solver acc ve ->
let make_val_exp nenv lxm vi prefix teff =
let prefix = (Ident.to_string vi.var_name_eff) ^ prefix in
let idref = Ident.idref_of_string prefix in
{ core = CallByPosEff({src=lxm;it=(IDENT idref)}, OperEff []);
typ = [vi.var_type_eff] }
in
let loop = var_trees_of_val_exp nenv id_solver acc in
match ve.core with
| CallByPosEff (by_pos_op, OperEff vel) ->
let lxm = by_pos_op.src in
let by_pos_op = by_pos_op.it in
(match by_pos_op with
| STRUCT_ACCESS (id) ->
let ve = try List.hd vel with _ -> assert false in
(match loop ve with
| acc, S fl -> acc, List.assoc id fl
| _, (A _ | L _) -> assert false
)
| ARRAY_ACCES (i) ->
let ve = try List.hd vel with _ -> assert false in
(match loop ve with
| acc, A array -> acc, List.nth array i
| _, (S _ | L _) -> assert false
)
| ARRAY_SLICE (si) ->
let ve = try List.hd vel with _ -> assert false in
(match loop ve with
| acc, A array ->
let index_list = index_list_of_slice_info si in
let l = List.map (fun i -> List.nth array i) index_list in
acc, A l
| _, (S _ | L _) -> assert false
)
| IDENT idref -> (
try
let vi = id_solver.id2var idref lxm in
(acc,
gen_var_trees (make_val_exp nenv lxm vi) "" vi.var_type_eff)
with _ ->
let const = try id_solver.id2const idref lxm
with _ ->
let msg =
"\n*** during Array expansion: '"^
(Ident.string_of_idref idref)^
"': Unknown variable.\n*** Current variables are: " ^
(Hashtbl.fold
(fun id vi_eff acc -> acc ^ (Format.sprintf "\n\t%s"
(LicDump.string_of_var_info_eff4msg vi_eff)))
nenv.lenv_vars "")
in
raise (Errors.Compile_error(lxm, msg))
in
let ceff = EvalClock.lookup ve in
let ve_const = Eff.const_to_val_eff lxm true const in
let _ =
EvalClock.add ve_const ceff;
in
let ve_const,acc =
match ve_const.core with
| CallByPosEff ({it=IDENT _},_) ->
(* in order to avoid a potential infinite loop *)
(ve_const, acc)
| _ -> expand_val_exp nenv id_solver acc ve_const
in
(acc, L (ve_const))
| WITH(_) | HAT(_) | CONCAT | ARRAY(_)
| Predef _ | CALL _ | MERGE _
| PRE | ARROW | FBY | CURRENT | WHEN _ | TUPLE
->
(* Create a new loc var to alias such expressions *)
let acc, nloc = make_new_loc nenv id_solver lxm acc ve in
acc,
gen_var_trees (make_val_exp nenv lxm nloc) "" nloc.var_type_eff
)
| CallByNameEff(by_name_op, fl) ->
let lxm = by_name_op.src in
let acc, nloc = make_new_loc nenv id_solver lxm acc ve in
gen_var_trees (make_val_exp nenv lxm nloc) "" nloc.var_type_eff
and (break_tuple : Lxm.t -> left list -> val_exp -> Eff.eq_info srcflagged list) =
fun lxm left_list ve ->
if not !Global.ec then
[{ src = lxm ; it = (left_list, ve) }]
else
(* we only need to break tuples in this mode ...
Note that this work only if the node expansion has already been done!
(otherwise, we would not have the same number of items in the left and
in the rigth part)
*)
let rec aux ve = (* flatten val exp*)
match ve.core with
| CallByPosEff ({it= TUPLE}, OperEff vel) -> List.flatten (List.map aux vel)
| CallByPosEff (unop, OperEff [ve1]) ->
let ve1l = aux ve1 in
List.map
(fun ve1 -> { ve1 with core = CallByPosEff (unop, OperEff [ve1])} )
ve1l
| CallByPosEff (binop, OperEff [ve1;ve2]) ->
let ve1l, ve2l = aux ve1, aux ve2 in
Erwan Jahier
committed
if (List.length ve1l <> List.length ve2l) then
let vel2str vel =
(String.concat ", " (List.map LicDump.string_of_val_exp_eff vel))
in
let msg =
"*** error expression " ^ (LicDump.string_of_val_exp_eff ve) ^
Erwan Jahier
committed
"\n cannot be broken \n" ^(vel2str ve1l) ^
" should have the same arity as\n"^(vel2str ve2l) ^ "\n"
Erwan Jahier
committed
raise (Errors.Compile_error(lxm, msg))
else
List.map2
(fun ve1 ve2 ->
{ ve with core = CallByPosEff (binop, OperEff [ve1;ve2])})
Erwan Jahier
committed
ve1l
ve2l
| CallByPosEff ({it= Predef(IF_n,[]); src=lxm}, OperEff [cond; ve1; ve2]) ->
let ve1l, ve2l = aux ve1, aux ve2 in
if (List.length ve1l <> List.length ve2l) then
let vel2str vel =
(String.concat ", " (List.map LicDump.string_of_val_exp_eff vel))
in
let msg =
"*** error expression " ^ (LicDump.string_of_val_exp_eff ve) ^
"\n cannot be broken \n" ^(vel2str ve1l) ^
" should have the same arity as\n"^(vel2str ve2l) ^ "\n"
raise (Errors.Compile_error(lxm, msg))
else
List.map2
(fun ve1 ve2 ->
{ ve with core =
CallByPosEff ({it= Predef(IF_n,[]); src=lxm},
OperEff [cond;ve1;ve2])}
)
ve1l
ve2l
in
let vel = aux ve in
if (List.length vel <> List.length left_list) then
(* migth occur for generic nodes, that needs to be compiled,
Erwan Jahier
committed
but that will not be dumped. *)
[{ src = lxm ; it = (left_list, ve) }]
else
List.map2
Erwan Jahier
committed
(fun l ve ->
EvalClock.add ve [(Eff.var_info_of_left l).var_clock_eff];
{ src = lxm ; it = ([l], { ve with typ = [Eff.type_of_left l]}) }
Erwan Jahier
committed
)
and (expand_eq :
Eff.local_env -> Eff.id_solver -> acc -> Eff.eq_info srcflagged -> acc) =
fun nenv id_solver acc eqf ->
let { src = lxm_eq ; it = (left_list, ve) } = eqf in
let left_list = List.flatten (List.map (expand_left nenv) left_list) in
let ve,acc = expand_val_exp nenv id_solver acc ve in
let eq_list = break_tuple lxm_eq left_list ve in
let (asserts, eqs, locs) = acc in
and expand_val_exp_list n_env id_solver acc vel =
List.fold_left
(fun (vel,acc) ve ->
let ve,acc = expand_val_exp n_env id_solver acc ve in
ve::vel, acc
)
([],acc) (List.rev vel)
and (expand_val_exp: Eff.local_env -> Eff.id_solver -> acc -> val_exp ->
val_exp * acc) =
fun n_env id_solver acc ve ->
match ve.core with
| CallByPosEff (by_pos_op, OperEff vel) ->
let lxm = by_pos_op.src in
let by_pos_op = by_pos_op.it in
let by_pos_op, acc, vel =
match by_pos_op with
| WITH(ve) ->
let ve, acc = expand_val_exp n_env id_solver acc ve in
let vel,acc = expand_val_exp_list n_env id_solver acc vel in
WITH(ve), acc, vel
| HAT(i,ve) ->
let ve, acc = expand_val_exp n_env id_solver acc ve in
let rec unfold cpt =
if cpt = 0 then [] else ve::(unfold (cpt-1))
in
TUPLE, acc, unfold i
| ARRAY(vel) ->
let vel,acc = expand_val_exp_list n_env id_solver acc vel in
TUPLE, acc, vel
| CONCAT | Predef _ | CALL _ | MERGE _
| PRE | ARROW | FBY | CURRENT | WHEN _ | TUPLE
->
let vel,acc = expand_val_exp_list n_env id_solver acc vel in
by_pos_op, acc, vel
| STRUCT_ACCESS (_)
| ARRAY_ACCES (_)
| ARRAY_SLICE (_)
| IDENT _ ->
let acc, vt = try var_trees_of_val_exp n_env id_solver acc ve
with (Not_found | Failure _) ->
assert false (* just a defense against nth and assoc *)
in
TUPLE, acc, flatten_var_tree vt
in
Erwan Jahier
committed
let newve = CallByPosEff(Lxm.flagit by_pos_op lxm, OperEff vel) in
let newve = { ve with core = newve } in
if newve <> ve then (
EvalClock.copy newve ve
Erwan Jahier
committed
newve, acc
Erwan Jahier
committed
| CallByNameEff(by_name_op, fl_val) ->
(* we want to print fields in the order of the type.
Moreover, we have to deal with default value.
*)
let teff = ve.typ in
let ceff = EvalClock.lookup ve in
Erwan Jahier
committed
match teff with
| [Struct_type_eff(_,fl)] ->
let lxm = by_name_op.src in
let vel,acc =
List.fold_left
(fun (vel,acc) (id,(_,const_opt)) ->
try
let _,ve = List.find (fun (id2,_) -> id2.it = id) fl_val in
let ve,acc = expand_val_exp n_env id_solver acc ve in
ve::vel, acc
with Not_found ->
match const_opt with
| None -> assert false
(* ougth to have been checked before *)
Erwan Jahier
committed
| Some const ->
let ve_const =
Eff.const_to_val_eff lxm true const
in
let _ =
EvalClock.add ve_const ceff;
in
let ve_const,acc=
expand_val_exp n_env id_solver acc ve_const
in
ve_const::vel,acc
Erwan Jahier
committed
)
([],acc)
fl
in
let newve = {
typ = ve.typ;
core=CallByPosEff({ src=lxm ; it=TUPLE }, OperEff (List.rev vel))
}
in
if newve <> ve then (
EvalClock.copy newve ve
);
Erwan Jahier
committed
newve, acc
Erwan Jahier
committed
| _ -> assert false
and (expand_val_exp_flag: Eff.local_env -> Eff.id_solver -> acc ->
val_exp srcflagged -> val_exp srcflagged * acc) =
fun n_env id_solver acc { src = lxm ; it = ve } ->
let ve,acc = expand_val_exp n_env id_solver acc ve in
{ src = lxm ; it = ve }, acc
and (expand_assert:
Eff.local_env -> Eff.id_solver -> acc -> val_exp srcflagged -> acc) =
fun n_env id_solver acc ve ->
let (ve, (asserts, eqs, locs)) = expand_val_exp_flag n_env id_solver acc ve in
(ve::asserts, eqs, locs)
and (expand_var_info: Eff.local_env -> Eff.id_solver -> var_info list * acc ->
var_info -> var_info list * acc) =
fun nenv id_solver (vil, acc) vi ->
let rec aux teff =
match teff with
| Abstract_type_eff (_, teff) -> aux teff
| Any | Overload -> aux (Polymorphism.get_type ())
| Struct_type_eff (name, fl) ->
List.fold_left
Erwan Jahier
committed
(fun (vil,acc) (fn, (ft,_const_opt)) ->
let new_var = clone_var nenv vi ("_" ^ Ident.to_string fn) ft in
let new_vil, new_acc = expand_var_info nenv id_solver (vil,acc) new_var in
if new_vil = new_var::vil then (
(* [new_var] type is not made of structure *)
assert (is_a_basic_type ft);
Hashtbl.add nenv.lenv_vars new_var.var_name_eff new_var);
new_vil, new_acc
)
(vil, acc)
fl
| Array_type_eff(at,size) ->
let rec aux i (vil,acc) =
if i=size then (vil,acc) else
let new_var = clone_var nenv vi ("_" ^ soi i) at in
let new_vil, new_acc = expand_var_info nenv id_solver (vil,acc) new_var in
if new_vil = new_var::vil then (
(* [new_var] type is not made of structure *)
assert (is_a_basic_type at);
Hashtbl.add nenv.lenv_vars new_var.var_name_eff new_var);
aux (i+1) (new_vil, new_acc)
in
aux 0 (vil,acc)
| External_type_eff(_)
| Enum_type_eff (_, _)
| Real_type_eff
| Int_type_eff
| Bool_type_eff ->
vi::vil, acc
in
aux vi.var_type_eff
let rec (node : Eff.id_solver -> Eff.local_env -> Eff.node_exp -> Eff.node_exp) =
fun is n_env n ->
match n.def_eff with
| ExternEff
| AbstractEff None -> n
| AbstractEff (Some pn) ->
{ n with def_eff = AbstractEff (Some (node is n_env pn)) }
| BodyEff b ->
let loclist = match n.loclist_eff with None -> [] | Some l -> l in
let inlist = n.inlist_eff in
let outlist = n.outlist_eff in
let acc = ([],[],[]) in
let inlist, acc = List.fold_left (expand_var_info n_env is) ([],acc) inlist in
let outlist, acc = List.fold_left (expand_var_info n_env is) ([],acc) outlist in
let loclist, acc = List.fold_left (expand_var_info n_env is) ([],acc) loclist in
let acc = List.fold_left (expand_eq n_env is) acc b.eqs_eff in
let acc = List.fold_left (expand_assert n_env is) acc b.asserts_eff in
let (asserts,neqs, nv) = acc in
let nb = {
eqs_eff = neqs ;
asserts_eff = asserts
}
in
let res =
{ n with
inlist_eff = List.rev inlist;
outlist_eff = List.rev outlist;
loclist_eff = Some (List.rev_append loclist nv);
def_eff = BodyEff nb
}
in
res