Skip to content
Snippets Groups Projects
structArrayExpand.ml 21.3 KiB
Newer Older
(** Time-stamp: <modified the 12/03/2009 (at 10:24) by Erwan Jahier> *)
(* Replace structures and arrays by as many variables as necessary.
   Since structures can be recursive, it migth be a lot of new variables...
   
   For instance, a variable
   v : Toto { f1 : int ; f2 : int ^ 3 ; f3 : t^2 }
   _v_f1 : int;
   _v_f2_0 : int;
   _v_f2_1 : int;
   _v_f2_2 : int;
   _v_f3_1_x : int;
   _v_f3_1_y : int;
   _v_f3_2_x : int;
   _v_f3_3_y : int;
   nb : if 't' was a type that does not contain any struct type, we would just 
   have 3 variables.
  *)

open Lxm
open Eff
open Predef
    
type acc =     
    Eff.val_exp srcflagged list      (* assertions *)
    * (Eff.eq_info srcflagged) list  (* equations *)
    * Eff.var_info list              (* new local vars *)


(********************************************************************************)
        
        
(* stuff to create fresh var names. 
   XXX code dupl. with Split.new_var 
*)
let new_var str node_env type_eff clock_eff = 
  let id = Ident.of_string (Name.new_local_var str) in
  let var =
    { 
      var_name_eff   = id;
      var_nature_eff = SyntaxTreeCore.VarLocal;
      var_number_eff = -1; (* this field is used only for i/o. 
                              Should i rather put something sensible there ? *)
      var_type_eff   = type_eff;
      var_clock_eff  = clock_eff;
    }
  in
    Hashtbl.add node_env.lenv_vars id var;
    var

(* returns a new var based on [vi] with type [type_eff]. *)
let clone_var node_env vi str type_eff = 
  let str = (Ident.to_string vi.var_name_eff) ^ str in
  let id = Ident.of_string (str) in
  let clk_id = Ident.of_string str in
  let type_eff = match type_eff with 
      Any | Overload -> Polymorphism.get_type () 
    | _ -> type_eff
  in
  let var =
    { 
      var_name_eff   = id;
      var_nature_eff = vi.var_nature_eff;
      var_number_eff = vi.var_number_eff; (* this field is useless: to be removed. *)
      var_type_eff   = type_eff;
      var_clock_eff  = clk_id, snd vi.var_clock_eff;
    }
  in
(*     Hashtbl.add node_env.lenv_vars id var; *)
    var


let rec (is_a_basic_type : Eff.type_ -> bool) =
  function
    | Array_type_eff _ | Struct_type_eff _ -> false
    | Any | Overload -> is_a_basic_type (Polymorphism.get_type ())
    | Abstract_type_eff(_, teff) -> is_a_basic_type teff 
    | External_type_eff(_) 
    | Enum_type_eff (_, _) 
    | Real_type_eff 
    | Int_type_eff 
    | Bool_type_eff  -> true

let soi = string_of_int


let (index_list_of_slice_info : Eff.slice_info -> int list) =
  fun si -> 
    let rec aux acc cpt =
      if ((si.se_step > 0 & cpt > si.se_last) || (si.se_step < 0 & cpt < si.se_last))
      then acc else aux (cpt::acc) (cpt + si.se_step)
    in
      List.rev (aux [] si.se_first)


(** left expr expansion.

  The objective is to generate the set of vars defined by a left expr.

  First step: var_trees_of_left recursively traverse the left structure 
  to compute the left expr variable. E.g., in the left expr "X.f2[4]" we 
  want to find "X" (and its type). 
  
  Second step: Using the type of X, we compute the set of variables defined 
  by "X" (gen_var_trees). The set is actually structured into a tree-like
  data struture var_tree (to be able to deal with slices).
  
  Third step (var_trees_of_left again): cut off some branches of the tree using
  the left filter ("f2[4]") to keep only the  variable effectivily defined 
  by the left expr (exercise for the reader: try to do the same with a flat data 
  type ; it's just a nigthmare because of slices).
  
  In other words: 
  - when we find a left leave, we generate all the possible names
  corresponding to that var, in a data structure (a tree) that reflect
  the lustre data structure (w.r.t. array and struct)
  - Then, struct or array accesses remove some branches of that tree
  
*)
(* var_trees are used to represent  left var_tree, and val_exp var_tree *)
type 'a var_tree = 
    A of 'a var_tree list  (* should i use an array there? *)
  | S of (Ident.t * 'a var_tree) list (* A Map.t ? *)
  | L of 'a
(* Quite similar to UniqueOutput.var_def_state, which is logic. *)

let rec (flatten_var_tree : 'a var_tree -> 'a list) =
  function       
    | A array -> List.flatten (List.map flatten_var_tree array)
    | S fl -> List.flatten (List.map (fun (id,vt) -> flatten_var_tree vt) fl)
    | L str -> [str] 

let rec (gen_var_trees :
	  (string -> Eff.type_ -> 'a) -> string -> Eff.type_ -> 'a var_tree) =
  fun make_leave prefix teff ->
    let loop = gen_var_trees make_leave in
      match teff with
        | Any | Overload -> 
	    let teff = Polymorphism.get_type () in
	      L (make_leave prefix teff)
        | Bool_type_eff | Int_type_eff | Real_type_eff 
        | Enum_type_eff(_) | External_type_eff(_)
            L (make_leave prefix teff)

        | Abstract_type_eff(_,teff) ->  loop prefix teff

        | Array_type_eff(teff_elt,i) ->
            let rec unfold acc cpt =
	      if cpt < 0 then acc else
                let prefix = prefix ^ "_" ^ (soi cpt) in
                let vt = loop prefix teff_elt in
                  unfold (vt::acc) (cpt-1)
            in
	      A (unfold [] (i-1))
	        
        | Struct_type_eff(_, fl) ->
            S (List.map 
                 (fun (fn, (steff, _const_opt)) ->
                    let prefix = prefix^"_"^(Ident.to_string fn) in
		      (fn, loop prefix steff )
                 ) 
                 fl)

let (expand_left : Eff.local_env -> left -> left list) = 
  fun nenv left -> 
    let rec (var_trees_of_left : left -> left var_tree) =
      fun left -> 
        match left with
          | LeftVarEff (vi,lxm)   -> 
	      let make_left nenv lxm vi prefix teff =
		LeftVarEff (clone_var nenv vi prefix teff, lxm)
	      in
		gen_var_trees (make_left nenv lxm vi) "" vi.var_type_eff
          | LeftFieldEff (l,id,t) -> 
              (match var_trees_of_left l with
                 | S fl -> List.assoc id fl 
                 | A _ | L _  -> assert false
              )
          | LeftArrayEff (l,i,t)  ->
              (match var_trees_of_left l with
                 | A array -> List.nth array i
                 | S _ | L _ -> assert false
              )
          | LeftSliceEff (l,si,t) ->
              (match var_trees_of_left l with
                 | A array -> 
                     let index_list = index_list_of_slice_info si in
                     let l = List.map (fun i -> List.nth array i) index_list in
                       A l
                 | S _ | L _ -> assert false
              )
    in
    let vt = try var_trees_of_left left 
    with _ -> assert false
      (* should not occur: just a defense against nth and assoc *)
    in
      flatten_var_tree vt

(********************************************************************************)

(** build a new loc that will alias ve, and add its definition in the 
  set of equations (cf acc) *)
let rec (make_new_loc : Eff.local_env -> Eff.id_solver -> Lxm.t -> acc -> 
          Eff.val_exp -> acc * var_info) =
  fun nenv id_solver lxm acc ve -> 
    let ceff = List.hd (EvalClock.lookup ve) in
    let nv = new_var "v" nenv teff ceff in
    let neq = [LeftVarEff(nv,lxm)], ve in
    let neq = flagit neq lxm in
    let nvl, (asserts,eqs,locs) = expand_var_info nenv id_solver ([],acc) nv in
    let acc = (asserts,eqs, List.rev_append nvl locs) in
      expand_eq nenv id_solver acc neq, nv

and (var_trees_of_val_exp : Eff.local_env -> Eff.id_solver -> acc -> Eff.val_exp
      -> acc * Eff.val_exp var_tree) =
  fun nenv id_solver acc ve -> 
    let make_val_exp nenv lxm vi prefix teff =
      let prefix = (Ident.to_string vi.var_name_eff) ^ prefix in
      let idref = Ident.idref_of_string prefix in 
	{ core = CallByPosEff({src=lxm;it=(IDENT idref)}, OperEff []);
          typ  = [vi.var_type_eff] }
    in
    let loop = var_trees_of_val_exp nenv id_solver acc in
        | CallByPosEff (by_pos_op, OperEff vel) -> 
            let lxm = by_pos_op.src in
            let by_pos_op = by_pos_op.it in
              (match by_pos_op with
		     let ve = try List.hd vel with _ -> assert false in
		       (match loop ve with
			  | acc, S fl -> acc, List.assoc id fl 
			  | _, (A _ | L _)  -> assert false
		       )
		     let ve = try List.hd vel with _ -> assert false in
		       (match loop ve with
			  | acc, A array -> acc, List.nth array i
			  | _, (S _ | L _)  -> assert false
		       )
		     let ve = try List.hd vel with _ -> assert false in
		       (match loop ve with
			  | acc, A array -> 
			      let index_list = index_list_of_slice_info si in
			      let l = List.map (fun i -> List.nth array i) index_list in
				acc, A l
			  | _, (S _ | L _)  -> assert false
		       )
                 | IDENT idref -> (
		     try 
		       let vi = id_solver.id2var idref lxm  in
		         (acc, 
                          gen_var_trees (make_val_exp nenv lxm vi) "" vi.var_type_eff)
                     with _ -> 
                      
                       let const = try id_solver.id2const idref lxm 
                       with _ -> 
                         let msg = 
                           "\n*** during Array expansion: '"^
                             (Ident.string_of_idref idref)^
			     "': Unknown variable.\n*** Current variables are: " ^
			     (Hashtbl.fold 
                                (fun id vi_eff acc -> acc ^ (Format.sprintf "\n\t%s" 
                                          (LicDump.string_of_var_info_eff4msg vi_eff)))
				nenv.lenv_vars "")
                         in
			   raise (Errors.Compile_error(lxm, msg))
                       in 
	               let ceff = EvalClock.lookup ve in
                       let ve_const = Eff.const_to_val_eff lxm true const in
                       let _ = 
                         EvalClock.add ve_const ceff;
                       in
                           | CallByPosEff ({it=IDENT _},_) ->  
                               (* in order to avoid a potential infinite loop *)
                               (ve_const, acc)
                           | _ -> expand_val_exp nenv id_solver acc ve_const 
                       in
                 | WITH(_) | HAT(_) | CONCAT | ARRAY(_) 
                 | PRE | ARROW | FBY | CURRENT | WHEN _ | TUPLE 
                     ->
                     (* Create a new loc var to alias such expressions *)
                     let acc, nloc = make_new_loc nenv id_solver lxm acc ve in
                       acc, 
		       gen_var_trees (make_val_exp nenv lxm nloc) "" nloc.var_type_eff
              )
        | CallByNameEff(by_name_op, fl) ->
	    let lxm = by_name_op.src in
            let acc, nloc = make_new_loc nenv id_solver lxm acc ve in
	    gen_var_trees (make_val_exp nenv lxm nloc) "" nloc.var_type_eff
and (break_tuple : Lxm.t -> left list -> val_exp -> Eff.eq_info srcflagged list) =
  fun lxm left_list ve ->
    if not !Global.ec then
      [{ src = lxm ; it = (left_list, ve) }] 
    else
      (* we only need to break tuples in this mode ...
	 Note that this work only if the node expansion has already been done!
	 (otherwise, we would not have the same number of items in the left and 
	 in the rigth part)
      *)
      let rec aux ve = (* flatten val exp*)
	  | CallByPosEff ({it= TUPLE}, OperEff vel) -> List.flatten (List.map aux vel)
	  | CallByPosEff (unop, OperEff [ve1]) ->
	      let ve1l = aux ve1 in
		List.map
		  (fun ve1 -> { ve1 with core = CallByPosEff (unop, OperEff [ve1])} ) 
		  ve1l 
	  | CallByPosEff (binop, OperEff [ve1;ve2]) ->
	      let ve1l, ve2l = aux ve1, aux ve2 in
		if (List.length ve1l <> List.length ve2l) then
		  let vel2str vel = 
		    (String.concat ", " (List.map LicDump.string_of_val_exp_eff vel))
		  in
		  let msg =
                    "*** error expression " ^ (LicDump.string_of_val_exp_eff ve) ^ 
		    "\n cannot be broken \n" ^(vel2str ve1l) ^ 
		    " should have the same arity as\n"^(vel2str ve2l) ^ "\n"
		    raise (Errors.Compile_error(lxm, msg)) 
		else
		  List.map2 
		    (fun ve1 ve2 -> 
                       { ve with core = CallByPosEff (binop, OperEff [ve1;ve2])})
	  | CallByPosEff ({it= Predef(IF_n,[]); src=lxm}, OperEff [cond; ve1; ve2]) ->
              
	      let ve1l, ve2l = aux ve1, aux ve2 in
		if (List.length ve1l <> List.length ve2l) then
		  let vel2str vel = 
		    (String.concat ", " (List.map LicDump.string_of_val_exp_eff vel))
		  in
		  let msg = 
                    "*** error expression " ^ (LicDump.string_of_val_exp_eff ve) ^ 
		    "\n cannot be broken \n" ^(vel2str ve1l) ^ 
		    " should have the same arity as\n"^(vel2str ve2l) ^ "\n"
		    raise (Errors.Compile_error(lxm, msg)) 
		else
		  List.map2 
		    (fun ve1 ve2 -> 
                       { ve with core = 
                           CallByPosEff ({it= Predef(IF_n,[]); src=lxm}, 
                                         OperEff [cond;ve1;ve2])}
                    ) 
      in
      let vel = aux ve in
	if (List.length vel <> List.length left_list) then
	  (* migth occur for generic nodes, that needs to be compiled,
	  [{ src = lxm ; it = (left_list, ve) }] 
	else
	  List.map2
	    (fun l ve -> 
	       EvalClock.add ve [(Eff.var_info_of_left l).var_clock_eff];
	       { src = lxm ; it = ([l], { ve with typ = [Eff.type_of_left l]}) }

and (expand_eq :
       Eff.local_env -> Eff.id_solver -> acc -> Eff.eq_info srcflagged -> acc) =
  fun nenv id_solver acc eqf -> 
    let { src = lxm_eq ; it = (left_list, ve) } = eqf in
    let left_list = List.flatten (List.map (expand_left nenv) left_list) in
    let ve,acc = expand_val_exp nenv id_solver acc ve in
    let eq_list = break_tuple lxm_eq left_list ve in    
      (asserts,  eq_list@eqs, locs)

and expand_val_exp_list n_env id_solver acc vel = 
  List.fold_left 
    (fun (vel,acc) ve -> 
       let ve,acc = expand_val_exp n_env id_solver acc ve in
         ve::vel, acc
    ) 
    ([],acc) (List.rev vel)

and (expand_val_exp: Eff.local_env -> Eff.id_solver -> acc -> val_exp -> 
      val_exp * acc) =
  fun n_env id_solver acc ve ->
      | CallByPosEff (by_pos_op, OperEff vel) -> 
          let lxm = by_pos_op.src in
          let by_pos_op = by_pos_op.it in
          let by_pos_op, acc, vel = 
	    match by_pos_op with
              | WITH(ve) -> 
                  let ve, acc = expand_val_exp n_env id_solver acc ve in
                  let vel,acc = expand_val_exp_list n_env id_solver acc vel in
                    WITH(ve), acc, vel
              | HAT(i,ve) ->
                  let ve, acc = expand_val_exp n_env id_solver acc ve in
                  let rec unfold cpt =
                    if cpt = 0 then [] else ve::(unfold (cpt-1))
                  in
                    TUPLE, acc, unfold i
              | ARRAY(vel) ->
                  let vel,acc = expand_val_exp_list n_env id_solver acc vel in
                    TUPLE, acc, vel
		      
              | CONCAT | Predef _ | CALL _  | MERGE _
              | PRE | ARROW | FBY | CURRENT | WHEN _ | TUPLE 
                  -> 
                  let vel,acc = expand_val_exp_list n_env id_solver acc vel in
                    by_pos_op, acc, vel
		      
              | STRUCT_ACCESS (_)
              | ARRAY_ACCES (_)
              | ARRAY_SLICE (_) 
              | IDENT _ ->
		  let acc, vt = try var_trees_of_val_exp n_env id_solver acc ve 
		  with (Not_found | Failure _) -> 
                    assert false (* just a defense against nth and assoc *)
	  let newve = CallByPosEff(Lxm.flagit by_pos_op lxm, OperEff vel) in
          let newve =  { ve with core = newve } in
      | CallByNameEff(by_name_op, fl_val) ->
	  (* we want to print fields in the order of the type.
	     Moreover, we have to deal with default value.
	  *)
	  let ceff = EvalClock.lookup ve in 
	    match teff with 
	      | [Struct_type_eff(_,fl)] -> 
		  let lxm = by_name_op.src in
		  let vel,acc = 
		    List.fold_left
		      (fun (vel,acc) (id,(_,const_opt)) ->
			 try
			   let _,ve = List.find (fun (id2,_) -> id2.it = id) fl_val in
			   let ve,acc = expand_val_exp n_env id_solver acc ve in
			     ve::vel, acc
			 with Not_found -> 
			   match const_opt with
			     | None -> assert false
                                 (* ougth to have been checked before *)
                                 let ve_const = 
                                   Eff.const_to_val_eff lxm true const
                                 in
                                 let _ = 
                                   EvalClock.add ve_const ceff;
                                 in
                                 let ve_const,acc=  
                                   expand_val_exp n_env id_solver acc ve_const 
                                 in
				   ve_const::vel,acc
		  let newve = { 
                    typ = ve.typ;
                    core=CallByPosEff({ src=lxm ; it=TUPLE }, OperEff (List.rev vel)) 
                  }
                  in
	            if newve <> ve then (
		      EvalClock.copy newve ve
                    );

and (expand_val_exp_flag: Eff.local_env -> Eff.id_solver -> acc -> 
      val_exp srcflagged -> val_exp srcflagged * acc) =
  fun n_env id_solver acc { src = lxm ; it = ve } -> 
    let ve,acc = expand_val_exp n_env id_solver acc ve in
      { src = lxm ; it = ve }, acc

and (expand_assert: 
       Eff.local_env -> Eff.id_solver -> acc -> val_exp srcflagged -> acc) =
  fun n_env id_solver acc ve -> 
    let (ve, (asserts, eqs, locs)) = expand_val_exp_flag n_env id_solver acc ve in
      (ve::asserts, eqs, locs)

and (expand_var_info: Eff.local_env -> Eff.id_solver -> var_info list * acc ->
      var_info -> var_info list * acc) =
  fun nenv id_solver (vil, acc) vi -> 
        | Abstract_type_eff (_, teff) -> aux teff
        | Any | Overload -> aux (Polymorphism.get_type ())
        | Struct_type_eff (name, fl) -> 
            List.fold_left
              (fun (vil,acc) (fn, (ft,_const_opt)) ->
                 let new_var = clone_var nenv vi ("_" ^ Ident.to_string fn) ft in
                 let new_vil, new_acc = expand_var_info nenv id_solver (vil,acc) new_var in
                   if new_vil = new_var::vil then (
                     (* [new_var] type is not made of structure *)
                     assert (is_a_basic_type ft);
                     Hashtbl.add nenv.lenv_vars new_var.var_name_eff new_var);
                   new_vil, new_acc
              )
              (vil, acc)
              fl

        | Array_type_eff(at,size) ->
            let rec aux i (vil,acc) =
              if i=size then  (vil,acc) else
                let new_var = clone_var nenv vi ("_" ^ soi i) at in
                let new_vil, new_acc = expand_var_info nenv id_solver (vil,acc) new_var in
                  if new_vil = new_var::vil then (
                    (* [new_var] type is not made of structure *)
                    assert (is_a_basic_type at);
                    Hashtbl.add nenv.lenv_vars new_var.var_name_eff new_var);
                  aux (i+1) (new_vil, new_acc)
            in
              aux 0 (vil,acc)

        | External_type_eff(_)
        | Enum_type_eff (_, _)
        | Real_type_eff
        | Int_type_eff
        | Bool_type_eff -> 
            vi::vil, acc
let rec (node : Eff.id_solver -> Eff.local_env -> Eff.node_exp -> Eff.node_exp) =
      | AbstractEff None -> n
      | AbstractEff (Some pn) -> 
          { n with def_eff = AbstractEff (Some (node is n_env pn)) }
      | BodyEff b ->
          let loclist = match n.loclist_eff with None -> [] | Some l -> l in
          let inlist = n.inlist_eff in
          let outlist = n.outlist_eff in            
          let acc = ([],[],[]) in
          let inlist, acc = List.fold_left (expand_var_info n_env is) ([],acc)  inlist in
          let outlist, acc = List.fold_left (expand_var_info n_env is) ([],acc) outlist in
          let loclist, acc = List.fold_left (expand_var_info n_env is) ([],acc) loclist in
          let acc = List.fold_left (expand_eq n_env is) acc b.eqs_eff in
          let acc = List.fold_left (expand_assert n_env is) acc b.asserts_eff in
          let (asserts,neqs, nv) = acc in
          let nb = { 
            eqs_eff = neqs ; 
            asserts_eff = asserts
          } 
                inlist_eff  = List.rev inlist;
                outlist_eff = List.rev outlist;
                loclist_eff = Some (List.rev_append loclist nv);