Skip to content
Snippets Groups Projects
ast2lic.ml 25.4 KiB
Newer Older
(* Time-stamp: <modified the 29/08/2019 (at 15:28) by Erwan Jahier> *)
open AstPredef
open AstCore
open Lic
open Lv6errors
(** debug flag: on prend le meme que LicTab ... *)
let dbg = (Lv6Verbose.get_flag "lazyc")
Pascal Raymond's avatar
Pascal Raymond committed

(******************************************************************************)
(* exception Ast2licType_error of string *)
let rec (of_type: IdSolver.t -> AstCore.type_exp -> Lic.type_) =
    match texp.it with
      | Bool_type_exp -> Bool_type_eff
      | Int_type_exp  -> Int_type_eff
      | Real_type_exp -> Real_type_eff
      | Named_type_exp s -> env.id2type s texp.src
      | Array_type_exp (elt_texp, szexp) ->
        let elt_teff = of_type env elt_texp in
        try
          let sz = EvalConst.eval_array_size env szexp in
          Array_type_eff (elt_teff, sz)
        with EvalConst.EvalArray_error msg -> 
          let lxm = AstCore.lxm_of_val_exp szexp in
          raise (Compile_error(lxm, "can't eval type: "^msg))

let (_add_pack_name : IdSolver.t -> Lxm.t -> Lv6Id.idref -> Lv6Id.idref) =
  fun id_solver lxm cc -> 
    try
        | Some _ -> cc
        | None ->
          let id = Lv6Id.of_idref false cc in
          let pn = 
            AstTabSymbol.find_pack_of_const id_solver.global_symbols id lxm 
          in
    with _ -> cc (* raise en error? *)


let (of_clock : IdSolver.t -> AstCore.var_info -> Lic.id_clock)=
      | Base -> v.var_name, BaseLic
      | NamedClock({ it=(cc,cv) ; src=lxm }) ->
        let vi = id_solver.id2var cv lxm in
        let _, clk = vi.var_clock_eff in
        let ct = vi.var_type_eff in
        v.var_name, On((cc,cv,ct), clk)
Erwan Jahier's avatar
Erwan Jahier committed

(******************************************************************************)
(* Checks that the left part has the same type as the right one. *)
and (type_check_equation: IdSolver.t -> Lxm.t -> Lic.left list -> 
  fun id_solver lxm lpl_eff ve_eff -> 
    let lpl_teff = List.map Lic.type_of_left lpl_eff in
    let ve_eff, right_part = EvalType.f id_solver ve_eff in
    if (List.length lpl_teff <> List.length right_part) then
      raise (Compile_error(lxm, 
                           "tuple size error: \n*** the tuple size is\n***\t"^ 
                             (string_of_int (List.length lpl_teff)) ^
                             " for the left-hand-side, and \n***\t" ^ 
                             (string_of_int (List.length right_part)) ^
                             " for the right-hand-side (in " ^
                               (String.concat
                                  "," 
                                  (List.map (LicDump.string_of_leff false) lpl_eff))
                               ^ " = " ^
                             (LicDump.string_of_val_exp_eff false ve_eff) ^ ")\n"   
      ))
    else
      List.iter2
        (fun le re -> 
          if le <> re then
            let msg = "type mismatch: \n***\t'" 
              ^ (Lic.string_of_type le) ^ 
                "' (left-hand-side) \n*** is not compatible with \n***\t'" 
              ^ (Lic.string_of_type re) ^ "' (right-hand-side)"
            in
            raise (Compile_error(lxm, msg))
        )
        lpl_teff
        right_part

(* Checks that the left part has the same clock as the right one. *)
and (clock_check_equation:IdSolver.t -> Lxm.t -> UnifyClock.subst -> 
     Lic.left list -> Lic.id_clock list -> Lic.val_exp -> Lic.val_exp) =
  fun _id_solver _lxm s lpl_eff right_part_clks ve_eff ->
    let lxms = List.map Lic.lxm_of_left lpl_eff in
    EvalClock.check_res lxms s lpl_eff right_part_clks;
    ve_eff
(******************************************************************************)
Pascal Raymond's avatar
Pascal Raymond committed
(* 
ICI : BEQUILLE(S)
on fait un lookup dans la table des operateurs
pour rechercher leurs (ventuels) parametres statiques : 
Pascal Raymond's avatar
Pascal Raymond committed
TRAITER LES MACROS PREDEF :
- ici, on juste besoin de fabriquer les arguments statiques effectifs
   partir des arguments donns et des args attendus.
- on cherche pas  faire rentrer dans le moule, on dlgue 
- 2015/07 -> probleme des node avec param statiques identifies par pack::node 
  c'etait pas prevu du  tout ...
  rajout du champs "all_srcs" dans le id solver qui premet de retrouver
  n'importe quelle info source (un peu extreme comme solution ...) 
Pascal Raymond's avatar
Pascal Raymond committed
*)
Pascal Raymond's avatar
Pascal Raymond committed
(* pour abstraire la nature des params statiques *)
type abstract_static_param =
   | ASP_const of Lv6Id.t
   | ASP_type of Lv6Id.t
   | ASP_node of Lv6Id.t
Pascal Raymond's avatar
Pascal Raymond committed

let do_abstract_static_param x = 
match x.it with
   | StaticParamType id -> ASP_type id
   | StaticParamConst (id,_) -> ASP_const id
   | StaticParamNode (id,_,_,_,_) -> ASP_node id
Pascal Raymond's avatar
Pascal Raymond committed


let get_abstract_static_params
   (symbols: AstTabSymbol.t)
Pascal Raymond's avatar
Pascal Raymond committed
   (lxm: Lxm.t)
Pascal Raymond's avatar
Pascal Raymond committed
: abstract_static_param list =
                     
     Printf.fprintf stderr "#DBG: Ast2lic.get_abstract_static %s\n"
Pascal Raymond's avatar
Pascal Raymond committed
   ) ;
   match (idref.id_pack, idref.id_id) with
      | (Some "Lustre", "map")
      | (Some "Lustre", "red")
      | (Some "Lustre", "fill")
      | (Some "Lustre", "fillred") -> [ ASP_node "oper"; ASP_const "size" ]
      | (Some "Lustre", "boolred") -> [ ASP_const "min"; ASP_const "max"; ASP_const "size"]
      | (Some "Lustre", "condact") -> [  ASP_node "oper";  ASP_const "dflt" ]
      | (Some pck, nid) -> (
         (* 2015/07 -> nouveau cas, on cherche les params statiques en tapant
            directement dans le source *)
         let packsrc = match AstTab.pack_prov_env srcs pck with
         | Some ps -> ps
         | None -> AstTab.pack_body_env srcs pck
         in
         let spl = match AstTabSymbol.find_node packsrc nid lxm with
         | AstTabSymbol.Local ni -> ni.it.static_params
         | _ -> assert false
         in List.map do_abstract_static_param spl
      )
      | (None, nid) -> (
            (* let spl = match AstTabSymbol.find_node symbols (Lv6Id.name_of_idref idref) lxm with *)
            let spl = match AstTabSymbol.find_node symbols nid lxm with
            | AstTabSymbol.Local ni -> ni.it.static_params
            | AstTabSymbol.Imported(_imported_node, params) -> params
Pascal Raymond's avatar
Pascal Raymond committed
            in List.map do_abstract_static_param spl
              (*          with Compile_error(_,_)  -> *)
Pascal Raymond's avatar
Pascal Raymond committed
            (* can occur for static node parameters, which cannot
               themselves have static parameters.  A better solution ougth
               to be to add node static parameters in the AstTabSymbol.t
Pascal Raymond's avatar
Pascal Raymond committed
               however (in Lazycompiler.node_check_do most probably). 
      
               OUI MAIS GROS BUG : qu'est-ce-qui se passe si si le
               'static node parameter' porte le meme nom qu'un noeud
               existant dans AstTabSymbol ???
Pascal Raymond's avatar
Pascal Raymond committed
      
               C'est clairement pas la bonne mthode ...
               Voir + bas ...
      
            *)
Pascal Raymond's avatar
Pascal Raymond committed
     ) 
Pascal Raymond's avatar
Pascal Raymond committed

let rec of_node
    (id_solver : IdSolver.t) (ne: AstCore.node_exp srcflagged) : Lic.node_exp =
      Printf.fprintf stderr "\n\n#DBG: ENTERING Ast2lic.of_node \'";
      AstV6Dump.print_node_exp stderr ne.it;
      Printf.fprintf stderr "'\n\n";

    );
  let lxm = ne.src in
  let (idref, static_args) = ne.it in
  (* pas tres beau : on corrige le idref des predefs ... *)
  let idref = match (idref.id_pack, idref.id_id) with
    | (None, "map")
    | (None, "red")
    | (None, "fill")
    | (None, "fillred")
    | (None, "boolred")
    | (None, "condact") -> {idref with id_pack = Some "Lustre"}
    | _ -> idref
  in
  (* BUG des param statique node avec le meme nom
     qu'un node template global : 
     pis-aller : si static_args = [],
     on a peut-etre affaire  un static param node, donc
     on appelle directement id_solver.id2node et c'est lui
     qui plantera si ce n'est pas le cas et qu'il fallait
     des static_args...
     si static_args <> [], de toute maniere ca ne peut PAS
     etre un static param node
  *)

  (* NOUVELLE VERSION PURE :
     ON ne fait AUCUNE vrif de cohrence de types pour les param statiques,
     on ne vrifie QUE la nature (pour pouvoir rsoudre les args qui sont des idents
     A FAIRE + TARD ? !!
  *)
  let static_args_eff = match static_args with
    | [] -> []
    | _ ->
      let static_params =
        get_abstract_static_params id_solver.all_srcs id_solver.global_symbols lxm idref
      in
      let sp_l = List.length static_params 
      and sa_l = List.length static_args in
      if (sp_l <> sa_l) then
        let msg = "Bad number of (static) arguments: " ^ 
                  (string_of_int sp_l) ^ " expected, and " ^ 
                  (string_of_int sa_l) ^ " provided."
        in
        raise (Compile_error(lxm, msg))
      else
        List.map2 (check_static_arg id_solver) 
          static_params 
  in
  let res = id_solver.id2node idref static_args_eff lxm in
      Printf.fprintf stderr "\n#DBG: LEAVING Ast2lic.of_node \'";
      AstV6Dump.print_node_exp stderr ne.it;
      Printf.fprintf stderr "'\n";
      Printf.fprintf stderr "    RESULT:\n%s\n" (Lic.string_of_node_exp res);
    );
Pascal Raymond's avatar
Pascal Raymond committed
and check_static_arg
    (node_id_solver: IdSolver.t)
    (asp: abstract_static_param) 
    (sa: AstCore.static_arg srcflagged) 
  (
    (* 1ere passe :
       on utilise expected juste pour rsoudre la nature,
       on "compile" les args 
    *)
    let nature_error nat =
Pascal Raymond's avatar
Pascal Raymond committed
      let msg = Printf.sprintf "Bad static argument nature, a %s was expected" nat in
      raise (Compile_error(sa.src, msg))
    in
    let res = match (sa.it, asp) with
      (* ident vs type *)
      | (StaticArgLv6Id idref, ASP_type id) ->
        let teff = node_id_solver.id2type idref sa.src in
        TypeStaticArgLic (id, teff)
      (* type_exp vs type *)
      | (StaticArgType te, ASP_type id) ->
        let teff = of_type node_id_solver te in
        TypeStaticArgLic (id, teff)
      (* ident vs const *)
      | (StaticArgLv6Id idref, ASP_const id) ->
        let ceff = node_id_solver.id2const idref sa.src in
        ConstStaticArgLic (id, ceff)
      (* val_exp vs const *)
      | (StaticArgConst ce, ASP_const id) -> (
          let ceff = EvalConst.f node_id_solver ce in
          match ceff with
          | [ceff] -> ConstStaticArgLic (id,ceff)
          | _ -> ConstStaticArgLic (id,Tuple_const_eff ceff)
        )
      (* id vs node *)
      | (StaticArgLv6Id idref, ASP_node id) ->
        let sargs = [] in
        let neff = node_id_solver.id2node idref sargs sa.src in
        NodeStaticArgLic (id, neff.node_key_eff)
      (* node exp vs node *)
      | (StaticArgNode (CALL_n ne), ASP_node id) ->
        let neff = of_node node_id_solver ne in
        NodeStaticArgLic (id, neff.node_key_eff)
      (* node exp vs node *)
      | (StaticArgNode (Predef_n (op)), ASP_node id) ->
        let opeff = LicEvalType.make_node_exp_eff node_id_solver None true op.it sa.src in
        NodeStaticArgLic (id, opeff.node_key_eff)
      | (_, ASP_type  _) -> nature_error "type"
      | (_, ASP_const _) -> nature_error "constant"
      | (_, ASP_node  _) -> nature_error "node"
(******************************************************************************)
and (of_eq: IdSolver.t -> AstCore.eq_info srcflagged -> Lic.eq_info srcflagged) =
  fun id_solver eq_info -> 
    let (lpl, ve) = eq_info.it in
    let lpl_eff = List.map (translate_left_part id_solver) lpl in
    let exp_clks = List.map Lic.clock_of_left lpl_eff  in
    let cs = UnifyClock.empty_subst in
    let ve_eff,right_part_clks,cs = translate_val_exp_check id_solver exp_clks cs ve in
    let ve_eff =
      type_check_equation id_solver eq_info.src lpl_eff ve_eff;
      clock_check_equation id_solver eq_info.src cs lpl_eff right_part_clks ve_eff
    flagit (lpl_eff, ve_eff) eq_info.src
and (translate_left_part : IdSolver.t -> AstCore.left_part -> Lic.left) =
  fun id_solver lp_top -> 
    match lp_top with
    | LeftVar id -> 
      let vi_eff = id_solver.id2var id.it id.src in
      LeftVarLic (vi_eff, id.src)
    | LeftField (lp, id) -> (
        let lp_eff = translate_left_part id_solver lp in
        let teff = Lic.type_of_left lp_eff in
        (* check that [lp_eff] is a struct that have a field named [id] *)
        match teff with
        | Struct_type_eff(_, fl) -> (
            try let (teff_field,_) = List.assoc id.it fl in
              LeftFieldLic(lp_eff, id.it, teff_field)
            with Not_found ->
              raise (Compile_error(id.src, "bad field name in structure"))
          )
        | _  -> raise (Compile_error(id.src, "a structure was expected"))
        let lp_eff = translate_left_part id_solver lp in
        let teff = Lic.type_of_left lp_eff in
        let lxm = vef.src in
        match teff with
        | Abstract_type_eff(_,Array_type_eff(teff_elt, _size))
        | Array_type_eff(teff_elt, _size) ->
          let index = EvalConst.eval_array_index id_solver vef.it lxm in
          LeftArrayLic(lp_eff, index, teff_elt)

        | _ -> raise (Compile_error(vef.src, "an array was expected"))
      )
        let lp_eff = translate_left_part id_solver lp in
        let teff = Lic.type_of_left lp_eff in
        match teff with  
        | Abstract_type_eff(_,Array_type_eff(teff_elt, _size))
        | Array_type_eff(teff_elt, _size) -> 
          let sieff = translate_slice_info id_solver sif.it sif.src in
          let size_slice = sieff.se_width in
          let teff_slice = Array_type_eff(teff_elt, size_slice) in
          LeftSliceLic(lp_eff, sieff, teff_slice)
        | _ -> raise (Compile_error(sif.src, "an array was expected"))
      )

(* Translate and performs the checks *)
and (translate_val_exp_check  : IdSolver.t -> Lic.clock list -> UnifyClock.subst -> 
     AstCore.val_exp -> Lic.val_exp * Lic.id_clock list * UnifyClock.subst) =
  fun id_solver exp_clks s ve ->
    let s,vef = translate_val_exp id_solver s ve in
    let lxm = AstCore.lxm_of_val_exp ve in
    let lxms = List.map (fun _ -> lxm) exp_clks in
    (* let vef, tl   = EvalType.f id_solver vef in *)
and (translate_val_exp : IdSolver.t -> UnifyClock.subst -> AstCore.val_exp
     -> UnifyClock.subst * Lic.val_exp) =
     | CallByPos({it=WITH_n(c,e1,e2);_}, Oper vel) ->
       assert (vel=[]);
       if EvalConst.f id_solver c = [ Bool_const_eff true ] 
       then translate_val_exp id_solver s e1 
       else translate_val_exp id_solver s e2
     | _ -> 
       let s, vef_core, lxm =
         match ve with
         | Merge_n(ve, cl) ->  
           let lxm_ve = ve.src in
           let ve = ve.it in
           let s,ve = translate_val_exp id_solver s ve in
           let s, cl =
             List.fold_left
               (fun (s,cl) (id,ve) -> 
                  let s, ve = translate_val_exp id_solver s ve in
                  let const = id_solver.id2const id.it id.src in
                  s,(flagit const id.src, ve)::cl
               )
               (s, [])
               cl
           in
           s, Lic.Merge(ve, List.rev cl), lxm_ve
         | Merge_bool_n(ve, t, f) ->
           let lxm_ve = ve.src in
           let ve = ve.it in
           let s,ve = translate_val_exp id_solver s ve in
           let s,case_true  = translate_val_exp id_solver s t in
           let s,case_false = translate_val_exp id_solver s f in
           let case_true = (flagit (Bool_const_eff true) lxm_ve, case_true) in
           let case_false = (flagit (Bool_const_eff false) lxm_ve, case_false) in
           s, Lic.Merge(ve, [case_true; case_false]), lxm_ve

         | CallByName(by_name_op, field_list) ->
           let s,fl = List.fold_left 
               (fun (s,fl) f -> 
                  let s,f = translate_field id_solver s f in
                  s,f::fl
               )
               (s,[])
               field_list
           in
           let fl = List.rev fl in
           let s, by_name_op = translate_by_name_op id_solver by_name_op s in
           s, 
           (CallByNameLic(by_name_op, fl)), by_name_op.src

         | CallByPos(by_pos_op, Oper vel) ->
           let s, vel_eff = 
             List.fold_left 
               (fun (s,vel) ve -> 
                  let s, ve = translate_val_exp id_solver s ve in
                  s,ve::vel
               )
               (s,[]) vel 
           in
           let vel_eff = List.rev vel_eff in
           let lxm = by_pos_op.src in
           let by_pos_op = by_pos_op.it in
           let mk_by_pos_op by_pos_op_eff =
             CallByPosLic(flagit by_pos_op_eff lxm, vel_eff)
           in
           let mk_nary_pos_op by_pos_op_eff = 
             (* For nor and diese: internally, nor and diese takes an array of val_exp,
                to make it easier the translation into boolred.

                It is the good spot to do that? what could be a better spot?
             *)
             let array_val_exp =
               let lxm = Lxm.override_name "[ ]" lxm in
               { ve_core = CallByPosLic(flagit Lic.ARRAY lxm, vel_eff);
                 ve_typ = [Array_type_eff(List.hd (List.hd vel_eff).ve_typ,
                                          List.length vel_eff)];
                 ve_clk = (List.hd vel_eff).ve_clk;
                 ve_src =  lxm 
               }
             in
             CallByPosLic(flagit by_pos_op_eff lxm, [array_val_exp])
           in

           let s, vef_core =
             match by_pos_op with
             | WITH_n(_,_,_) -> assert false (* handled at the top of the function *)
             (* put that in another module ? yes, see above.*)
             | Predef_n({it=TRUE_n;_})  -> s,mk_by_pos_op(Lic.CONST (Bool_const_eff true))
             | Predef_n({it=FALSE_n;_}) -> s,mk_by_pos_op(Lic.CONST (Bool_const_eff false))
             | Predef_n({it=RCONST_n r;_}) -> s,mk_by_pos_op(Lic.CONST (Real_const_eff r))
             | Predef_n({it=ICONST_n i;_}) -> s, mk_by_pos_op(Lic.CONST (Int_const_eff i))


             | Predef_n({it=NOR_n;src=lxm}) -> s, mk_nary_pos_op(
                 Lic.PREDEF_CALL (flagit (AstPredef.op_to_long NOR_n,[]) lxm))
             | Predef_n({it=DIESE_n;src=lxm}) -> s, mk_nary_pos_op(
                 Lic.PREDEF_CALL (flagit (AstPredef.op_to_long DIESE_n,[]) lxm))
             | Predef_n(op) -> s, mk_by_pos_op(
                 Lic.PREDEF_CALL (flagit (AstPredef.op_to_long op.it,[]) op.src))
             | CALL_n node_exp_f -> 
               let neff = of_node id_solver node_exp_f in
               let ceff = Lic.CALL (flagit neff.node_key_eff node_exp_f.src) in
               Lv6Verbose.exe ~flag:dbg (fun () ->
                   Printf.fprintf stderr "#DBG: Ast2lic.translate_val_exp CALL_n ";
                   AstV6Dump.print_node_exp stderr node_exp_f.it;
                   Printf.fprintf stderr " gives type: %s\n%!"
                     (Lic.string_of_type_profile (profile_of_node_exp neff))
                 ) ;
               (s, mk_by_pos_op ceff)
             | IDENT_n idref -> (
                 try
                   let var = id_solver.id2var idref.id_id lxm in
                   s, mk_by_pos_op(Lic.VAR_REF var.var_name_eff)
                 with _ ->
                   let s, const = UnifyClock.const_to_val_eff lxm false s
                       (id_solver.id2const idref lxm)
                   in
                   s, const.ve_core
               )
             | CURRENT_n -> s, mk_by_pos_op (Lic.CURRENT None)
             | PRE_n -> s, mk_by_pos_op Lic.PRE

             | ARROW_n -> s, mk_by_pos_op Lic.ARROW

             | FBY_n -> (* XXX temporary crutch: translate "e1 fby e2" into "e2 -> pre(e2)" *)
               (match vel_eff with
                | [e1;e2] -> 
                  let ve_pre = CallByPosLic(flagit Lic.PRE lxm, [e2]) in
                  let ve_pre = { e2 with ve_core=ve_pre } in
                  let lxm = Lxm.override_name "->" lxm in
                  s,CallByPosLic(flagit Lic.ARROW lxm, [e1;ve_pre]) 
                | _ -> assert false
               )
             (*                   | FBY_n ->   s, mk_by_pos_op Lic.FBY *)
             | CONCAT_n -> s, mk_by_pos_op Lic.CONCAT
             | TUPLE_n -> s, mk_by_pos_op Lic.TUPLE
             | ARRAY_n -> s, CallByPosLic(flagit Lic.ARRAY lxm, vel_eff)
             | STRUCT_ACCESS_n fid ->
               s, mk_by_pos_op (Lic.STRUCT_ACCESS (fid))

             | WHEN_n Base -> s, mk_by_pos_op (Lic.WHEN BaseLic)
             | WHEN_n (NamedClock { it = (cc,c) ; src = lxm }) -> 
               let var_info = id_solver.id2var c lxm in
               let _, clk = var_info.var_clock_eff in
               let ct =  var_info.var_type_eff in
               s, mk_by_pos_op (Lic.WHEN (On((cc,c,ct), clk)))

             | ARRAY_ACCES_n ve_index ->
               s, mk_by_pos_op (Lic.ARRAY_ACCES(
                   EvalConst.eval_array_index id_solver ve_index lxm))

             | ARRAY_SLICE_n si ->
               s, mk_by_pos_op (Lic.ARRAY_SLICE(
                   EvalConst.eval_array_slice id_solver si lxm))

             | HAT_n -> (
                 match vel with
                 | [_exp; ve_size] -> 
                   let size_const_eff = EvalConst.f id_solver ve_size in 
                   (match size_const_eff with
                    | [Int_const_eff sz] -> s, mk_by_pos_op (Lic.HAT(int_of_string sz))
                    | _ -> assert false)
                 | _ -> assert false
               )
           in
           s, vef_core, lxm
       in
       let vef = { ve_core=vef_core; ve_typ=[]; ve_clk = []; ve_src = lxm } in
       let vef, _tl = EvalType.f id_solver vef in
and translate_by_name_op id_solver op s = 
  let to_long idref =
    | None -> (* If no pack name is provided, we lookup it in the symbol table *)
      let id = Lv6Id.of_idref false idref in
      let pn = AstTabSymbol.find_pack_of_type id_solver.global_symbols id op.src in
      Lv6Id.make_long pn idref.id_id
    | Some pn -> Lv6Id.make_long pn idref.id_id
  let s, nop =
    match op.it with
    | STRUCT_anonymous_n -> s, STRUCT_anonymous
    | STRUCT_n idref ->     s, STRUCT (to_long idref)
    | STRUCT_WITH_n (idref1, idref2) -> 
      s, STRUCT_with (to_long idref1, idref2.id_id)
  in
  s, flagit nop op.src
and translate_field id_solver s (id, ve) = 
  let s, ve = translate_val_exp id_solver s ve in
  s, (id, ve)
(* XXX autre nom, autre module ? 
   node_of_static_arg : appel QUAND ON SAIT qu'un sarg doit etre un NODE
   const_of_static_arg : appel QUAND ON SAIT qu'un sarg doit etre une CONST
   -> sert pour les macros predefs
   ca fait partie de la definition des iterateurs d'une certaine maniere...
   -> crer 2 modules, Iterator + IteratorSemantics 
*)
and _const_of_static_arg id_solver const_or_const_ident lxm = 
  match const_or_const_ident with
	   match EvalConst.f id_solver c with
	   | [x] -> x
	   | xl -> 
		  (* EvalConst.f ne fabrique PAS de tuple, on le fait ici *)
		  Tuple_const_eff xl
    )
  | StaticArgLv6Id(id) -> id_solver.id2const id lxm 
  | StaticArgType _
  | StaticArgNode _ -> raise (Compile_error(lxm, "a constant was expected"))
and _node_of_static_arg id_solver node_or_node_ident lxm =
  | StaticArgLv6Id(id) -> 
    let sargs = [] in (* it is an alias: no static arg *)
    id_solver.id2node id sargs lxm 
  | StaticArgNode(CALL_n ne) -> of_node id_solver ne
  | StaticArgNode(Predef_n (op)) ->
    LicEvalType.make_node_exp_eff id_solver None true op.it lxm
Pascal Raymond's avatar
Pascal Raymond committed

  | StaticArgType _ 
  | StaticArgConst _ -> raise (Compile_error(lxm, "a node was expected"))
and (translate_slice_info  : IdSolver.t -> AstCore.slice_info -> 
     Lxm.t -> Lic.slice_info) =
  fun id_solver si lxm ->
    EvalConst.eval_array_slice id_solver si lxm
Erwan Jahier's avatar
Erwan Jahier committed
(**********************************************************************************)
let (of_assertion : IdSolver.t -> AstCore.val_exp Lxm.srcflagged -> 
      Lic.val_exp Lxm.srcflagged) =
    let s = UnifyClock.empty_subst in
    let exp_clks = [BaseLic] in (* assertions are on the base clock *)
    let val_exp_eff, _ ,s = translate_val_exp_check id_solver exp_clks s vef.it in
    (* Check that the assert is a bool. *)
    let val_exp_eff, evaled_exp = EvalType.f id_solver val_exp_eff in
Erwan Jahier's avatar
Erwan Jahier committed
        (fun ve -> 
           if ve <> Bool_type_eff then
             let msg = "type mismatch: \n\tthe content of the assertion is of type " 
               ^ (Lic.string_of_type ve) 
Erwan Jahier's avatar
Erwan Jahier committed
               ^ " whereas it shoud be a Boolean\n"
             in
               raise (Compile_error(vef.src, msg))
        )
        evaled_exp;
        EvalClock.f id_solver s val_exp_eff [vef.src] [BaseLic]
          | [_id, BaseLic] 
          | [_id, On(_,BaseLic)]
          | [_id, ClockVar _] -> Lxm.flagit val_exp_eff vef.src
          | [_id, ce] -> 
              let msg = "clock error: assert should be on the base clock, "^
                "but it is on "^ (LicDump.string_of_clock2 ce) ^ "\n"
              in
                raise (Compile_error(vef.src, msg))

          | _ -> assert false
      
(******************************************************************************)
(******************************************************************************)