Newer
Older
(** After this lic2lic pass, there is only one operator per equation.
- après L2lRmPoly (et DoAliasType ?)
open Lxm
let dbg = (Verbose.get_flag "split")
(********************************************************************************)
Erwan Jahier
committed
let id = getid "v" in
let var =
{
var_name_eff = id;
var_nature_eff = AstCore.VarLocal;
var_number_eff = -1; (* this field is used only for i/o.
Should i rather put something sensible there ? *)
var_type_eff = type_eff;
var_clock_eff = id,clock_eff;
(********************************************************************************)
(* functions that deal with tuple breaking *)
let rec (get_vel_from_tuple : val_exp -> val_exp list) =
function
| { ve_core = CallByPosLic({it=Lic.TUPLE }, vel) } ->
List.flatten (List.map get_vel_from_tuple vel)
| ve -> [ve]
let rec (remove_tuple : val_exp list -> val_exp list) =
fun vel ->
List.flatten (List.map get_vel_from_tuple vel)
let rec (remove_tuple_from_eq : eq_info srcflagged -> eq_info srcflagged) =
(* transform "...=((x1,x2),x3)" into "...=(x1,x2,x3)" *)
fun {src=lxm;it=(lhs,ve)} ->
let ve =
match ve.ve_core with
| CallByPosLic({it=op;src=lxm }, vel) ->
{ ve with
ve_core = CallByPosLic({it=op;src=lxm}, (remove_tuple vel)) }
| _ -> ve
in
{src=lxm;it=(lhs,ve)}
let to_be_broken = function
(* We are only interested in operators that can deal with tuples! *)
| CallByPosLic({ it = Lic.ARROW }, _) -> true
| CallByPosLic({ it = Lic.FBY }, _) -> true
| CallByPosLic({ it = Lic.PRE }, _) -> true
| CallByPosLic({ it = Lic.CURRENT }, _) -> true
| CallByPosLic({ it = Lic.TUPLE }, _) -> true
| CallByPosLic({ it = Lic.WHEN _ }, _) -> true
| CallByPosLic({ it = Lic.PREDEF_CALL({ it = (("Lustre","if"),[]) })}, _) -> true
| e -> false
let (break_it_do : val_exp -> val_exp list) =
Erwan Jahier
committed
fun ve ->
let nvel =
| CallByPosLic({it=Lic.PREDEF_CALL({ it = (("Lustre","if"),[]) });src=lxm}, [c;ve1;ve2]) ->
let vel1 = get_vel_from_tuple ve1
and vel2 = get_vel_from_tuple ve2
in
assert (List.length vel1 = List.length vel2);
List.map2
(fun ve1 ve2 ->
{ ve_core =
CallByPosLic({it=Lic.PREDEF_CALL({ it = (("Lustre","if"),[]);src=lxm });src=lxm},
ve_typ = ve1.ve_typ;
ve_clk = ve1.ve_clk;
}
)
vel1
vel2
| CallByPosLic({it=WHEN clk; src=lxm}, vel) -> (
let vel = List.flatten (List.map get_vel_from_tuple vel) in
List.map
(fun ve ->
{ ve with
ve_core=CallByPosLic({it=WHEN clk ; src=lxm }, [ve])})
vel
)
| CallByPosLic({it=Lic.TUPLE ; src=lxm }, vel) -> (remove_tuple vel)
| CallByPosLic({it=op ; src=lxm }, [ve]) ->
let vel = get_vel_from_tuple ve in
List.map
(fun ve -> { ve with ve_core=CallByPosLic({it=op;src=lxm}, [ve])})
vel
| CallByPosLic({it=op ; src=lxm }, [ve1;ve2]) ->
let vel1 = get_vel_from_tuple ve1
and vel2 = get_vel_from_tuple ve2
in
assert (List.length vel1 = List.length vel2);
List.map2
(fun ve1 ve2 ->
{ ve_core = CallByPosLic({it=op ; src=lxm }, [ve1;ve2]);
ve_typ = ve1.ve_typ;
ve_clk = ve1.ve_clk }
)
vel1
vel2
| _ -> [ve]
(* assert false (* ougth to be dead code (guarded by to_be_broken...) *) *)
Erwan Jahier
committed
in
let tl = ve.ve_typ
and cl = ve.ve_clk in
assert (List.length ve.ve_typ = List.length nvel);
let nvel = List.map2 (fun nve t -> { nve with ve_typ = [t]; ve_clk=cl } ) nvel ve.ve_typ in
assert(ve.ve_typ = tl);
nvel
let rec (break_it : val_exp -> val_exp list) =
fun ve ->
let vel = break_it_do ve in
if List.length vel = 1 then [ve] else
(* fixpoint *)
(List.flatten (List.map break_it vel))
let (split_tuples:Lic.eq_info Lxm.srcflagged list -> Lic.eq_info Lxm.srcflagged list) =
fun eql ->
let split_one_eq eq =
let { src = lxm_eq ; it = (lhs, n_rhs) } = eq in
if List.length lhs > 1 && (to_be_broken n_rhs.ve_core) then
let vel = break_it n_rhs in
let eqs =
try List.map2 (fun lhs ve -> [lhs], ve) lhs vel
with _ ->
assert false
in
let eqs = List.map (fun eq -> Lxm.flagit eq lxm_eq) eqs in
eqs
else
[eq]
in
List.flatten (List.map split_one_eq eql)
(********************************************************************************)
(* The functions below accumulate
(1) the new equations
(2) the fresh variables.
*)
type split_acc = (Lic.eq_info srcflagged) list * Lic.var_info list
let rec (eq : LicPrg.id_generator -> Lic.eq_info Lxm.srcflagged -> split_acc) =
fun getid { src = lxm_eq ; it = (lhs, rhs) } ->
let n_rhs, (neqs, nlocs) = split_val_exp false true getid rhs in
{ src = lxm_eq ; it = (lhs, n_rhs) }::neqs, nlocs
and (split_eq_acc :
LicPrg.id_generator -> split_acc -> Lic.eq_info srcflagged -> split_acc) =
fun getid (eqs, locs) equation ->
let (neqs, nlocs) = eq getid equation in
and (split_val_exp : bool -> bool -> LicPrg.id_generator -> Lic.val_exp ->
(* [when_flag] is true is the call is made from a "when" statement.
We need this flag in order to know if it is necessary to add
a when on constants. Indeed, in Lustre V6, it is not necessary
to write " 1 when clk + x " if x in on clk (it's more sweet).
So we need to add it (because if we split "1+1+x", then it
is hard to know the "1" are on the clock of x ; moreover, lustre
v4 (and the other backends) cannot infer such clock).
But is is not forbidden either! so we need to make sure that there
is no "when"...
*)
| Merge(ce,cl) ->
let ce,(eql1, vl1) = split_val_exp false false getid ce in
let const_l, vel = List.split cl in
let vel,(eql2, vl2) = split_val_exp_list false false getid vel in
let cl = List.combine const_l vel in
{ ve with ve_core = Merge(ce,cl)}, (eql1@eql2, vl1@vl2)
| CallByPosLic({it=Lic.VAR_REF _}, _) -> ve, ([],[])
| CallByPosLic({it=Lic.CONST_REF _}, _) -> ve, ([],[])
| CallByPosLic({src=lxm;it=Lic.CONST _}, _)
-> if not when_flag then
match (clk) with
| On(clock,clk)::_ ->
CallByPosLic({src=lxm;it=Lic.WHEN(On(clock,clk))},[ve])},
([],[])
| (ClockVar _)::_ (* should not occur *)
| BaseLic::_ -> ve, ([],[])
| [] -> assert false (* should not occur *)
| CallByNameLic (by_name_op_eff, fl) -> (
let lxm = by_name_op_eff.src in
let fl, eql, vl =
List.fold_left
(fun (fl_acc, eql_acc, vl_acc) (fn, fv) ->
let fv, (eql, vl) = split_val_exp false false getid fv in
((fn,fv)::fl_acc, eql@eql_acc, vl@vl_acc)
)
([],[],[])
fl
in
let rhs = { ve with ve_core = CallByNameLic (by_name_op_eff, List.rev fl) } in
if top_level then
rhs, (eql, vl)
else
(* create the var for the current call *)
let clk_l = ve.ve_clk in
let typ_l = ve.ve_typ in
assert (List.length typ_l = List.length clk_l);
let nv_l = List.map2 (new_var getid) typ_l clk_l in
let nve = match nv_l with
| [nv] -> { ve with ve_core =
CallByPosLic(
Lxm.flagit (Lic.VAR_REF (nv.var_name_eff)) lxm,
)}
| _ -> assert false
in
let lpl = List.map (fun nv -> LeftVarLic(nv, lxm)) nv_l in
let eq = Lxm.flagit (lpl, rhs) lxm in
nve, (eql@[eq], vl@nv_l)
)
| CallByPosLic(by_pos_op_eff, vel) -> (
(* recursively split the arguments *)
let lxm = by_pos_op_eff.src in
let (rhs, (eql,vl)) =
match by_pos_op_eff.it with
| Lic.HAT(i) ->
let vel, (eql, vl) = split_val_exp_list false false getid vel in
let by_pos_op_eff = Lxm.flagit (Lic.HAT(i)) lxm in
let rhs = CallByPosLic(by_pos_op_eff, vel) in
rhs, (eql, vl)
| Lic.WHEN ve -> (* should we create a var for the clock? *)
let vel,(eql, vl) = split_val_exp_list true false getid vel in
let by_pos_op_eff = Lxm.flagit (Lic.WHEN(ve)) lxm in
let rhs = CallByPosLic(by_pos_op_eff, vel) in
rhs, (eql, vl)
| _ ->
let vel, (eql, vl) = split_val_exp_list false false getid vel in
let rhs = CallByPosLic(by_pos_op_eff, vel) in
rhs, (eql, vl)
in
let rhs = { ve with ve_core = rhs } in
if top_level || by_pos_op_eff.it = TUPLE then
rhs, (eql, vl)
else
(* create the var for the current call *)
let clk_l = ve.ve_clk in
let typ_l = ve.ve_typ in
assert (List.length typ_l = List.length clk_l);
let nv_l = List.map2 (new_var getid) typ_l clk_l in
let nve =
match nv_l with
| [nv] -> {
ve_typ = [nv.var_type_eff];
ve_clk = clk_l;
ve_core = CallByPosLic(
Lxm.flagit (Lic.VAR_REF (nv.var_name_eff)) lxm,
}
| _ -> {
ve_typ = List.map (fun v -> v.var_type_eff) nv_l;
ve_clk = clk_l;
ve_core = CallByPosLic(
Lxm.flagit Lic.TUPLE lxm,
(List.map
(fun nv ->
let nnv = {
ve_core = CallByPosLic
(Lxm.flagit (Lic.VAR_REF (nv.var_name_eff)) lxm, []);
ve_typ = [nv.var_type_eff];
ve_clk = [snd nv.var_clock_eff]
}
in
nnv
)
nv_l
)
)
}
in
let lpl = List.map (fun nv -> LeftVarLic(nv, lxm)) nv_l in
let eq = Lxm.flagit (lpl, rhs) lxm in
nve, (eql@[eq], vl@nv_l)
)
and (split_val_exp_list : bool ->
bool -> LicPrg.id_generator -> Lic.val_exp list -> Lic.val_exp list * split_acc) =
let vel, accl =
List.split (List.map (split_val_exp when_flag top_level getid) vel)
let eqll,vll = List.split accl in
let eql, vl = List.flatten eqll, List.flatten vll in
and split_node (getid: LicPrg.id_generator) (n: Lic.node_exp) : Lic.node_exp =
Verbose.exe ~flag:dbg (fun () ->
Printf.printf "*** Splitting node %s\n"
(LicDump.string_of_node_key_iter n.node_key_eff));
let res = match n.def_eff with
| ExternLic
| AbstractLic None -> n
| AbstractLic (Some pn) ->
{ n with def_eff = AbstractLic (Some (split_node getid pn)) }
let loc = match n.loclist_eff with None -> [] | Some l -> l in
let (neqs, nv) = List.fold_left (split_eq_acc getid) ([], loc) b.eqs_eff in
let asserts = List.map (fun x -> x.it) b.asserts_eff in
let lxm_asserts = List.map (fun x -> x.src) b.asserts_eff in
let nasserts,(neqs_asserts,nv_asserts) =
split_val_exp_list false true getid asserts
assert (List.length nasserts = List.length lxm_asserts);
let nasserts = List.map2 Lxm.flagit nasserts lxm_asserts in
let (neqs, nv) = (neqs@neqs_asserts, nv@nv_asserts) in
let neqs = List.map remove_tuple_from_eq neqs in
{ n with loclist_eff = Some nv; def_eff = BodyLic nb }
in
res
let rec doit (inprg : LicPrg.t) : LicPrg.t =
(* n.b. on fait un minumum d'effet de bord pour
pas avoir trop d'acummulateur ... *)
let res = ref LicPrg.empty in
(** TRAITE LES TYPES *)
res := LicPrg.add_type k te !res
in
LicPrg.iter_types do_type inprg;
(** TRAITE LES CONSTANTES *)
res := LicPrg.add_const k ec !res
in
LicPrg.iter_consts do_const inprg ;
(** TRAITE LES NOEUDS : *)
let rec do_node k (ne:Lic.node_exp) =
(* On passe en parametre un constructeur de nouvelle variable locale *)
Verbose.exe ~flag:dbg (fun() -> Printf.printf "#DBG: split equations of '%s'\n"
(Lic.string_of_node_key k));
let getid = LicPrg.fresh_var_id_generator inprg ne in
let ne' = split_node getid ne in
res := LicPrg.add_node k ne' !res
in
(*LET's GO *)
LicPrg.iter_nodes do_node inprg;
!res