Skip to content
Snippets Groups Projects
README.ipynb 20.5 KiB
Newer Older
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
{
 "cells": [
  {
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": 1,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-01-21T16:21:09.860108Z",
     "iopub.status.busy": "2024-01-21T16:21:09.859792Z",
     "iopub.status.idle": "2024-01-21T16:21:09.870962Z",
     "shell.execute_reply": "2024-01-21T16:21:09.870075Z"
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "jupyter": {
     "source_hidden": true
    }
   },
   "outputs": [
    {
     "data": {
      "text/markdown": [
       "<a name=\"top\"></a>\n",
       "\n",
       "[<img width=\"600px\" src=\"fidle/img/title.svg\"></img>](#top)\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "<!-- --------------------------------------------------- -->\n",
       "<!-- To correctly view this README under Jupyter Lab     -->\n",
       "<!-- Open the notebook: README.ipynb!                    -->\n",
       "<!-- --------------------------------------------------- -->\n",
       "\n",
       "## About Fidle\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "\n",
       "This repository contains all the documents and links of the **Fidle Training** .   \n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "Fidle (for Formation Introduction au Deep Learning) is a 3-day training session co-organized  \n",
       "by the 3IA MIAI institute, the CNRS, via the Mission for Transversal and Interdisciplinary  \n",
       "Initiatives (MITI) and the University of Grenoble Alpes (UGA).  \n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "\n",
       "The objectives of this training are :\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       " - Understanding the **bases of Deep Learning** neural networks\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       " - Develop a **first experience** through simple and representative examples\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       " - Understanding **Tensorflow/Keras** and **Jupyter lab** technologies\n",
       " - Apprehend the **academic computing environments** Tier-2 or Tier-1 with powerfull GPU\n",
       "\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "For more information, see **https://fidle.cnrs.fr** :\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "- **[Fidle site](https://fidle.cnrs.fr)**\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "- **[Presentation of the training](https://fidle.cnrs.fr/presentation)**\n",
       "- **[Detailed program](https://fidle.cnrs.fr/programme)**\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "- [Subscribe to the list](https://fidle.cnrs.fr/listeinfo), to stay informed !\n",
       "- [Find us on youtube](https://fidle.cnrs.fr/youtube)\n",
       "- [Corrected notebooks](https://fidle.cnrs.fr/done)\n",
       "\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "For more information, you can contact us at :  \n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "[<img width=\"200px\" style=\"vertical-align:middle\" src=\"fidle/img/00-Mail_contact.svg\"></img>](#top)\n",
       "\n",
       "Current Version : <!-- VERSION_BEGIN -->2.5.4<!-- VERSION_END -->\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "\n",
       "## Course materials\n",
       "\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "| | | | |\n",
       "|:--:|:--:|:--:|:--:|\n",
       "| **[<img width=\"50px\" src=\"fidle/img/00-Fidle-pdf.svg\"></img><br>Course slides](https://fidle.cnrs.fr/supports)**<br>The course in pdf format<br>| **[<img width=\"50px\" src=\"fidle/img/00-Notebooks.svg\"></img><br>Notebooks](https://fidle.cnrs.fr/notebooks)**<br> &nbsp;&nbsp;&nbsp;&nbsp;Get a Zip or clone this repository &nbsp;&nbsp;&nbsp;&nbsp;<br>| **[<img width=\"50px\" src=\"fidle/img/00-Datasets-tar.svg\"></img><br>Datasets](https://fidle.cnrs.fr/datasets-fidle.tar)**<br>All the needed datasets<br>|**[<img width=\"50px\" src=\"fidle/img/00-Videos.svg\"></img><br>Videos](https://fidle.cnrs.fr/youtube)**<br>&nbsp;&nbsp;&nbsp;&nbsp;Our Youtube channel&nbsp;&nbsp;&nbsp;&nbsp;<br>&nbsp;|\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "Have a look about **[How to get and install](https://fidle.cnrs.fr/installation)** these notebooks and datasets.\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "\n",
       "\n",
       "## Jupyter notebooks\n",
       "\n",
       "**NOTE :** The examples marked **\"obsolete\"** are still functional under Keras2/Tensorflow, \n",
       "but cannot be run in the proposed environment, now based on Keras3, PyTorch and Lightning.  \n",
       "We have decided to consider Keras2/Tensorflow as pedagogically obsolete, although Keras2 and Tensorflow are still perfectly usable (January 2024).  \n",
       "For these reason, they are kept as examples, while we develop the Keras3/PyTorch versions.  \n",
       "The world of Deep Learning is changing very fast !\n",
       "\n",
       "<!-- TOC_BEGIN -->\n",
       "<!-- Automatically generated on : 21/01/24 17:21:08 -->\n",
       "\n",
       "### Linear and logistic regression\n",
       "- **[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)  \n",
       "Low-level implementation, using numpy, of a direct resolution for a linear regression\n",
       "- **[GRAD1](LinearReg/02-Gradient-descent.ipynb)** - [Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb)  \n",
       "Low level implementation of a solution by gradient descent. Basic and stochastic approach.\n",
       "- **[POLR1](LinearReg/03-Polynomial-Regression.ipynb)** - [Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb)  \n",
       "Illustration of the problem of complexity with the polynomial regression\n",
       "- **[LOGR1](LinearReg/04-Logistic-Regression.ipynb)** - [Logistic regression](LinearReg/04-Logistic-Regression.ipynb)  \n",
       "Simple example of logistic regression with a sklearn solution\n",
       "\n",
       "### Perceptron Model 1957\n",
       "- **[PER57](Perceptron/01-Simple-Perceptron.ipynb)** - [Perceptron Model 1957](Perceptron/01-Simple-Perceptron.ipynb)  \n",
       "Example of use of a Perceptron, with sklearn and IRIS dataset of 1936 !\n",
       "\n",
       "### BHPD regression (DNN), using Keras3/PyTorch\n",
       "- **[K3BHPD1](BHPD.Keras3/01-DNN-Regression.ipynb)** - [Regression with a Dense Network (DNN)](BHPD.Keras3/01-DNN-Regression.ipynb)  \n",
       "Simple example of a regression with the dataset Boston Housing Prices Dataset (BHPD)\n",
       "- **[K3BHPD2](BHPD.Keras3/02-DNN-Regression-Premium.ipynb)** - [Regression with a Dense Network (DNN) - Advanced code](BHPD.Keras3/02-DNN-Regression-Premium.ipynb)  \n",
       "A more advanced implementation of the precedent example, using Keras3\n",
       "\n",
       "### BHPD regression (DNN), using PyTorch\n",
       "- **[PBHPD1](BHPD.PyTorch/01-DNN-Regression_PyTorch.ipynb)** - [Regression with a Dense Network (DNN)](BHPD.PyTorch/01-DNN-Regression_PyTorch.ipynb)  \n",
       "A Simple regression with a Dense Neural Network (DNN) using Pytorch - BHPD dataset\n",
       "\n",
       "### Wine Quality prediction (DNN), using Keras3/PyTorch\n",
       "- **[K3WINE1](Wine.Keras3/01-DNN-Wine-Regression.ipynb)** - [Wine quality prediction with a Dense Network (DNN)](Wine.Keras3/01-DNN-Wine-Regression.ipynb)  \n",
       "Another example of regression, with a wine quality prediction, using Keras 3 and PyTorch\n",
       "\n",
       "### Wine Quality prediction (DNN), using PyTorch/Lightning\n",
       "- **[LWINE1](Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb)** - [Wine quality prediction with a Dense Network (DNN)](Wine.Lightning/01-DNN-Wine-Regression-lightning.ipynb)  \n",
       "Another example of regression, with a wine quality prediction, using PyTorch Lightning\n",
       "### MNIST classification (DNN,CNN), using Keras3/PyTorch\n",
       "- **[K3MNIST1](MNIST.Keras3/01-DNN-MNIST.ipynb)** - [Simple classification with DNN](MNIST.Keras3/01-DNN-MNIST.ipynb)  \n",
       "An example of classification using a dense neural network for the famous MNIST dataset\n",
       "- **[K3MNIST2](MNIST.Keras3/02-CNN-MNIST.ipynb)** - [Simple classification with CNN](MNIST.Keras3/02-CNN-MNIST.ipynb)  \n",
       "An example of classification using a convolutional neural network for the famous MNIST dataset\n",
       "\n",
       "### MNIST classification (DNN,CNN), using PyTorch\n",
       "- **[PMNIST1](MNIST.PyTorch/01-DNN-MNIST_PyTorch.ipynb)** - [Simple classification with DNN](MNIST.PyTorch/01-DNN-MNIST_PyTorch.ipynb)  \n",
       "Example of classification with a fully connected neural network, using Pytorch\n",
       "\n",
       "### MNIST classification (DNN,CNN), using PyTorch/Lightning\n",
       "- **[LMNIST2](MNIST.Lightning/01-DNN-MNIST_Lightning.ipynb)** - [Simple classification with DNN](MNIST.Lightning/01-DNN-MNIST_Lightning.ipynb)  \n",
       "An example of classification using a dense neural network for the famous MNIST dataset, using PyTorch Lightning\n",
       "- **[LMNIST2](MNIST.Lightning/02-CNN-MNIST_Lightning.ipynb)** - [Simple classification with CNN](MNIST.Lightning/02-CNN-MNIST_Lightning.ipynb)  \n",
       "An example of classification using a convolutional neural network for the famous MNIST dataset, using PyTorch Lightning\n",
       "### Images classification GTSRB with Convolutional Neural Networks (CNN), using Keras3/PyTorch\n",
       "- **[K3GTSRB1](GTSRB.Keras3/01-Preparation-of-data.ipynb)** - [Dataset analysis and preparation](GTSRB.Keras3/01-Preparation-of-data.ipynb)  \n",
       "Episode 1 : Analysis of the GTSRB dataset and creation of an enhanced dataset\n",
       "- **[K3GTSRB2](GTSRB.Keras3/02-First-convolutions.ipynb)** - [First convolutions](GTSRB.Keras3/02-First-convolutions.ipynb)  \n",
       "Episode 2 : First convolutions and first classification of our traffic signs, using Keras3\n",
       "- **[K3GTSRB3](GTSRB.Keras3/03-Better-convolutions.ipynb)** - [Training monitoring](GTSRB.Keras3/03-Better-convolutions.ipynb)  \n",
       "Episode 3 : Monitoring, analysis and check points during a training session, using Keras3\n",
       "- **[K3GTSRB4](GTSRB.Keras3/04-Keras-cv.ipynb)** - [Hight level example (Keras-cv)](GTSRB.Keras3/04-Keras-cv.ipynb)  \n",
       "An example of using a pre-trained model with Keras-cv\n",
       "- **[K3GTSRB10](GTSRB.Keras3/batch_oar.sh)** - [OAR batch script submission](GTSRB.Keras3/batch_oar.sh)  \n",
       "Bash script for an OAR batch submission of an ipython code\n",
       "- **[K3GTSRB11](GTSRB.Keras3/batch_slurm.sh)** - [SLURM batch script](GTSRB.Keras3/batch_slurm.sh)  \n",
       "Bash script for a Slurm batch submission of an ipython code\n",
       "### Sentiment analysis with word embedding, using Keras3/PyTorch\n",
       "- **[K3IMDB1](Embedding.Keras3/01-One-hot-encoding.ipynb)** - [Sentiment analysis with hot-one encoding](Embedding.Keras3/01-One-hot-encoding.ipynb)  \n",
       "A basic example of sentiment analysis with sparse encoding, using a dataset from Internet Movie Database (IMDB), using Keras 3 on PyTorch\n",
       "- **[K3IMDB2](Embedding.Keras3/02-Keras-embedding.ipynb)** - [Sentiment analysis with text embedding](Embedding.Keras3/02-Keras-embedding.ipynb)  \n",
       "A very classical example of word embedding with a dataset from Internet Movie Database (IMDB), using Keras 3 on PyTorch\n",
       "- **[K3IMDB3](Embedding.Keras3/03-Prediction.ipynb)** - [Reload and reuse a saved model](Embedding.Keras3/03-Prediction.ipynb)  \n",
       "Retrieving a saved model to perform a sentiment analysis (movie review), using Keras 3 and PyTorch\n",
       "- **[K3IMDB4](Embedding.Keras3/04-Show-vectors.ipynb)** - [Reload embedded vectors](Embedding.Keras3/04-Show-vectors.ipynb)  \n",
       "Retrieving embedded vectors from our trained model, using Keras 3 and PyTorch\n",
       "- **[K3IMDB5](Embedding.Keras3/05-LSTM-Keras.ipynb)** - [Sentiment analysis with a RNN network](Embedding.Keras3/05-LSTM-Keras.ipynb)  \n",
       "Still the same problem, but with a network combining embedding and RNN, using Keras 3 and PyTorch\n",
       "\n",
       "### Time series with Recurrent Neural Network (RNN), using Keras3/PyTorch\n",
       "- **[K3LADYB1](RNN.Keras3/01-Ladybug.ipynb)** - [Prediction of a 2D trajectory via RNN](RNN.Keras3/01-Ladybug.ipynb)  \n",
       "Artificial dataset generation and prediction attempt via a recurrent network, using Keras 3 and PyTorch\n",
       "\n",
       "### Sentiment analysis with transformer, using PyTorch\n",
       "- **[TRANS1](Transformers.PyTorch/01-Distilbert.ipynb)** - [IMDB, Sentiment analysis with Transformers ](Transformers.PyTorch/01-Distilbert.ipynb)  \n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "Using a Tranformer to perform a sentiment analysis (IMDB) - Jean Zay version\n",
       "- **[TRANS2](Transformers.PyTorch/02-distilbert_colab.ipynb)** - [IMDB, Sentiment analysis with Transformers ](Transformers.PyTorch/02-distilbert_colab.ipynb)  \n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "Using a Tranformer to perform a sentiment analysis (IMDB) - Colab version\n",
       "\n",
       "### Unsupervised learning with an autoencoder neural network (AE), using Keras2 (obsolete)\n",
       "- **[K2AE1](AE.Keras2/01-Prepare-MNIST-dataset.ipynb)** - [Prepare a noisy MNIST dataset](AE.Keras2/01-Prepare-MNIST-dataset.ipynb)  \n",
       "Episode 1: Preparation of a noisy MNIST dataset, using Keras 2 and Tensorflow (obsolete)\n",
       "- **[K2AE2](AE.Keras2/02-AE-with-MNIST.ipynb)** - [Building and training an AE denoiser model](AE.Keras2/02-AE-with-MNIST.ipynb)  \n",
       "Episode 1 : Construction of a denoising autoencoder and training of it with a noisy MNIST dataset, using Keras 2 and Tensorflow (obsolete)\n",
       "- **[K2AE3](AE.Keras2/03-AE-with-MNIST-post.ipynb)** - [Playing with our denoiser model](AE.Keras2/03-AE-with-MNIST-post.ipynb)  \n",
       "Episode 2 : Using the previously trained autoencoder to denoise data, using Keras 2 and Tensorflow (obsolete)\n",
       "- **[K2AE4](AE.Keras2/04-ExtAE-with-MNIST.ipynb)** - [Denoiser and classifier model](AE.Keras2/04-ExtAE-with-MNIST.ipynb)  \n",
       "Episode 4 : Construction of a denoiser and classifier model, using Keras 2 and Tensorflow (obsolete)\n",
       "- **[K2AE5](AE.Keras2/05-ExtAE-with-MNIST.ipynb)** - [Advanced denoiser and classifier model](AE.Keras2/05-ExtAE-with-MNIST.ipynb)  \n",
       "Episode 5 : Construction of an advanced denoiser and classifier model, using Keras 2 and Tensorflow (obsolete)\n",
       "\n",
       "### Generative network with Variational Autoencoder (VAE), using Keras2 (obsolete)\n",
       "- **[K2VAE1](VAE.Keras2/01-VAE-with-MNIST.ipynb)** - [First VAE, using functional API (MNIST dataset)](VAE.Keras2/01-VAE-with-MNIST.ipynb)  \n",
       "Construction and training of a VAE, using functional APPI, with a latent space of small dimension, using Keras 2 and Tensorflow (obsolete)\n",
       "- **[K2VAE2](VAE.Keras2/02-VAE-with-MNIST.ipynb)** - [VAE, using a custom model class  (MNIST dataset)](VAE.Keras2/02-VAE-with-MNIST.ipynb)  \n",
       "Construction and training of a VAE, using model subclass, with a latent space of small dimension, using Keras 2 and Tensorflow (obsolete)\n",
       "- **[K2VAE3](VAE.Keras2/03-VAE-with-MNIST-post.ipynb)** - [Analysis of the VAE's latent space of MNIST dataset](VAE.Keras2/03-VAE-with-MNIST-post.ipynb)  \n",
       "Visualization and analysis of the VAE's latent space of the dataset MNIST, using Keras 2 and Tensorflow (obsolete)\n",
       "\n",
       "### Generative network with Variational Autoencoder (VAE), using PyTorch Lightning\n",
       "- **[LVAE1](VAE.Lightning/01-VAE-lightning-with-MNIST.ipynb)** - [First VAE, using Lightning API (MNIST dataset)](VAE.Lightning/01-VAE-lightning-with-MNIST.ipynb)  \n",
       "Construction and training of a VAE, using Lightning API, with a latent space of small dimension, using PyTorch Lightning\n",
       "- **[LVAE2](VAE.Lightning/02-VAE-with-Lightning-MNIST.ipynb)** - [VAE, using a custom model class  (MNIST dataset)](VAE.Lightning/02-VAE-with-Lightning-MNIST.ipynb)  \n",
       "Construction and training of a VAE, using model subclass, with a latent space of small dimension, using PyTorch Lightninh\n",
       "- **[LVAE3](VAE.Lightning/03-VAE-Lightning-with-MNIST-post.ipynb)** - [Analysis of the VAE's latent space of MNIST dataset](VAE.Lightning/03-VAE-Lightning-with-MNIST-post.ipynb)  \n",
       "Visualization and analysis of the VAE's latent space of the dataset MNIST, using PyTorch Lightning\n",
       "\n",
       "### Generative Adversarial Networks (GANs), using Lightning\n",
       "- **[LSHEEP3](DCGAN.Lightning/01-DCGAN-PL.ipynb)** - [A DCGAN to Draw a Sheep, using Pytorch Lightning](DCGAN.Lightning/01-DCGAN-PL.ipynb)  \n",
       "\"Draw me a sheep\", revisited with a DCGAN, using Pytorch Lightning\n",
       "### Diffusion Model (DDPM) using PyTorch\n",
       "- **[DDPM1](DDPM.PyTorch/01-ddpm.ipynb)** - [Fashion MNIST Generation with DDPM](DDPM.PyTorch/01-ddpm.ipynb)  \n",
       "Diffusion Model example, to generate Fashion MNIST images.\n",
       "- **[DDPM2](DDPM.PyTorch/model.py)** - [DDPM Python classes](DDPM.PyTorch/model.py)  \n",
       "Python classes used by DDMP Example\n",
       "\n",
       "### Training optimization, using PyTorch\n",
       "- **[OPT1](Optimization.PyTorch/01-Apprentissages-rapides-et-Optimisations.ipynb)** - [Training setup optimization](Optimization.PyTorch/01-Apprentissages-rapides-et-Optimisations.ipynb)  \n",
       "The goal of this notebook is to go through a typical deep learning model training\n",
       "\n",
       "### Deep Reinforcement Learning (DRL), using PyTorch\n",
       "- **[DRL1](DRL.PyTorch/FIDLE_DQNfromScratch.ipynb)** - [Solving CartPole with DQN](DRL.PyTorch/FIDLE_DQNfromScratch.ipynb)  \n",
       "Using a a Deep Q-Network to play CartPole - an inverted pendulum problem (PyTorch)\n",
       "- **[DRL2](DRL.PyTorch/FIDLE_rl_baselines_zoo.ipynb)** - [RL Baselines3 Zoo: Training in Colab](DRL.PyTorch/FIDLE_rl_baselines_zoo.ipynb)  \n",
       "Demo of Stable baseline3 with Colab\n",
       "\n",
       "### Miscellaneous things, but very important!\n",
       "- **[NP1](Misc/00-Numpy.ipynb)** - [A short introduction to Numpy](Misc/00-Numpy.ipynb)  \n",
       "Numpy is an essential tool for the Scientific Python.\n",
       "- **[ACTF1](Misc/01-Activation-Functions.ipynb)** - [Activation functions](Misc/01-Activation-Functions.ipynb)  \n",
       "Some activation functions, with their derivatives.\n",
       "- **[PANDAS1](Misc/02-Using-pandas.ipynb)** - [Quelques exemples avec Pandas](Misc/02-Using-pandas.ipynb)  \n",
       "pandas is another essential tool for the Scientific Python.\n",
       "- **[PYTORCH1](Misc/03-Using-Pytorch.ipynb)** - [Practical Lab : PyTorch](Misc/03-Using-Pytorch.ipynb)  \n",
       "PyTorch est l'un des principaux framework utilisé dans le Deep Learning\n",
       "- **[TSB1](Misc/04-Using-Tensorboard.ipynb)** - [Tensorboard with/from Jupyter ](Misc/04-Using-Tensorboard.ipynb)  \n",
       "4 ways to use Tensorboard from the Jupyter environment\n",
       "- **[SCRATCH1](Misc/99-Scratchbook.ipynb)** - [Scratchbook](Misc/99-Scratchbook.ipynb)  \n",
       "A scratchbook for small examples\n",
       "<!-- TOC_END -->\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "\n",
       "**NOTE :** The examples marked **\"obsolete\"** are still functional under Keras2/Tensorflow, \n",
       "but cannot be run in the proposed environment, now based on Keras3, PyTorch and Lightning.  \n",
       "We have decided to consider Keras2/Tensorflow as pedagogically obsolete, although Keras2 and Tensorflow are still perfectly usable (January 2024).  \n",
       "For these resaon, they are kept as examples, while we develop the Keras3/PyTorch versions.  \n",
       "The world of Deep Learning is changing very fast !\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "\n",
       "## Installation\n",
       "\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "Have a look about **[How to get and install](https://fidle.cnrs.fr/installation)** these notebooks and datasets.\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "\n",
       "## Licence\n",
       "\n",
       "[<img width=\"100px\" src=\"fidle/img/00-fidle-CC BY-NC-SA.svg\"></img>](https://creativecommons.org/licenses/by-nc-sa/4.0/)  \n",
       "\\[en\\] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0)  \n",
       "\\[Fr\\] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International  \n",
       "See [License](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).  \n",
       "See [Disclaimer](https://creativecommons.org/licenses/by-nc-sa/4.0/#).  \n",
       "\n",
       "\n",
       "----\n",
       "[<img width=\"80px\" src=\"fidle/img/logo-paysage.svg\"></img>](#top)\n"
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "source": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "from IPython.display import display,Markdown\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "display(Markdown(open('README.md', 'r').read()))\n",
    "#\n",
    "# This README is visible under Jupiter Lab ;-)# Automatically generated on : 21/01/24 17:21:08"
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "display_name": "Python 3 (ipykernel)",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "version": "3.9.2"
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
}