Skip to content
Snippets Groups Projects
README.ipynb 6.6 KiB
Newer Older
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<img width=\"800px\" src=\"fidle/img/00-Fidle-header-01.svg\"></img>\n",
    "\n",
    "# Available notebooks"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<!-- INDEX_BEGIN -->\n",
    "[[NP1] - A short introduction to Numpy](Prerequisites/Numpy.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Numpy is an essential tool for the Scientific Python.  \n",
    "[[LINR1] - Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Direct determination of linear regression   \n",
    "[[GRAD1] - Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;An example of gradient descent in the simple case of a linear regression.  \n",
    "[[POLR1] - Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Illustration of the problem of complexity with the polynomial regression  \n",
    "[[LOGR1] - Logistic regression, in pure Tensorflow](LinearReg/04-Logistic-Regression.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Logistic Regression with Mini-Batch Gradient Descent using pure TensorFlow.   \n",
    "[[MNIST1] - Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Example of classification with a fully connected neural network  \n",
    "[[BHP1] - Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A Simple regression with a Dense Neural Network (DNN) - BHPD dataset  \n",
    "[[BHP2] - Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;More advanced example of DNN network code - BHPD dataset  \n",
    "[[GTS1] - CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 1: Data analysis and creation of a usable dataset  \n",
    "[[GTS2] - CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 2 : First convolutions and first results  \n",
    "[[GTS3] - CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 3: Monitoring and analysing training, managing checkpoints  \n",
    "[[GTS4] - CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 4: Improving the results with data augmentation  \n",
    "[[GTS5] - CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 5: A lot of models, a lot of datasets and a lot of results.  \n",
    "[[GTS6] - CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Full-convolutions-batch.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 6 : Run Full convolution notebook as a batch  \n",
    "[[GTS7] - Full convolutions Report](GTSRB/07-Full-convolutions-reports.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Displaying the reports of the different jobs  \n",
    "[[TSB1] - Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;4 ways to use Tensorboard from the Jupyter environment  \n",
    "[[IMDB1] - Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A very classical example of word embedding for text classification (sentiment analysis)  \n",
    "[[IMDB2] - Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Example of reusing a previously saved model  \n",
    "[[IMDB3] - Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Still the same problem, but with a network combining embedding and LSTM  \n",
    "[[VAE1] - Variational AutoEncoder (VAE) with MNIST](VAE/01-VAE-with-MNIST.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;First generative network experience with the MNIST dataset  \n",
    "[[VAE2] - Variational AutoEncoder (VAE) with MNIST - Analysis](VAE/02-VAE-with-MNIST-post.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Use of the previously trained model, analysis of the results  \n",
    "[[VAE3] - About the CelebA dataset](VAE/03-Prepare-CelebA.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;New VAE experience, but with a larger and more fun dataset  \n",
    "[[VAE4] - Preparation of the CelebA dataset](VAE/04-Prepare-CelebA-batch.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Preparation of a clustered dataset, batchable  \n",
    "[[VAE5] - Checking the clustered CelebA dataset](VAE/05-Check-CelebA.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Verification of prepared data from CelebA dataset  \n",
    "[[VAE6] - Variational AutoEncoder (VAE) with CelebA (small)](VAE/06-VAE-with-CelebA-s.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;VAE with a more fun and realistic dataset - small resolution and batchable  \n",
    "[[VAE7] - Variational AutoEncoder (VAE) with CelebA (medium)](VAE/07-VAE-with-CelebA-m.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;VAE with a more fun and realistic dataset - medium resolution and batchable  \n",
    "[[VAE12] - Variational AutoEncoder (VAE) with CelebA - Analysis](VAE/12-VAE-withCelebA-post.ipynb)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Use of the previously trained model with CelebA, analysis of the results  \n",
    "[[BASH1] - OAR batch script](VAE/batch-oar.sh)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Bash script for OAR batch submission of a notebook  \n",
    "[[BASH2] - SLURM batch script](VAE/batch-slurm.sh)  \n",
    "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Bash script for SLURM batch submission of a notebook  \n",
    "<!-- INDEX_END -->"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "---\n",
    "<img width=\"80px\" src=\"fidle/img/00-Fidle-logo-01.svg\"></img>"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}