{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<img width=\"800px\" src=\"fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", "# Available notebooks" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- INDEX_BEGIN -->\n", "[[NP1] - A short introduction to Numpy](Prerequisites/Numpy.ipynb) \n", " Numpy is an essential tool for the Scientific Python. \n", "[[LINR1] - Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb) \n", " Direct determination of linear regression \n", "[[GRAD1] - Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb) \n", " An example of gradient descent in the simple case of a linear regression. \n", "[[POLR1] - Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb) \n", " Illustration of the problem of complexity with the polynomial regression \n", "[[LOGR1] - Logistic regression, in pure Tensorflow](LinearReg/04-Logistic-Regression.ipynb) \n", " Logistic Regression with Mini-Batch Gradient Descent using pure TensorFlow. \n", "[[MNIST1] - Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb) \n", " Example of classification with a fully connected neural network \n", "[[BHP1] - Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb) \n", " A Simple regression with a Dense Neural Network (DNN) - BHPD dataset \n", "[[BHP2] - Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb) \n", " More advanced example of DNN network code - BHPD dataset \n", "[[GTS1] - CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb) \n", " Episode 1: Data analysis and creation of a usable dataset \n", "[[GTS2] - CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb) \n", " Episode 2 : First convolutions and first results \n", "[[GTS3] - CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb) \n", " Episode 3: Monitoring and analysing training, managing checkpoints \n", "[[GTS4] - CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb) \n", " Episode 4: Improving the results with data augmentation \n", "[[GTS5] - CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb) \n", " Episode 5: A lot of models, a lot of datasets and a lot of results. \n", "[[GTS6] - CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Full-convolutions-batch.ipynb) \n", " Episode 6 : Run Full convolution notebook as a batch \n", "[[GTS7] - Full convolutions Report](GTSRB/07-Full-convolutions-reports.ipynb) \n", " Displaying the reports of the different jobs \n", "[[TSB1] - Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb) \n", " 4 ways to use Tensorboard from the Jupyter environment \n", "[[IMDB1] - Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb) \n", " A very classical example of word embedding for text classification (sentiment analysis) \n", "[[IMDB2] - Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb) \n", " Example of reusing a previously saved model \n", "[[IMDB3] - Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb) \n", " Still the same problem, but with a network combining embedding and LSTM \n", "[[VAE1] - Variational AutoEncoder (VAE) with MNIST](VAE/01-VAE-with-MNIST.ipynb) \n", " First generative network experience with the MNIST dataset \n", "[[VAE2] - Variational AutoEncoder (VAE) with MNIST - Analysis](VAE/02-VAE-with-MNIST-post.ipynb) \n", " Use of the previously trained model, analysis of the results \n", "[[VAE3] - About the CelebA dataset](VAE/03-Prepare-CelebA.ipynb) \n", " New VAE experience, but with a larger and more fun dataset \n", "[[VAE4] - Preparation of the CelebA dataset](VAE/04-Prepare-CelebA-batch.ipynb) \n", " Preparation of a clustered dataset, batchable \n", "[[VAE5] - Checking the clustered CelebA dataset](VAE/05-Check-CelebA.ipynb) \n", " Verification of prepared data from CelebA dataset \n", "[[VAE6] - Variational AutoEncoder (VAE) with CelebA (small)](VAE/06-VAE-with-CelebA-s.ipynb) \n", " VAE with a more fun and realistic dataset - small resolution and batchable \n", "[[VAE7] - Variational AutoEncoder (VAE) with CelebA (medium)](VAE/07-VAE-with-CelebA-m.ipynb) \n", " VAE with a more fun and realistic dataset - medium resolution and batchable \n", "[[VAE12] - Variational AutoEncoder (VAE) with CelebA - Analysis](VAE/12-VAE-withCelebA-post.ipynb) \n", " Use of the previously trained model with CelebA, analysis of the results \n", "[[BASH1] - OAR batch script](VAE/batch-oar.sh) \n", " Bash script for OAR batch submission of a notebook \n", "[[BASH2] - SLURM batch script](VAE/batch-slurm.sh) \n", " Bash script for SLURM batch submission of a notebook \n", "<!-- INDEX_END -->" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "<img width=\"80px\" src=\"fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }