Newer
Older
"iopub.execute_input": "2021-01-08T00:45:39.077620Z",
"iopub.status.busy": "2021-01-08T00:45:39.077079Z",
"iopub.status.idle": "2021-01-08T00:45:39.085072Z",
"shell.execute_reply": "2021-01-08T00:45:39.084633Z"
"jupyter": {
"source_hidden": true
}
},
"outputs": [
{
"data": {
"text/markdown": [
"<a name=\"top\"></a>\n",
"\n",
"[<img width=\"600px\" src=\"fidle/img/00-Fidle-titre-01.svg\"></img>](#top)\n",
"<!-- --------------------------------------------------- -->\n",
"<!-- To correctly view this README under Jupyter Lab -->\n",
"<!-- Open the notebook: README.ipynb! -->\n",
"<!-- --------------------------------------------------- -->\n",
"\n",
"This repository contains all the documents and links of the **Fidle Training** . \n",
"Fidle (for Formation Introduction au Deep Learning) is a 2-day training session \n",
"co-organized by the Formation Permanente CNRS and the SARI and DEVLOG networks. \n",
"The objectives of this training are :\n",
" - Understanding the **bases of Deep Learning** neural networks\n",
" - Develop a **first experience** through simple and representative examples\n",
" - Understanding **Tensorflow/Keras** and **Jupyter lab** technologies\n",
" - Apprehend the **academic computing environments** Tier-2 or Tier-1 with powerfull GPU\n",
"\n",
"For more information, you can contact us at : \n",
"[<img width=\"200px\" style=\"vertical-align:middle\" src=\"fidle/img/00-Mail_contact.svg\"></img>](#top) \n",
"Current Version : <!-- VERSION_BEGIN -->\n",
"| | | |\n",
"|:--:|:--:|:--:|\n",
"| **[<img width=\"50px\" src=\"fidle/img/00-Fidle-pdf.svg\"></img><br>Course slides](https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6)**<br>The course in pdf format<br>(12 Mo)| **[<img width=\"50px\" src=\"fidle/img/00-Notebooks.svg\"></img><br>Notebooks](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/archive/master/fidle-master.zip)**<br> Get a Zip or clone this repository <br>(10 Mo)| **[<img width=\"50px\" src=\"fidle/img/00-Datasets-tar.svg\"></img><br>Datasets](https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6)**<br>All the needed datasets<br>(1.2 Go)|\n",
"\n",
"Have a look about **[How to get and install](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle)** these notebooks and datasets.\n",
"\n",
"\n",
"## Jupyter notebooks\n",
"\n",
"<!-- INDEX_BEGIN -->\n",
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
"<style>\n",
"\n",
".fid_line{\n",
" padding-top: 10px\n",
"}\n",
"\n",
".fid_id { \n",
" font-size:1.em;\n",
" color:black;\n",
" font-weight: bold; \n",
" padding:0px;\n",
" margin-left: 20px;\n",
" display: inline-block;\n",
" width: 60px;\n",
" }\n",
"\n",
".fid_desc { \n",
" font-size:1.em;\n",
" padding:0px;\n",
" margin-left: 85px;\n",
" display: inline-block;\n",
" width: 600px;\n",
" }\n",
"\n",
"\n",
"\n",
"div.fid_section { \n",
" font-size:1.2em;\n",
" color:black;\n",
" margin-left: 0px;\n",
" margin-top: 12px;\n",
" margin-bottom:8px;\n",
" border-bottom: solid;\n",
" border-block-width: 1px;\n",
" border-block-color: #dadada;\n",
" width: 700px;\n",
" }\n",
"\n",
"</style>\n",
"<div class=\"fid_section\">Linear and logistic regression</div>\n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"LinearReg/01-Linear-Regression.ipynb\">LINR1</a>\n",
" </span> <a href=\"LinearReg/01-Linear-Regression.ipynb\">Linear regression with direct resolution</a><br>\n",
" <span class=\"fid_desc\">Direct determination of linear regression </span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"LinearReg/02-Gradient-descent.ipynb\">GRAD1</a>\n",
" </span> <a href=\"LinearReg/02-Gradient-descent.ipynb\">Linear regression with gradient descent</a><br>\n",
" <span class=\"fid_desc\">An example of gradient descent in the simple case of a linear regression.</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"LinearReg/03-Polynomial-Regression.ipynb\">POLR1</a>\n",
" </span> <a href=\"LinearReg/03-Polynomial-Regression.ipynb\">Complexity Syndrome</a><br>\n",
" <span class=\"fid_desc\">Illustration of the problem of complexity with the polynomial regression</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"LinearReg/04-Logistic-Regression.ipynb\">LOGR1</a>\n",
" </span> <a href=\"LinearReg/04-Logistic-Regression.ipynb\">Logistic regression, with sklearn</a><br>\n",
" <span class=\"fid_desc\">Logistic Regression using Sklearn</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_section\">Perceptron Model 1957</div>\n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"IRIS/01-Simple-Perceptron.ipynb\">PER57</a>\n",
" </span> <a href=\"IRIS/01-Simple-Perceptron.ipynb\">Perceptron Model 1957</a><br>\n",
" <span class=\"fid_desc\">A simple perceptron, with the IRIS dataset.</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_section\">Basic regression using DNN</div>\n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"BHPD/01-DNN-Regression.ipynb\">BHPD1</a>\n",
" </span> <a href=\"BHPD/01-DNN-Regression.ipynb\">Regression with a Dense Network (DNN)</a><br>\n",
" <span class=\"fid_desc\">A Simple regression with a Dense Neural Network (DNN) - BHPD dataset</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"BHPD/02-DNN-Regression-Premium.ipynb\">BHPD2</a>\n",
" </span> <a href=\"BHPD/02-DNN-Regression-Premium.ipynb\">Regression with a Dense Network (DNN) - Advanced code</a><br>\n",
" <span class=\"fid_desc\">More advanced example of DNN network code - BHPD dataset</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_section\">Basic classification using a DNN</div>\n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"MNIST/01-DNN-MNIST.ipynb\">MNIST1</a>\n",
" </span> <a href=\"MNIST/01-DNN-MNIST.ipynb\">Simple classification with DNN</a><br>\n",
" <span class=\"fid_desc\">Example of classification with a fully connected neural network</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_section\">Images classification with Convolutional Neural Networks (CNN)</div>\n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"GTSRB/01-Preparation-of-data.ipynb\">GTSRB1</a>\n",
" </span> <a href=\"GTSRB/01-Preparation-of-data.ipynb\">CNN with GTSRB dataset - Data analysis and preparation</a><br>\n",
" <span class=\"fid_desc\">Episode 1 : Data analysis and creation of a usable dataset</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"GTSRB/02-First-convolutions.ipynb\">GTSRB2</a>\n",
" </span> <a href=\"GTSRB/02-First-convolutions.ipynb\">CNN with GTSRB dataset - First convolutions</a><br>\n",
" <span class=\"fid_desc\">Episode 2 : First convolutions and first results</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"GTSRB/03-Tracking-and-visualizing.ipynb\">GTSRB3</a>\n",
" </span> <a href=\"GTSRB/03-Tracking-and-visualizing.ipynb\">CNN with GTSRB dataset - Monitoring </a><br>\n",
" <span class=\"fid_desc\">Episode 3 : Monitoring and analysing training, managing checkpoints</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"GTSRB/04-Data-augmentation.ipynb\">GTSRB4</a>\n",
" </span> <a href=\"GTSRB/04-Data-augmentation.ipynb\">CNN with GTSRB dataset - Data augmentation </a><br>\n",
" <span class=\"fid_desc\">Episode 4 : Improving the results with data augmentation</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"GTSRB/05-Full-convolutions.ipynb\">GTSRB5</a>\n",
" </span> <a href=\"GTSRB/05-Full-convolutions.ipynb\">CNN with GTSRB dataset - Full convolutions </a><br>\n",
" <span class=\"fid_desc\">Episode 5 : A lot of models, a lot of datasets and a lot of results.</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"GTSRB/06-Notebook-as-a-batch.ipynb\">GTSRB6</a>\n",
" </span> <a href=\"GTSRB/06-Notebook-as-a-batch.ipynb\">Full convolutions as a batch</a><br>\n",
" <span class=\"fid_desc\">Episode 6 : Run Full convolution notebook as a batch</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"GTSRB/07-Show-report.ipynb\">GTSRB7</a>\n",
" </span> <a href=\"GTSRB/07-Show-report.ipynb\">CNN with GTSRB dataset - Show reports</a><br>\n",
" <span class=\"fid_desc\">Episode 7 : Displaying a jobs report</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"GTSRB/batch_oar.sh\">GTSRB10</a>\n",
" </span> <a href=\"GTSRB/batch_oar.sh\">OAR batch submission</a><br>\n",
" <span class=\"fid_desc\">Bash script for OAR batch submission of GTSRB notebook </span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"GTSRB/batch_slurm.sh\">GTSRB11</a>\n",
" </span> <a href=\"GTSRB/batch_slurm.sh\">SLURM batch script</a><br>\n",
" <span class=\"fid_desc\">Bash script for SLURM batch submission of GTSRB notebooks </span>\n",
" </div>\n",
" \n",
"<div class=\"fid_section\">Sentiment analysis with word embedding</div>\n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"IMDB/01-Embedding-Keras.ipynb\">IMDB1</a>\n",
" </span> <a href=\"IMDB/01-Embedding-Keras.ipynb\">Text embedding with IMDB</a><br>\n",
" <span class=\"fid_desc\">A very classical example of word embedding for text classification (sentiment analysis)</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"IMDB/02-Prediction.ipynb\">IMDB2</a>\n",
" </span> <a href=\"IMDB/02-Prediction.ipynb\">Text embedding with IMDB - Reloaded</a><br>\n",
" <span class=\"fid_desc\">Example of reusing a previously saved model</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"IMDB/03-LSTM-Keras.ipynb\">IMDB3</a>\n",
" </span> <a href=\"IMDB/03-LSTM-Keras.ipynb\">Text embedding/LSTM model with IMDB</a><br>\n",
" <span class=\"fid_desc\">Still the same problem, but with a network combining embedding and LSTM</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_section\">Time series with Recurrent Neural Network (RNN)</div>\n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"SYNOP/01-Preparation-of-data.ipynb\">SYNOP1</a>\n",
" </span> <a href=\"SYNOP/01-Preparation-of-data.ipynb\">Time series with RNN - Preparation of data</a><br>\n",
" <span class=\"fid_desc\">Episode 1 : Data analysis and creation of a usable dataset</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"SYNOP/02-First-predictions.ipynb\">SYNOP2</a>\n",
" </span> <a href=\"SYNOP/02-First-predictions.ipynb\">Time series with RNN - Try a prediction</a><br>\n",
" <span class=\"fid_desc\">Episode 2 : Training session and first predictions</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"SYNOP/03-12h-predictions.ipynb\">SYNOP3</a>\n",
" </span> <a href=\"SYNOP/03-12h-predictions.ipynb\">Time series with RNN - 12h predictions</a><br>\n",
" <span class=\"fid_desc\">Episode 3: Attempt to predict in the longer term </span>\n",
" </div>\n",
" \n",
"<div class=\"fid_section\">Unsupervised learning with an autoencoder neural network (AE)</div>\n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"AE/01-AE-with-MNIST.ipynb\">AE1</a>\n",
" </span> <a href=\"AE/01-AE-with-MNIST.ipynb\">AutoEncoder (AE) with MNIST</a><br>\n",
" <span class=\"fid_desc\">Episode 1 : Model construction and Training</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"AE/02-AE-with-MNIST-post.ipynb\">AE2</a>\n",
" </span> <a href=\"AE/02-AE-with-MNIST-post.ipynb\">AutoEncoder (AE) with MNIST - Analysis</a><br>\n",
" <span class=\"fid_desc\">Episode 2 : Exploring our denoiser</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_section\">Generative network with Variational Autoencoder (VAE)</div>\n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"VAE/01-VAE-with-MNIST.ipynb\">VAE1</a>\n",
" </span> <a href=\"VAE/01-VAE-with-MNIST.ipynb\">Variational AutoEncoder (VAE) with MNIST</a><br>\n",
" <span class=\"fid_desc\">Building a simple model with the MNIST dataset</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"VAE/02-VAE-with-MNIST-post.ipynb\">VAE2</a>\n",
" </span> <a href=\"VAE/02-VAE-with-MNIST-post.ipynb\">Variational AutoEncoder (VAE) with MNIST - Analysis</a><br>\n",
" <span class=\"fid_desc\">Visualization and analysis of latent space</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"VAE/05-About-CelebA.ipynb\">VAE3</a>\n",
" </span> <a href=\"VAE/05-About-CelebA.ipynb\">About the CelebA dataset</a><br>\n",
" <span class=\"fid_desc\">Presentation of the CelebA dataset and problems related to its size</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"VAE/06-Prepare-CelebA-datasets.ipynb\">VAE6</a>\n",
" </span> <a href=\"VAE/06-Prepare-CelebA-datasets.ipynb\">Preparation of the CelebA dataset</a><br>\n",
" <span class=\"fid_desc\">Preparation of a clustered dataset, batchable</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"VAE/07-Check-CelebA.ipynb\">VAE7</a>\n",
" </span> <a href=\"VAE/07-Check-CelebA.ipynb\">Checking the clustered CelebA dataset</a><br>\n",
" <span class=\"fid_desc\">Check the clustered dataset</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"VAE/08-VAE-with-CelebA==1090048==.ipynb\">VAE8</a>\n",
" </span> <a href=\"VAE/08-VAE-with-CelebA==1090048==.ipynb\">Variational AutoEncoder (VAE) with CelebA (small)</a><br>\n",
" <span class=\"fid_desc\">Variational AutoEncoder (VAE) with CelebA (small res. 128x128)</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"VAE/09-VAE-withCelebA-post.ipynb\">VAE9</a>\n",
" </span> <a href=\"VAE/09-VAE-withCelebA-post.ipynb\">Variational AutoEncoder (VAE) with CelebA - Analysis</a><br>\n",
" <span class=\"fid_desc\">Exploring latent space of our trained models</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"VAE/batch_slurm.sh\">VAE10</a>\n",
" </span> <a href=\"VAE/batch_slurm.sh\">SLURM batch script</a><br>\n",
" <span class=\"fid_desc\">Bash script for SLURM batch submission of VAE notebooks </span>\n",
" </div>\n",
" \n",
"<div class=\"fid_section\">Miscellaneous</div>\n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"Misc/Activation-Functions.ipynb\">ACTF1</a>\n",
" </span> <a href=\"Misc/Activation-Functions.ipynb\">Activation functions</a><br>\n",
" <span class=\"fid_desc\">Some activation functions, with their derivatives.</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"Misc/Numpy.ipynb\">NP1</a>\n",
" </span> <a href=\"Misc/Numpy.ipynb\">A short introduction to Numpy</a><br>\n",
" <span class=\"fid_desc\">Numpy is an essential tool for the Scientific Python.</span>\n",
" </div>\n",
" \n",
"<div class=\"fid_line\">\n",
" <span class=\"fid_id\">\n",
" <a href=\"Misc/Using-Tensorboard.ipynb\">TSB1</a>\n",
" </span> <a href=\"Misc/Using-Tensorboard.ipynb\">Tensorboard with/from Jupyter </a><br>\n",
" <span class=\"fid_desc\">4 ways to use Tensorboard from the Jupyter environment</span>\n",
" </div>\n",
" \n",
"<!-- INDEX_END -->\n",
"\n",
"\n",
"## Installation\n",
"\n",
"A procedure for **configuring** and **starting Jupyter** is available in the **[Wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle)**.\n",
"\n",
"## Licence\n",
"\n",
"[<img width=\"100px\" src=\"fidle/img/00-fidle-CC BY-NC-SA.svg\"></img>](https://creativecommons.org/licenses/by-nc-sa/4.0/) \n",
"\\[en\\] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0) \n",
"\\[Fr\\] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International \n",
"See [License](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). \n",
"See [Disclaimer](https://creativecommons.org/licenses/by-nc-sa/4.0/#). \n",
"\n",
"\n",
"----\n",
"[<img width=\"80px\" src=\"fidle/img/00-Fidle-logo-01.svg\"></img>](#top)\n"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"from IPython.display import display,Markdown\n",
"display(Markdown(open('README.md', 'r').read()))\n",
"#\n",
"# This README is visible under Jupiter LAb ! :-)"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 4
}