-
erwan authored
And it is now done only by Lic2soc (L2lCheckLoops is not used anymore) Also, during this change, I was bitten again by the « "__" versus "::" in ident names » problem again. The core of this problem is due to the fact that I use LicDump both for (1) dealing with internal ident names (2) generating lustre files Because of (2), ident names may depend on the ec or the v4 option. hence, internal names were sometimes translated with "__" instead of "::". To (try to) fix that, I've added a boolean flag to all "to_string" functions that states whether the function is used for internal purposes, or for generating lustre files. It was quite a boring change, that triggered other problems, that I've fixed in this (too long) commit : - -esa should force -en, otherwise bad things happen (-esa is used for -ec anyway) - in -esa mode, #/nor inputs tuples of bool, not arrays - fix the list of predi op that returns a type different that its arg (SocPredef)
erwan authoredAnd it is now done only by Lic2soc (L2lCheckLoops is not used anymore) Also, during this change, I was bitten again by the « "__" versus "::" in ident names » problem again. The core of this problem is due to the fact that I use LicDump both for (1) dealing with internal ident names (2) generating lustre files Because of (2), ident names may depend on the ec or the v4 option. hence, internal names were sometimes translated with "__" instead of "::". To (try to) fix that, I've added a boolean flag to all "to_string" functions that states whether the function is used for internal purposes, or for generating lustre files. It was quite a boring change, that triggered other problems, that I've fixed in this (too long) commit : - -esa should force -en, otherwise bad things happen (-esa is used for -ec anyway) - in -esa mode, #/nor inputs tuples of bool, not arrays - fix the list of predi op that returns a type different that its arg (SocPredef)
l2lExpandArrays.ml 25.86 KiB
(** Time-stamp: <modified the 21/07/2017 (at 15:18) by Erwan Jahier> *)
(* Replace structures and arrays by as many variables as necessary.
Since structures can be nested, it migth be a lot of new variables...
For instance, a variable
v : Toto { f1 : int ; f2 : int ^ 3 ; f3 : t^2 }
where
type t = T { x:int ; y:int }
will be expanded into
_v_f1 : int;
_v_f2_0 : int;
_v_f2_1 : int;
_v_f2_2 : int;
_v_f3_1_x : int;
_v_f3_1_y : int;
_v_f3_2_x : int;
_v_f3_3_y : int;
nb : if 't' was a type that does not contain any struct type, we would just
have 3 variables.
*)
open Lxm
open Lic
open AstPredef
type acc =
Lic.val_exp srcflagged list (* assertions *)
* (Lic.eq_info srcflagged) list (* equations *)
* Lic.var_info list (* new local vars *)
let dbg = (Lv6Verbose.get_flag "esa")
(********************************************************************************)
(* pack useful info (while expanding nodes) into a single struct *)
type local_ctx = {
node : Lic.node_exp;
prg : LicPrg.t;
}
(* stuff to create fresh var names.
XXX code dupl. with Split.new_var
*)
let new_var str lctx type_eff clock_eff =
let id = Lv6Id.of_string (FreshName.local_var (str)) in
let var =
{
var_name_eff = id;
var_nature_eff = AstCore.VarLocal;
var_number_eff = -1; (* this field is used only for i/o.
Should i rather put something sensible there ? *)
var_type_eff = type_eff;
var_clock_eff = id, clock_eff;
}
in
var
(* for local use: polymorphic predef operators should not transformed; hence,
whenever we reach a Any/AnyNum type, we raise that exception and skip the
transformation of the current node.
*)
exception Polymorphic
(* returns a new var based on [vi] with type [type_eff]. *)
let clone_var node_env vi str type_eff =
let str = (Lv6Id.to_string vi.var_name_eff) ^ str in
let id = Lv6Id.of_string (str) in
let clk_id = Lv6Id.of_string str in
let type_eff = match type_eff with
TypeVar Any | TypeVar AnyNum -> raise Polymorphic
| _ -> type_eff
in
let var =
{
var_name_eff = id;
var_nature_eff = vi.var_nature_eff;
var_number_eff = vi.var_number_eff; (* this field is useless: to be removed. *)
var_type_eff = type_eff;
var_clock_eff = clk_id, snd vi.var_clock_eff;
}
in
(* Hashtbl.add node_env.lenv_vars id var; *)
var
let rec (is_a_basic_type : Lic.type_ -> bool) =
function
| Array_type_eff _ | Struct_type_eff _ -> false
| TypeVar Any | TypeVar AnyNum -> raise Polymorphic
| Abstract_type_eff(_, teff) -> is_a_basic_type teff
| External_type_eff(_)
| Enum_type_eff (_, _)
| Real_type_eff
| Int_type_eff
| Bool_type_eff -> true
let soi = string_of_int
let (index_list_of_slice_info : Lic.slice_info -> int list) =
fun si ->
let rec aux acc cpt =
if ((si.se_step > 0 && cpt > si.se_last) || (si.se_step < 0 && cpt < si.se_last))
then acc else aux (cpt::acc) (cpt + si.se_step)
in
List.rev (aux [] si.se_first)
(** left expr expansion.
The objective is to generate the set of vars defined by a left expr.
First step: var_trees_of_left recursively traverse the left structure
to compute the left expr variable. E.g., in the left expr "X.f2[4]" we
want to find "X" (and its type).
Second step: Using the type of X, we compute the set of variables defined
by "X" (gen_var_trees). The set is actually structured into a tree-like
data struture var_tree (to be able to deal with slices).
Third step (var_trees_of_left again): cut off some branches of the tree using
the left filter ("f2[4]") to keep only the variable effectivily defined
by the left expr (exercise for the reader: try to do the same with a flat data
type ; it's just a nigthmare because of slices).
In other words:
- when we find a left leave, we generate all the possible names
corresponding to that var, in a data structure (a tree) that reflect
the lustre data structure (w.r.t. array and struct)
- Then, struct or array accesses remove some branches of that tree
*)
(* var_trees are used to represent left var_tree, and val_exp var_tree *)
type 'a var_tree =
A of 'a var_tree list (* should i use an array there? *)
| S of (Lv6Id.t * 'a var_tree) list (* A Map.t ? *)
| L of 'a
(* Quite similar to L2lCheckOutputs.var_def_state, which is logic. *)
let rec (flatten_var_tree : 'a var_tree -> 'a list) =
function
| A array -> List.flatten (List.map flatten_var_tree array)
| S fl -> List.flatten (List.map (fun (id,vt) -> flatten_var_tree vt) fl)
| L str -> [str]
let rec (gen_var_trees :
(string -> Lic.type_ -> 'a) -> string -> Lic.type_ -> 'a var_tree) =
fun make_leave prefix teff ->
let loop = gen_var_trees make_leave in
match teff with
| TypeVar Any | TypeVar AnyNum -> raise Polymorphic
| Bool_type_eff | Int_type_eff | Real_type_eff
| Enum_type_eff(_) | External_type_eff(_)
->
L (make_leave prefix teff)
| Abstract_type_eff(_,teff) -> loop prefix teff
| Array_type_eff(teff_elt,i) ->
let rec unfold acc cpt =
if cpt < 0 then acc else
let prefix = prefix ^ "_" ^ (soi cpt) in
let vt = loop prefix teff_elt in
unfold (vt::acc) (cpt-1)
in
A (unfold [] (i-1))
| Struct_type_eff(_, fl) ->
S (List.map
(fun (fn, (steff, _const_opt)) ->
let prefix = prefix^"_"^(Lv6Id.to_string fn) in
(fn, loop prefix steff )
)
fl)
let (expand_left : local_ctx -> left -> left list) =
fun lctx left ->
let rec (var_trees_of_left : left -> left var_tree) =
fun left ->
match left with
| LeftVarLic (vi,lxm) ->
let make_left lctx lxm vi prefix teff =
LeftVarLic (clone_var lctx vi prefix teff, lxm)
in
gen_var_trees (make_left lctx lxm vi) "" vi.var_type_eff
| LeftFieldLic (l,id,t) ->
(match var_trees_of_left l with
| S fl -> List.assoc id fl
| A _ | L _ -> assert false
)
| LeftArrayLic (l,i,t) ->
(match var_trees_of_left l with
| A array -> List.nth array i
| S _ | L _ -> assert false
)
| LeftSliceLic (l,si,t) ->
(match var_trees_of_left l with
| A array ->
let index_list = index_list_of_slice_info si in
let l = List.map (fun i -> List.nth array i) index_list in
A l
| S _ | L _ -> assert false
)
in
let vt = try var_trees_of_left left
with
| Polymorphic -> assert false
| Not_found -> assert false
| Failure _ -> assert false
(* should not occur: just a defense against nth and assoc *)
in
flatten_var_tree vt
let rec unfold i x = if i <= 0 then [] else x::(unfold (i-1) x)
let rec (expand_array_types : Lic.type_ list -> Lic.type_ list) =
fun tl ->
(* arrays are transformed into tuples *)
List.flatten (List.map aux tl)
and
(aux :Lic.type_ -> Lic.type_ list) = function
| Array_type_eff(st,i) -> unfold i st
| t -> [t]
(* arrays within abstract and struct won't be translated.
XXX should i raise an error saying that -esa is not
compatible with structure of arrays (instead of silently
returns arrays) ? To handle them, i would need to modify
Lic.type_ and to replace 'type_' by 'type_ list' in all
the recursive cases. It would be quite a lot of work and
-esa is not a useful option anymore... *)
(********************************************************************************)
(** build a new loc that will alias ve, and add its definition in the
set of equations (cf acc) *)
let rec (make_new_loc : local_ctx -> Lxm.t -> acc -> Lic.val_exp
-> acc * var_info) =
fun lctx lxm acc ve ->
let teff = List.hd ve.ve_typ in
let ceff = List.hd ve.ve_clk in
let nv = new_var "v" lctx teff ceff in
let neq = [LeftVarLic(nv,lxm)], ve in
let neq = flagit neq lxm in
let nvl, (asserts,eqs,locs) = expand_var_info lctx ([],acc) nv in
let acc = (asserts,eqs, List.rev_append nvl locs) in
expand_eq lctx acc neq, nv
and (var_trees_of_val_exp :
local_ctx -> acc -> Lic.val_exp -> acc * Lic.val_exp var_tree) =
fun lctx acc ve ->
let make_val_exp lxm vi prefix teff =
let prefix = (Lv6Id.to_string vi.var_name_eff) ^ prefix in
let id = prefix in
{
ve_core = CallByPosLic({src=lxm;it=(VAR_REF id)}, []);
ve_typ = [teff] ;
ve_clk = [snd vi.var_clock_eff];
ve_src = lxm
}
in
let loop = var_trees_of_val_exp lctx acc in
match ve.ve_core with
| Merge(ce,cl) -> assert false (* todo *)
| CallByPosLic (by_pos_op, vel) -> (
let lxm = by_pos_op.src in
let by_pos_op = by_pos_op.it in
match by_pos_op with
| STRUCT_ACCESS (id) -> (
let ve = try List.hd vel with _ -> assert false in
match loop ve with
| acc, S fl -> acc, List.assoc id fl
| _, (A _ | L _) -> assert false
)
| ARRAY_ACCES (i) -> (
let ve = try List.hd vel with _ -> assert false in
match loop ve with
| acc, A array -> acc, List.nth array i
| _, (S _ | L _) -> assert false
)
| ARRAY_SLICE (si) -> (
let ve = try List.hd vel with _ -> assert false in
match loop ve with
| acc, A array ->
let index_list = index_list_of_slice_info si in
let l = List.map (fun i -> List.nth array i) index_list in
acc, A l
| _, (S _ | L _) -> assert false
)
| VAR_REF id -> (
match LicPrg.find_var id lctx.node with
| Some vi ->
(acc, gen_var_trees (make_val_exp lxm vi) "" vi.var_type_eff)
| None ->
let msg =
"\n*** during Array expansion: '"^
(id)^
"': Unknown variable.\n"^
"*** Current variables are: "^
(List.fold_left
(fun acc v -> acc^(Printf.sprintf "\n\t%s"
(Lic.string_of_var_info v)))
""
(match lctx.node.Lic.loclist_eff with None -> [] | Some v -> v))
in
raise (Lv6errors.Compile_error(lxm, msg))
)
| CONST const -> do_const acc lctx lxm const
| CONST_REF idl -> (
try
let const =
match LicPrg.find_const lctx.prg idl with
| Some c -> c
| None -> assert false
in
do_const acc lctx lxm const
with _ ->
let msg =
"\n*** during Array expansion: '"^ (Lv6Id.string_of_long false idl)^
"': Unknown constant.\n*** Current constants are: "^
(LicPrg.fold_consts
(fun k c acc ->
acc^(Printf.sprintf "\n\t%s" (Lic.string_of_const c)))
lctx.prg
"")
in
raise (Lv6errors.Compile_error(lxm, msg))
)
| HAT(_) | CONCAT | ARRAY
| PREDEF_CALL _ | CALL _
| PRE | ARROW | FBY | CURRENT _ | WHEN _ | TUPLE -> (
(* Create a new loc var to alias such expressions *)
let acc, nloc = make_new_loc lctx lxm acc ve in
acc, gen_var_trees (make_val_exp lxm nloc) "" nloc.var_type_eff
)
)
| CallByNameLic(by_name_op, fl) ->
let lxm = by_name_op.src in
let acc, nloc = make_new_loc lctx lxm acc ve in
acc, gen_var_trees (make_val_exp lxm nloc) "" nloc.var_type_eff
and do_const acc lctx lxm const =
let _s, ve_const =
UnifyClock.const_to_val_eff lxm true UnifyClock.empty_subst const
in
let ve_const,acc =
match ve_const.ve_core with
| CallByPosLic ({it=CONST_REF _},_) ->
(* in order to avoid a potential infinite loop *)
(ve_const, acc)
| _ -> expand_val_exp lctx acc ve_const
in
(acc, L (ve_const))
and (break_tuple : Lxm.t -> left list -> val_exp -> Lic.eq_info srcflagged list) =
(* break
x1, x2 = ve1, ve2;
into
x1 = ve1;
x2 = ve2;
Note that this work only if the node expansion has already been
done! (otherwise, we would not have the same number of items in the
left and in the rigth part) *)
fun lxm left_list ve ->
let rec aux ve = (* flatten val exp*)
match ve.ve_core with
| CallByPosLic ({it= TUPLE}, vel)
| CallByPosLic ({it= CONCAT}, vel)
| CallByPosLic ({it= ARRAY}, vel) -> List.flatten (List.map aux vel)
| CallByPosLic ({src=lxm;it= CONST (Array_const_eff(cl,t))}, []) ->
List.map (fun c ->
{ ve_core = CallByPosLic ({src=lxm;it= CONST c}, []);
ve_typ = [t];
ve_clk = [List.hd ve.ve_clk];
ve_src = ve.ve_src
}) cl
| CallByPosLic ({src=lxm;it= HAT(i)}, vel) ->
let ve1 = List.hd vel in
let ve1l = aux ve1 in
List.map
(fun ve1 -> { ve1 with ve_core = CallByPosLic ({src=lxm;it= HAT(i)}, [ve1])})
ve1l
| CallByPosLic (unop, [ve1]) ->
let ve1l = aux ve1 in
List.map
(fun ve1 -> { ve1 with ve_core = CallByPosLic (unop, [ve1])} )
ve1l
| CallByPosLic ({ it=CURRENT c ; src=lxm}, [clk;ve]) -> (
let vel = aux ve in
List.map
(fun ve -> { ve with ve_core = CallByPosLic
({it=CURRENT c;src=lxm}, [clk;ve])})
vel
)
| CallByPosLic (binop, [ve1;ve2]) ->
let ve1l, ve2l = aux ve1, aux ve2 in
if (List.length ve1l <> List.length ve2l) then
[ve]
else
List.map2
(fun ve1 ve2 -> { ve with ve_core = CallByPosLic (binop, [ve1;ve2])})
ve1l
ve2l
| CallByPosLic ({it= PREDEF_CALL(
{src=if_lxm ; it = ("Lustre","if"),[]}); src=lxm}, [cond; ve1; ve2]) -> (
let ve1l = aux ve1 in
let ve2l = aux ve2 in
let l1,l2= List.length ve1l, List.length ve2l in
if (l1 <> l2) then
let vel2str vel =
(String.concat ", " (List.map (LicDump.string_of_val_exp_eff false) vel))
in
let msg = Printf.sprintf
"error: expression \n %s\n cannot be broken \n %s (%d)
should have the same arity as\n%s(%d)"
(LicDump.string_of_val_exp_eff false ve)
(vel2str ve1l) l1 (vel2str ve2l) l2
in
raise (Lv6errors.Compile_error(lxm, msg))
else
List.map2
(fun ve1 ve2 ->
{ ve with ve_core =
CallByPosLic ({it= PREDEF_CALL({src=if_lxm ;
it = ("Lustre","if"),[]}); src=lxm},
[cond;ve1;ve2])}
)
ve1l
ve2l
)
| _ -> [ve]
in
let lll = List.length left_list in
if lll = 1 then (* nothing to break *)
[{ src = lxm ; it = (left_list, ve) }]
else
let vel = aux ve in
if (List.length vel <> lll) then
(* migth occur for generic nodes, that needs to be compiled,
but that will not be dumped. *)
[{ src = lxm ; it = (left_list, ve) }]
else
List.map2
(fun l ve ->
let clk = [snd (Lic.var_info_of_left l).var_clock_eff] in
{ src = lxm ;
it = ([l], { ve with ve_typ = [Lic.type_of_left l] ; ve_clk = clk}) }
)
left_list
vel
and (expand_eq :
local_ctx -> acc -> Lic.eq_info srcflagged -> acc) =
fun lctx acc eqf ->
let { src = lxm_eq ; it = (left_list, ve) } = eqf in
let left_list = List.flatten (List.map (expand_left lctx) left_list) in
let ve,acc = expand_val_exp lctx acc ve in
let eq_list = break_tuple lxm_eq left_list ve in
let (asserts, eqs, locs) = acc in
(asserts, eq_list@eqs, locs)
and expand_val_exp_list lctx acc vel =
List.fold_left
(fun (vel,acc) ve ->
let ve,acc = expand_val_exp lctx acc ve in
ve::vel, acc
)
([],acc) (List.rev vel)
and (build_and_eq: Lic.node_key srcflagged -> val_exp list -> val_exp list -> val_exp) =
fun op vel1 vel2 ->
(* transform "[(x1;x2] = [y1;y2]" into "x1=y1 and x2=y2" *)
assert (op.it = (("Lustre","eq"),[]) || op.it = (("Lustre","neq"),[]));
let and_op = {src = op.src; it=(("Lustre","and"),[]) } in
let make_eq ve1 ve2 =
let lxm = op.src in
{ve_core = CallByPosLic({src=lxm;it=PREDEF_CALL(op)},[ve1;ve2]);
ve_typ = [Bool_type_eff];
ve_clk = ve1.ve_clk;
ve_src = lxm}
in
let make_and acc ve1 ve2 =
let eq = make_eq ve1 ve2 in
let lxm = op.src in
{ve_core = CallByPosLic({src=lxm;it=PREDEF_CALL(and_op)},[acc;eq]);
ve_typ = [Bool_type_eff];
ve_clk = ve1.ve_clk;
ve_src = lxm}
in
match vel1,vel2 with
| ve1::vel1, ve2::vel2 -> List.fold_left2 make_and (make_eq ve1 ve2) vel1 vel2
| _,_ -> assert false (* sno *)
and (expand_val_exp: local_ctx -> acc -> val_exp -> val_exp * acc) =
fun lctx acc ve ->
match ve.ve_core with
| Merge(ce,cl) ->
let left,vel = List.split cl in
let vel,acc = expand_val_exp_list lctx acc vel in
let cl = List.combine left vel in
let newve = { ve with ve_core = Merge(ce,cl) } in
newve, acc
| CallByPosLic (by_pos_op, vel) ->
let lxm = by_pos_op.src in
let by_pos_op = by_pos_op.it in
let by_pos_op, acc, vel =
match by_pos_op with
| HAT(i) -> (
let ve, acc = expand_val_exp lctx acc (List.hd vel) in
let rec unfold (cpt, ve_acc) =
if cpt = 0 then ve_acc else (unfold (cpt-1, ve::ve_acc))
in
let ve = unfold (i,[]) in
TUPLE, acc, ve
)
| PREDEF_CALL ({ src = lxm; it = (("Lustre",("eq"|"neq")),[]) } as op) -> (
let vel,acc = expand_val_exp_list lctx acc vel in
match vel with
| [{ve_core = CallByPosLic ({it = TUPLE}, ve1::ve12::vel1) };
{ve_core = CallByPosLic ({it = TUPLE}, ve2::ve22::vel2) }
] ->
let and_ve = build_and_eq op (ve1::ve12::vel1) (ve2::ve22::vel2) in
let and_op, and_vel =
match and_ve.ve_core with
| CallByPosLic(op,vel) -> op.it, vel
| _ -> assert false (* sno *)
in
and_op, acc, and_vel
| [ve1; ve2] -> by_pos_op, acc, vel
| _ -> assert false (* sno *)
)
| CONCAT | PREDEF_CALL _ | CALL _
| PRE | ARROW | FBY | CURRENT _ | WHEN _ | TUPLE | CONST _
->
let vel,acc = expand_val_exp_list lctx acc vel in
by_pos_op, acc, vel
| ARRAY ->
let vel,acc = expand_val_exp_list lctx acc vel in
TUPLE, acc,vel
| STRUCT_ACCESS (_)
| ARRAY_ACCES (_)
| ARRAY_SLICE (_)
| VAR_REF _
| CONST_REF _ ->
let acc, vt = try var_trees_of_val_exp lctx acc ve
with (Not_found | Failure _) ->
assert false (* SNO: a defense against nth and assoc *)
in
TUPLE, acc, flatten_var_tree vt
in
let newve = CallByPosLic(Lxm.flagit by_pos_op lxm, vel) in
let new_typ = expand_array_types ve.ve_typ in
let newve = { ve with
ve_core = newve ;
ve_typ = new_typ;
ve_clk = List.map (fun _ -> List.hd ve.ve_clk) new_typ
}
in
(* if newve.core <> ve.core then ( *)
(* EvalClock.copy newve ve *)
(* ); *)
newve, acc
| CallByNameLic(by_name_op, fl_val) ->
(* we want to print fields in the order of the type.
Moreover, we have to deal with default value.
*)
let teff = ve.ve_typ in
match teff with
| [Struct_type_eff(_,fl)] ->
let lxm = by_name_op.src in
let vel,acc =
List.fold_left
(fun (vel,acc) (id,(_,const_opt)) ->
try
let _,ve = List.find (fun (id2,_) -> id2.it = id) fl_val in
let ve,acc = expand_val_exp lctx acc ve in
ve::vel, acc
with Not_found ->
match const_opt with
| None -> assert false
(* ougth to have been checked before *)
| Some const ->
let s, ve_const = (* XXX *)
UnifyClock.const_to_val_eff lxm true
UnifyClock.empty_subst const
in
let ve_const,acc=
expand_val_exp lctx acc ve_const
in
ve_const::vel,acc
)
([],acc)
fl
in
let newve = { ve with
ve_core= CallByPosLic({ src=lxm ; it=TUPLE }, (List.rev vel))
}
in
(* if newve.core <> ve.core then ( *)
(* EvalClock.copy newve ve *)
(* ); *)
newve, acc
| _ -> assert false
and (expand_val_exp_flag: local_ctx -> acc ->
val_exp srcflagged -> val_exp srcflagged * acc) =
fun lctx acc { src = lxm ; it = ve } ->
let ve,acc = expand_val_exp lctx acc ve in
{ src = lxm ; it = ve }, acc
and (expand_assert: local_ctx -> acc -> val_exp srcflagged -> acc) =
fun lctx acc ve ->
let (ve, (asserts, eqs, locs)) = expand_val_exp_flag lctx acc ve in
(ve::asserts, eqs, locs)
and (expand_var_info: local_ctx -> var_info list * acc ->
var_info -> var_info list * acc) =
fun lctx (vil, acc) vi ->
let rec aux teff =
match teff with
| Abstract_type_eff (_, teff) -> aux teff
| TypeVar Any | TypeVar AnyNum -> raise Polymorphic
| Struct_type_eff (name, fl) ->
List.fold_left
(fun (vil,acc) (fn, (ft,_const_opt)) ->
let new_var = clone_var lctx vi ("_" ^ Lv6Id.to_string fn) ft in
let new_vil, new_acc = expand_var_info lctx (vil,acc) new_var in
new_vil, new_acc
)
(vil, acc)
fl
| Array_type_eff(at,size) -> (
let rec local_aux i (vil,acc) =
if i=size then (vil,acc) else
let new_var = clone_var lctx vi ("_" ^ soi i) at in
let new_vil, new_acc = expand_var_info lctx (vil,acc) new_var in
if new_vil = new_var::vil then (
(* [new_var] type is not made of structure *)
assert (is_a_basic_type at);
(* XXX
Hashtbl.add nenv.lenv_vars new_var.var_name_eff new_var *)
);
local_aux (i+1) (new_vil, new_acc)
in
local_aux 0 (vil,acc)
)
| External_type_eff(_)
| Enum_type_eff (_, _)
| Real_type_eff
| Int_type_eff
| Bool_type_eff ->
vi::vil, acc
in
let vil,acc = aux vi.var_type_eff in
vil,acc
let rec (node : local_ctx -> Lic.node_exp -> Lic.node_exp) =
fun lctx n ->
try
let inlist = n.inlist_eff in
let outlist = n.outlist_eff in
let acc = ([],[],[]) in
let inlist, acc = List.fold_left (expand_var_info lctx) ([],acc) inlist in
let outlist, acc = List.fold_left (expand_var_info lctx) ([],acc) outlist in
let n =
match n.def_eff with
| ExternLic
| MetaOpLic
| AbstractLic None -> n
| AbstractLic (Some pn) ->
{ n with def_eff = AbstractLic (Some (node lctx pn)) }
| BodyLic b ->
let loclist = match n.loclist_eff with None -> [] | Some l -> l in
let loclist, acc = List.fold_left (expand_var_info lctx) ([],acc) loclist in
let acc = List.fold_left (expand_eq lctx) acc (List.rev b.eqs_eff) in
let acc = List.fold_left (expand_assert lctx) acc b.asserts_eff in
let (asserts, neqs, nv) = acc in
let nb = {
eqs_eff = neqs ;
asserts_eff = asserts
}
in
{ n with
loclist_eff = Some (List.rev_append loclist nv);
def_eff = BodyLic nb
}
in
{ n with
inlist_eff = List.rev inlist;
outlist_eff = List.rev outlist;
}
with Polymorphic -> n
(* exported *)
let rec (doit : LicPrg.t -> LicPrg.t) =
fun inprg ->
let outprg = LicPrg.empty in
(** types and constants do not change *)
let outprg = LicPrg.fold_types LicPrg.add_type inprg outprg in
let outprg = LicPrg.fold_consts LicPrg.add_const inprg outprg in
(** transform nodes *)
let rec (do_node : Lic.node_key -> Lic.node_exp -> LicPrg.t -> LicPrg.t) =
fun nk ne outprg ->
Lv6Verbose.exe ~flag:dbg (fun() ->
Printf.printf "#DBG: L2lExpandArrays expands '%s'\n"
(Lic.string_of_node_key nk));
let lctx = {
node = ne;
prg = inprg;
}
in
let ne = node lctx ne in
LicPrg.add_node nk ne outprg
in
let outprg = LicPrg.fold_nodes do_node inprg outprg in
outprg