Skip to content
Snippets Groups Projects
  • erwan's avatar
    b13c9efb
    Do dep-loop checking before removing alias, otherwise some variables disappear ! · b13c9efb
    erwan authored
    And it is now done only by Lic2soc (L2lCheckLoops is not used anymore)
    
    Also, during this change, I was bitten again by the « "__" versus "::" in ident
    names » problem again.
    
    The core of this problem is due to the fact that I use LicDump both for
    (1) dealing with internal ident names
    (2) generating lustre files
    
    Because of (2), ident names may depend on the ec or the v4 option. hence, internal
    names were sometimes translated with "__" instead of "::".
    
    To (try to) fix that, I've added a boolean flag to all "to_string" functions that
    states whether the function is used for internal purposes, or for generating lustre
    files.
    
    It was quite a boring change, that triggered other problems, that I've fixed
    in this (too long) commit :
     - -esa should force -en, otherwise bad things happen (-esa is used for -ec anyway)
     - in -esa mode, #/nor inputs tuples of bool, not arrays
     - fix the list of predi op that returns a type different that its arg (SocPredef)
    b13c9efb
    History
    Do dep-loop checking before removing alias, otherwise some variables disappear !
    erwan authored
    And it is now done only by Lic2soc (L2lCheckLoops is not used anymore)
    
    Also, during this change, I was bitten again by the « "__" versus "::" in ident
    names » problem again.
    
    The core of this problem is due to the fact that I use LicDump both for
    (1) dealing with internal ident names
    (2) generating lustre files
    
    Because of (2), ident names may depend on the ec or the v4 option. hence, internal
    names were sometimes translated with "__" instead of "::".
    
    To (try to) fix that, I've added a boolean flag to all "to_string" functions that
    states whether the function is used for internal purposes, or for generating lustre
    files.
    
    It was quite a boring change, that triggered other problems, that I've fixed
    in this (too long) commit :
     - -esa should force -en, otherwise bad things happen (-esa is used for -ec anyway)
     - in -esa mode, #/nor inputs tuples of bool, not arrays
     - fix the list of predi op that returns a type different that its arg (SocPredef)
l2lExpandArrays.ml 25.86 KiB
(** Time-stamp: <modified the 21/07/2017 (at 15:18) by Erwan Jahier> *)

(* Replace structures and arrays by as many variables as necessary.
   Since structures can be nested, it migth be a lot of new variables...
   
   For instance, a variable
   v : Toto { f1 : int ; f2 : int ^ 3 ; f3 : t^2 }

   where
   type t = T { x:int ; y:int } 

   will be expanded into 

   _v_f1 : int;
   _v_f2_0 : int;
   _v_f2_1 : int;
   _v_f2_2 : int;
   _v_f3_1_x : int;
   _v_f3_1_y : int;
   _v_f3_2_x : int;
   _v_f3_3_y : int;

   nb : if 't' was a type that does not contain any struct type, we would just 
   have 3 variables.
  *)

open Lxm
open Lic
open AstPredef
    
type acc =     
    Lic.val_exp srcflagged list      (* assertions *)
    * (Lic.eq_info srcflagged) list  (* equations *)
    * Lic.var_info list              (* new local vars *)

let dbg =  (Lv6Verbose.get_flag "esa")

(********************************************************************************)
(* pack useful info (while expanding nodes) into a single struct *)
type local_ctx = { 
  node : Lic.node_exp;
  prg : LicPrg.t;
}
        
(* stuff to create fresh var names. 
   XXX code dupl. with Split.new_var 
*)
let new_var str lctx type_eff clock_eff = 
  let id = Lv6Id.of_string (FreshName.local_var (str)) in 
  let var =
    { 
      var_name_eff   = id;
      var_nature_eff = AstCore.VarLocal;
      var_number_eff = -1; (* this field is used only for i/o. 
                              Should i rather put something sensible there ? *)
      var_type_eff   = type_eff;
      var_clock_eff  = id, clock_eff;
    }
  in
  var

(* for local use: polymorphic predef operators should not transformed; hence,
   whenever we reach a Any/AnyNum type, we raise that exception and skip the 
   transformation of the current node.
*)
exception Polymorphic


(* returns a new var based on [vi] with type [type_eff]. *)
let clone_var node_env vi str type_eff = 

  let str = (Lv6Id.to_string vi.var_name_eff) ^ str in
  let id = Lv6Id.of_string (str) in
  let clk_id = Lv6Id.of_string str in
  let type_eff = match type_eff with 
      TypeVar Any | TypeVar AnyNum -> raise Polymorphic
    | _ -> type_eff
  in
  let var =
    { 
      var_name_eff   = id;
      var_nature_eff = vi.var_nature_eff;
      var_number_eff = vi.var_number_eff; (* this field is useless: to be removed. *)
      var_type_eff   = type_eff;
      var_clock_eff  = clk_id, snd vi.var_clock_eff;
    }
  in
  (*     Hashtbl.add node_env.lenv_vars id var; *)
  var


let rec (is_a_basic_type : Lic.type_ -> bool) =
  function
    | Array_type_eff _ | Struct_type_eff _ -> false
    | TypeVar Any | TypeVar AnyNum -> raise Polymorphic
    | Abstract_type_eff(_, teff) -> is_a_basic_type teff 
    | External_type_eff(_) 
    | Enum_type_eff (_, _) 
    | Real_type_eff 
    | Int_type_eff 
    | Bool_type_eff  -> true

let soi = string_of_int


let (index_list_of_slice_info : Lic.slice_info -> int list) =
  fun si -> 
    let rec aux acc cpt =
      if ((si.se_step > 0 && cpt > si.se_last) || (si.se_step < 0 && cpt < si.se_last))
      then acc else aux (cpt::acc) (cpt + si.se_step)
    in
      List.rev (aux [] si.se_first)


(** left expr expansion.

  The objective is to generate the set of vars defined by a left expr.

  First step: var_trees_of_left recursively traverse the left structure 
  to compute the left expr variable. E.g., in the left expr "X.f2[4]" we 
  want to find "X" (and its type). 
  
  Second step: Using the type of X, we compute the set of variables defined 
  by "X" (gen_var_trees). The set is actually structured into a tree-like
  data struture var_tree (to be able to deal with slices).
  
  Third step (var_trees_of_left again): cut off some branches of the tree using
  the left filter ("f2[4]") to keep only the  variable effectivily defined 
  by the left expr (exercise for the reader: try to do the same with a flat data 
  type ; it's just a nigthmare because of slices).
  
  In other words: 
  - when we find a left leave, we generate all the possible names
  corresponding to that var, in a data structure (a tree) that reflect
  the lustre data structure (w.r.t. array and struct)
  - Then, struct or array accesses remove some branches of that tree
  
*)
(* var_trees are used to represent  left var_tree, and val_exp var_tree *)
type 'a var_tree = 
    A of 'a var_tree list  (* should i use an array there? *)
  | S of (Lv6Id.t * 'a var_tree) list (* A Map.t ? *)
  | L of 'a
(* Quite similar to L2lCheckOutputs.var_def_state, which is logic. *)

let rec (flatten_var_tree : 'a var_tree -> 'a list) =
  function       
    | A array -> List.flatten (List.map flatten_var_tree array)
    | S fl -> List.flatten (List.map (fun (id,vt) -> flatten_var_tree vt) fl)
    | L str -> [str] 

let rec (gen_var_trees :
	        (string -> Lic.type_ -> 'a) -> string -> Lic.type_ -> 'a var_tree) =
  fun make_leave prefix teff ->
    let loop = gen_var_trees make_leave in
    match teff with
      | TypeVar Any | TypeVar AnyNum -> raise Polymorphic
      | Bool_type_eff | Int_type_eff | Real_type_eff 
      | Enum_type_eff(_) | External_type_eff(_)
        -> 
        L (make_leave prefix teff)

      | Abstract_type_eff(_,teff) ->  loop prefix teff

      | Array_type_eff(teff_elt,i) ->
        let rec unfold acc cpt =
	       if cpt < 0 then acc else
            let prefix = prefix ^ "_" ^ (soi cpt) in
            let vt = loop prefix teff_elt in
            unfold (vt::acc) (cpt-1)
        in
	     A (unfold [] (i-1))
	       
      | Struct_type_eff(_, fl) ->
        S (List.map 
             (fun (fn, (steff, _const_opt)) ->
               let prefix = prefix^"_"^(Lv6Id.to_string fn) in
		         (fn, loop prefix steff )
             ) 
             fl)

let (expand_left : local_ctx -> left -> left list) = 
  fun lctx left -> 
    let rec (var_trees_of_left : left -> left var_tree) =
      fun left -> 
        match left with
          | LeftVarLic (vi,lxm)   -> 
	         let make_left lctx lxm vi prefix teff =
		        LeftVarLic (clone_var lctx vi prefix teff, lxm)
	         in
		      gen_var_trees (make_left lctx lxm vi) "" vi.var_type_eff
          | LeftFieldLic (l,id,t) -> 
            (match var_trees_of_left l with
              | S fl -> List.assoc id fl 
              | A _ | L _  -> assert false
            )
          | LeftArrayLic (l,i,t)  ->
            (match var_trees_of_left l with
              | A array -> List.nth array i
              | S _ | L _ -> assert false
            )
          | LeftSliceLic (l,si,t) ->
            (match var_trees_of_left l with
              | A array -> 
                let index_list = index_list_of_slice_info si in
                let l = List.map (fun i -> List.nth array i) index_list in
                A l
              | S _ | L _ -> assert false
            )
    in
    let vt = try var_trees_of_left left 
      with 
        | Polymorphic -> assert false
        | Not_found -> assert false
        | Failure _ ->  assert false
    (* should not occur: just a defense against nth and assoc *)
    in
    flatten_var_tree vt

let rec unfold i x = if i <= 0 then [] else x::(unfold (i-1) x)

let rec (expand_array_types : Lic.type_ list -> Lic.type_ list) =
  fun tl ->
    (* arrays are transformed into tuples *)
    List.flatten (List.map aux tl)
and
    (aux :Lic.type_  -> Lic.type_ list) = function
      | Array_type_eff(st,i) -> unfold i st
      | t -> [t]
        (* arrays within abstract and struct won't be translated.  

           XXX should i raise an error saying that -esa is not
           compatible with structure of arrays (instead of silently
           returns arrays) ?  To handle them, i would need to modify
           Lic.type_ and to replace 'type_' by 'type_ list' in all
           the recursive cases. It would be quite a lot of work and
           -esa is not a useful option anymore...  *)

(********************************************************************************)
(** build a new loc that will alias ve, and add its definition in the 
    set of equations (cf acc) *)
let rec (make_new_loc : local_ctx -> Lxm.t -> acc -> Lic.val_exp 
         -> acc * var_info) =
  fun lctx lxm acc ve -> 
    let teff = List.hd ve.ve_typ in
    let ceff = List.hd ve.ve_clk in
    let nv = new_var "v" lctx teff ceff in
    let neq = [LeftVarLic(nv,lxm)], ve in
    let neq = flagit neq lxm in
    let nvl, (asserts,eqs,locs) = expand_var_info lctx ([],acc) nv in
    let acc = (asserts,eqs, List.rev_append nvl locs) in
    expand_eq lctx acc neq, nv

and (var_trees_of_val_exp : 
       local_ctx -> acc -> Lic.val_exp -> acc * Lic.val_exp var_tree) =
  fun lctx acc ve -> 
    let make_val_exp lxm vi prefix teff =
      let prefix = (Lv6Id.to_string vi.var_name_eff) ^ prefix in
      let id = prefix in 
	   {
        ve_core = CallByPosLic({src=lxm;it=(VAR_REF id)}, []);
        ve_typ  = [teff] ;
        ve_clk = [snd vi.var_clock_eff];
        ve_src = lxm
      }
    in
    let loop = var_trees_of_val_exp lctx acc in
    match ve.ve_core with
      | Merge(ce,cl) -> assert false (* todo *)
      | CallByPosLic (by_pos_op, vel) -> (
        let lxm = by_pos_op.src in
        let by_pos_op = by_pos_op.it in
        match by_pos_op with
          | STRUCT_ACCESS (id) -> (
            let ve = try List.hd vel with _ -> assert false in
            match loop ve with
              | acc, S fl -> acc, List.assoc id fl 
              | _, (A _ | L _)  -> assert false
		    )
          | ARRAY_ACCES (i) -> (
            let ve = try List.hd vel with _ -> assert false in
            match loop ve with
              | acc, A array -> acc, List.nth array i
              | _, (S _ | L _)  -> assert false
		          
          )
          | ARRAY_SLICE (si) -> (
            let ve = try List.hd vel with _ -> assert false in
            match loop ve with
              | acc, A array -> 
                let index_list = index_list_of_slice_info si in
                let l = List.map (fun i -> List.nth array i) index_list in
                acc, A l			         
              | _, (S _ | L _)  -> assert false
		    )
          | VAR_REF id -> (
            match LicPrg.find_var id lctx.node with
              | Some vi -> 
                (acc, gen_var_trees (make_val_exp lxm vi) "" vi.var_type_eff)
              | None -> 
                let msg = 
                  "\n*** during Array expansion: '"^
                    (id)^
			           "': Unknown variable.\n"^
                    "*** Current variables are: "^
			           (List.fold_left
                       (fun acc v -> acc^(Printf.sprintf "\n\t%s"
                                                         (Lic.string_of_var_info v)))
                       ""
                       (match lctx.node.Lic.loclist_eff with None  -> [] | Some v -> v))
                in
			       raise (Lv6errors.Compile_error(lxm, msg))
          )
          | CONST const -> do_const acc lctx lxm const
          | CONST_REF idl -> (
            try
              let const = 
                match LicPrg.find_const lctx.prg idl with 
                  | Some c -> c 
                  | None -> assert false 
              in 
              do_const acc lctx lxm const
            with _ ->  
              let msg = 
                "\n*** during Array expansion: '"^ (Lv6Id.string_of_long false idl)^
                  "': Unknown constant.\n*** Current constants are: "^
		            (LicPrg.fold_consts
                     (fun k c acc ->
                      acc^(Printf.sprintf "\n\t%s" (Lic.string_of_const c)))
                     lctx.prg
                     "")
              in
              raise (Lv6errors.Compile_error(lxm, msg))
          ) 
          | HAT(_) | CONCAT | ARRAY
          | PREDEF_CALL _ | CALL _ 
          | PRE | ARROW | FBY | CURRENT _ | WHEN _ | TUPLE -> (
            (* Create a new loc var to alias such expressions *)
            let acc, nloc = make_new_loc lctx lxm acc ve in
            acc, gen_var_trees (make_val_exp lxm nloc) "" nloc.var_type_eff
          )
      )
      | CallByNameLic(by_name_op, fl) ->
	     let lxm = by_name_op.src in
        let acc, nloc = make_new_loc lctx lxm acc ve in
        acc, gen_var_trees (make_val_exp lxm nloc) "" nloc.var_type_eff
	       
and do_const acc lctx lxm const =
  let _s, ve_const = 
    UnifyClock.const_to_val_eff lxm true UnifyClock.empty_subst const
  in
  let ve_const,acc =
    match ve_const.ve_core with
      | CallByPosLic ({it=CONST_REF _},_) ->  
                (* in order to avoid a potential infinite loop *)
        (ve_const, acc)
          
      | _ -> expand_val_exp lctx acc ve_const 
  in
  (acc, L (ve_const))

and (break_tuple : Lxm.t -> left list -> val_exp -> Lic.eq_info srcflagged list) =
(* break
        x1, x2 = ve1, ve2;
   into
        x1 = ve1;
        x2 = ve2;

 Note that this work only if the node expansion has already been
 done!  (otherwise, we would not have the same number of items in the
 left and in the rigth part) *)
  fun lxm left_list ve ->
    let rec aux ve = (* flatten val exp*)
	   match ve.ve_core with 
	     | CallByPosLic ({it= TUPLE}, vel)
	     | CallByPosLic ({it= CONCAT}, vel)
	     | CallByPosLic ({it= ARRAY}, vel) -> List.flatten (List.map aux vel)
        | CallByPosLic ({src=lxm;it= CONST (Array_const_eff(cl,t))}, []) ->
           List.map (fun c ->
                     { ve_core = CallByPosLic ({src=lxm;it= CONST c}, []);
                       ve_typ = [t];
                       ve_clk = [List.hd ve.ve_clk];
                       ve_src = ve.ve_src
                     }) cl
	     | CallByPosLic ({src=lxm;it= HAT(i)}, vel) ->
          let ve1 = List.hd vel in
	       let ve1l = aux ve1 in
		    List.map
		      (fun ve1 -> { ve1 with ve_core = CallByPosLic ({src=lxm;it= HAT(i)}, [ve1])}) 
		      ve1l 
	     | CallByPosLic (unop, [ve1]) ->
	       let ve1l = aux ve1 in
		    List.map
		      (fun ve1 -> { ve1 with ve_core = CallByPosLic (unop, [ve1])} ) 
		      ve1l 
	     | CallByPosLic ({ it=CURRENT c ; src=lxm}, [clk;ve]) -> (
	       let vel = aux ve in
		    List.map
		      (fun ve -> { ve with ve_core = CallByPosLic
                                             ({it=CURRENT c;src=lxm}, [clk;ve])}) 
		      vel 
        )
	     | CallByPosLic (binop, [ve1;ve2]) ->
	       let ve1l, ve2l = aux ve1, aux ve2 in
		    if (List.length ve1l <> List.length ve2l) then
            [ve] 
		    else
		      List.map2 
		        (fun ve1 ve2 -> { ve with ve_core = CallByPosLic (binop, [ve1;ve2])})
		        ve1l 
		        ve2l		          
	     | CallByPosLic ({it= PREDEF_CALL(
          {src=if_lxm ; it = ("Lustre","if"),[]}); src=lxm}, [cond; ve1; ve2]) -> (
	       let ve1l = aux ve1 in
	       let ve2l = aux ve2 in
          let l1,l2= List.length ve1l, List.length ve2l in
		    if (l1 <> l2) then
		      let vel2str vel = 
		        (String.concat ", " (List.map (LicDump.string_of_val_exp_eff false) vel))
		      in
		      let msg = Printf.sprintf 
              "error: expression \n %s\n   cannot be broken \n %s (%d)
  should have the same arity as\n%s(%d)"
              (LicDump.string_of_val_exp_eff false ve)
              (vel2str ve1l) l1  (vel2str ve2l) l2
            in
		      raise (Lv6errors.Compile_error(lxm, msg)) 
		    else
		      List.map2 
		        (fun ve1 ve2 -> 
                { ve with ve_core = 
                    CallByPosLic ({it= PREDEF_CALL({src=if_lxm ; 
                                                    it = ("Lustre","if"),[]}); src=lxm}, 
                                  [cond;ve1;ve2])}
              ) 
		        ve1l 
		        ve2l
        )
	     |  _ -> [ve]
    in
    let lll = List.length left_list in
    if lll = 1 then (* nothing to break *)
	   [{ src = lxm ; it = (left_list, ve) }] 
    else
      let vel = aux ve in
	   if (List.length vel <> lll) then
         (* migth occur for generic nodes, that needs to be compiled,
            but that will not be dumped. *)
	     [{ src = lxm ; it = (left_list, ve) }] 
	   else
	     List.map2
	       (fun l ve -> 
            let clk = [snd (Lic.var_info_of_left l).var_clock_eff] in
	         { src = lxm ; 
              it = ([l], { ve with ve_typ = [Lic.type_of_left l] ; ve_clk = clk}) }
	       )
	       left_list
	       vel

and (expand_eq :
       local_ctx -> acc -> Lic.eq_info srcflagged -> acc) =
  fun lctx acc eqf -> 
    let { src = lxm_eq ; it = (left_list, ve) } = eqf in
    let left_list = List.flatten (List.map (expand_left lctx) left_list) in
    let ve,acc = expand_val_exp lctx acc ve in
    let eq_list = break_tuple lxm_eq left_list ve in    
    let (asserts, eqs, locs) = acc in
    (asserts,  eq_list@eqs, locs)

and expand_val_exp_list lctx acc vel = 
  List.fold_left 
    (fun (vel,acc) ve -> 
      let ve,acc = expand_val_exp lctx acc ve in
      ve::vel, acc
    ) 
    ([],acc) (List.rev vel)

    
and (build_and_eq: Lic.node_key srcflagged -> val_exp list -> val_exp list -> val_exp) =
  fun op vel1 vel2 ->
  (* transform "[(x1;x2] = [y1;y2]" into "x1=y1 and x2=y2" *)
  assert (op.it = (("Lustre","eq"),[]) || op.it = (("Lustre","neq"),[]));
  let and_op = {src = op.src; it=(("Lustre","and"),[]) } in
  let make_eq ve1 ve2 =
    let lxm = op.src in
    {ve_core = CallByPosLic({src=lxm;it=PREDEF_CALL(op)},[ve1;ve2]);
     ve_typ = [Bool_type_eff];
     ve_clk = ve1.ve_clk;
     ve_src = lxm}
  in
  let make_and acc ve1 ve2 =
    let eq = make_eq ve1 ve2 in
    let lxm = op.src in
    {ve_core = CallByPosLic({src=lxm;it=PREDEF_CALL(and_op)},[acc;eq]);
     ve_typ = [Bool_type_eff];
     ve_clk = ve1.ve_clk;
     ve_src = lxm}
  in
  match vel1,vel2 with
  | ve1::vel1, ve2::vel2 -> List.fold_left2 make_and (make_eq ve1 ve2) vel1 vel2
  | _,_ -> assert false (* sno *)
                  
and (expand_val_exp: local_ctx -> acc -> val_exp -> val_exp * acc) =
  fun lctx acc ve ->
    match ve.ve_core with
      | Merge(ce,cl) -> 
        let left,vel = List.split cl in
        let vel,acc = expand_val_exp_list lctx acc vel in
        let cl = List.combine left vel in
        let newve =  { ve with ve_core = Merge(ce,cl) } in
        newve, acc
      | CallByPosLic (by_pos_op, vel) -> 
        let lxm = by_pos_op.src in
        let by_pos_op = by_pos_op.it in
        let by_pos_op, acc, vel = 
	       match by_pos_op with
            | HAT(i) -> (
              let ve, acc = expand_val_exp lctx acc (List.hd vel) in
              let rec unfold (cpt, ve_acc) =
                if cpt = 0 then ve_acc else (unfold (cpt-1, ve::ve_acc))
              in
              let ve = unfold (i,[]) in 
              TUPLE, acc, ve
            )
            | PREDEF_CALL ({ src = lxm; it = (("Lustre",("eq"|"neq")),[]) } as op) -> (
              let vel,acc = expand_val_exp_list lctx acc vel in
              match vel with
              | [{ve_core = CallByPosLic ({it = TUPLE}, ve1::ve12::vel1) };
                 {ve_core = CallByPosLic ({it = TUPLE}, ve2::ve22::vel2) }
                ] ->
                 let and_ve = build_and_eq op (ve1::ve12::vel1) (ve2::ve22::vel2) in
                 let and_op, and_vel =
                   match and_ve.ve_core with
                   | CallByPosLic(op,vel) -> op.it, vel
                   | _ -> assert false (* sno *)
                 in
                 and_op, acc, and_vel 
                
              | [ve1; ve2] -> by_pos_op, acc, vel
              | _  -> assert false (* sno *)
            )
            | CONCAT | PREDEF_CALL _ | CALL _  
            | PRE | ARROW | FBY | CURRENT _ | WHEN _ | TUPLE | CONST _
              -> 
              let vel,acc = expand_val_exp_list lctx acc vel in
              by_pos_op, acc, vel
            | ARRAY -> 
              let vel,acc = expand_val_exp_list lctx acc vel in
              TUPLE, acc,vel
            | STRUCT_ACCESS (_)
            | ARRAY_ACCES (_)
            | ARRAY_SLICE (_) 
            | VAR_REF _ 
            | CONST_REF _ ->
		        let acc, vt = try var_trees_of_val_exp lctx acc ve 
		          with (Not_found | Failure _) -> 
                  assert false (* SNO: a defense against nth and assoc *)
		        in
              TUPLE, acc, flatten_var_tree vt
	     in
	     let newve = CallByPosLic(Lxm.flagit by_pos_op lxm, vel) in
        let new_typ = expand_array_types ve.ve_typ in 
        let newve =  { ve with 
          ve_core = newve ;
          ve_typ = new_typ;
          ve_clk = List.map (fun _ -> List.hd ve.ve_clk) new_typ
        } 
        in
                (* 	    if newve.core <> ve.core then ( *)
                (*               EvalClock.copy newve ve *)
                (*             ); *)
        newve, acc

      | CallByNameLic(by_name_op, fl_val) ->
	             (* we want to print fields in the order of the type.
	                Moreover, we have to deal with default value.
	             *)
	     let teff = ve.ve_typ in 
	     match teff with 
	       | [Struct_type_eff(_,fl)] -> 
		      let lxm = by_name_op.src in
		      let vel,acc = 
		        List.fold_left
		          (fun (vel,acc) (id,(_,const_opt)) ->
			         try
			           let _,ve = List.find (fun (id2,_) -> id2.it = id) fl_val in
			           let ve,acc = expand_val_exp lctx acc ve in
			           ve::vel, acc
			         with Not_found -> 
			           match const_opt with
			             | None -> assert false
                              (* ougth to have been checked before *)
			             | Some const ->
                        let s, ve_const =  (* XXX *)
                          UnifyClock.const_to_val_eff lxm true
                            UnifyClock.empty_subst const
                        in
                        let ve_const,acc=  
                          expand_val_exp lctx acc ve_const 
                        in
				            ve_const::vel,acc
		          )
		          ([],acc)
		          fl 
		      in
		      let newve = { ve with
              ve_core= CallByPosLic({ src=lxm ; it=TUPLE }, (List.rev vel)) 
            }
            in
                    (* 	            if newve.core <> ve.core then ( *)
                    (* 		      EvalClock.copy newve ve *)
                    (*                     ); *)
		      newve, acc
	       | _ -> assert false

and (expand_val_exp_flag: local_ctx -> acc -> 
     val_exp srcflagged -> val_exp srcflagged * acc) =
  fun lctx acc { src = lxm ; it = ve } -> 
    let ve,acc = expand_val_exp lctx acc ve in
    { src = lxm ; it = ve }, acc

and (expand_assert: local_ctx -> acc -> val_exp srcflagged -> acc) =
  fun lctx acc ve -> 
    let (ve, (asserts, eqs, locs)) = expand_val_exp_flag lctx acc ve in
    (ve::asserts, eqs, locs)

and (expand_var_info: local_ctx -> var_info list * acc ->
     var_info -> var_info list * acc) =
  fun lctx (vil, acc) vi -> 
    let rec aux teff =
      match teff with
        | Abstract_type_eff (_, teff) -> aux teff
        | TypeVar Any | TypeVar AnyNum -> raise Polymorphic
        | Struct_type_eff (name, fl) -> 
          List.fold_left
            (fun (vil,acc) (fn, (ft,_const_opt)) ->
              let new_var = clone_var lctx vi ("_" ^ Lv6Id.to_string fn) ft in
              let new_vil, new_acc = expand_var_info lctx (vil,acc) new_var in
              new_vil, new_acc
            )
            (vil, acc)
            fl
        | Array_type_eff(at,size) -> (
          let rec local_aux i (vil,acc) =
            if i=size then  (vil,acc) else
              let new_var = clone_var lctx vi ("_" ^ soi i) at in
              let new_vil, new_acc = expand_var_info lctx (vil,acc) new_var in
              if new_vil = new_var::vil then (
                        (* [new_var] type is not made of structure *)
                assert (is_a_basic_type at);
                      (* XXX
                         Hashtbl.add nenv.lenv_vars new_var.var_name_eff new_var *)
              );
              local_aux (i+1) (new_vil, new_acc)
          in
          local_aux 0 (vil,acc)
        )
        | External_type_eff(_)
        | Enum_type_eff (_, _)
        | Real_type_eff
        | Int_type_eff
        | Bool_type_eff -> 
          vi::vil, acc
    in
    let vil,acc = aux vi.var_type_eff in
    vil,acc

let rec (node : local_ctx -> Lic.node_exp -> Lic.node_exp) =
  fun lctx n -> 
    try
      let inlist = n.inlist_eff in
      let outlist = n.outlist_eff in            
      let acc = ([],[],[]) in
      let inlist, acc = List.fold_left (expand_var_info lctx) ([],acc)  inlist in
      let outlist, acc = List.fold_left (expand_var_info lctx) ([],acc) outlist in
      let n =
        match n.def_eff with
          | ExternLic 
          | MetaOpLic
          | AbstractLic None -> n
          | AbstractLic (Some pn) -> 
            { n with def_eff = AbstractLic (Some (node lctx pn)) }
          | BodyLic b ->
            let loclist = match n.loclist_eff with None -> [] | Some l -> l in
            let loclist, acc = List.fold_left (expand_var_info lctx) ([],acc) loclist in
            let acc = List.fold_left (expand_eq lctx) acc (List.rev b.eqs_eff) in
            let acc = List.fold_left (expand_assert lctx) acc b.asserts_eff in
            let (asserts, neqs, nv) = acc in
            let nb = { 
              eqs_eff = neqs ; 
              asserts_eff = asserts
            } 
            in
            { n with 
              loclist_eff = Some (List.rev_append loclist nv);
              def_eff = BodyLic nb
            }
      in
      { n with 
        inlist_eff  = List.rev inlist;
        outlist_eff = List.rev outlist;
      }
    with Polymorphic -> n

(* exported *)
let rec (doit : LicPrg.t -> LicPrg.t) =
  fun inprg -> 
    let outprg = LicPrg.empty in
  (** types and constants do not change *)
    let outprg = LicPrg.fold_types  LicPrg.add_type  inprg outprg in
    let outprg = LicPrg.fold_consts LicPrg.add_const inprg outprg in
  (** transform nodes *)
    let rec (do_node : Lic.node_key -> Lic.node_exp -> LicPrg.t -> LicPrg.t) = 
      fun nk ne outprg -> 
        Lv6Verbose.exe ~flag:dbg (fun() ->
                                  Printf.printf "#DBG: L2lExpandArrays expands '%s'\n"
            (Lic.string_of_node_key nk));
        let lctx = {
          node = ne;
          prg = inprg;
        }
        in
        let ne = node lctx ne in
        LicPrg.add_node nk ne outprg
    in
    let outprg = LicPrg.fold_nodes do_node inprg outprg in
    outprg