Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
"# <!-- TITLE --> [BHP2] - Regression with a Dense Network (DNN) - Advanced code\n",
" <!-- DESC --> More advanced example of DNN network code - BHPD dataset\n",
" <!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
"\n",
"## Objectives :\n",
" - Predicts **housing prices** from a set of house features. \n",
" - Understanding the principle and the architecture of a regression with a dense neural network with backup and restore of the trained model. \n",
"\n",
"The **[Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html)** consists of price of houses in various places in Boston. \n",
"Alongside with price, the dataset also provide information such as Crime, areas of non-retail business in the town, \n",
"age of people who own the house and many other attributes...\n",
"\n",
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"\n",
" - (Retrieve data)\n",
" - (Preparing the data)\n",
" - (Build a model)\n",
" - Train and save the model\n",
" - Restore saved model\n",
" - Evaluate the model\n",
" - Make some predictions\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 1 - Import and init"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>\n",
"\n",
"div.warn { \n",
" background-color: #fcf2f2;\n",
" border-color: #dFb5b4;\n",
" border-left: 5px solid #dfb5b4;\n",
" padding: 0.5em;\n",
" font-weight: bold;\n",
" font-size: 1.1em;;\n",
" }\n",
"\n",
"\n",
"\n",
"div.nota { \n",
" background-color: #DAFFDE;\n",
" border-left: 5px solid #92CC99;\n",
" padding: 0.5em;\n",
" }\n",
"\n",
"div.todo:before { content:url();\n",
" float:left;\n",
" margin-right:20px;\n",
" margin-top:-20px;\n",
" margin-bottom:20px;\n",
"}\n",
"div.todo{\n",
" font-weight: bold;\n",
" font-size: 1.1em;\n",
" margin-top:40px;\n",
"}\n",
"div.todo ul{\n",
" margin: 0.2em;\n",
"}\n",
"div.todo li{\n",
" margin-left:60px;\n",
" margin-top:0;\n",
" margin-bottom:0;\n",
"}\n",
"\n",
"\n",
"</style>\n",
"\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"FIDLE 2020 - Practical Work Module\n",
"Version : 0.4.3\n",
"Run time : Friday 28 February 2020, 10:23:12\n",
"TensorFlow version : 2.0.0\n",
"Keras version : 2.2.4-tf\n"
]
}
],
"source": [
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import os,sys\n",
"\n",
"from IPython.display import Markdown\n",
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"from importlib import reload\n",
"\n",
"sys.path.append('..')\n",
"import fidle.pwk as ooo\n",
"\n",
"ooo.init()\n",
"os.makedirs('./run/models', mode=0o750, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2 - Retrieve data\n",
"\n",
"### 2.1 - Option 1 : From Keras\n",
"Boston housing is a famous historic dataset, so we can get it directly from [Keras datasets](https://www.tensorflow.org/api_docs/python/tf/keras/datasets) "
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"(x_train, y_train), (x_test, y_test) = keras.datasets.boston_housing.load_data(test_split=0.2, seed=113)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.2 - Option 2 : From a csv file\n",
"More fun !"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style type=\"text/css\" >\n",
"</style><table id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795\" ><thead> <tr> <th class=\"blank level0\" ></th> <th class=\"col_heading level0 col0\" >crim</th> <th class=\"col_heading level0 col1\" >zn</th> <th class=\"col_heading level0 col2\" >indus</th> <th class=\"col_heading level0 col3\" >chas</th> <th class=\"col_heading level0 col4\" >nox</th> <th class=\"col_heading level0 col5\" >rm</th> <th class=\"col_heading level0 col6\" >age</th> <th class=\"col_heading level0 col7\" >dis</th> <th class=\"col_heading level0 col8\" >rad</th> <th class=\"col_heading level0 col9\" >tax</th> <th class=\"col_heading level0 col10\" >ptratio</th> <th class=\"col_heading level0 col11\" >b</th> <th class=\"col_heading level0 col12\" >lstat</th> <th class=\"col_heading level0 col13\" >medv</th> </tr></thead><tbody>\n",
" <th id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795level0_row0\" class=\"row_heading level0 row0\" >0</th>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row0_col0\" class=\"data row0 col0\" >0.01</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row0_col1\" class=\"data row0 col1\" >18.00</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row0_col2\" class=\"data row0 col2\" >2.31</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row0_col3\" class=\"data row0 col3\" >0.00</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row0_col4\" class=\"data row0 col4\" >0.54</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row0_col5\" class=\"data row0 col5\" >6.58</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row0_col6\" class=\"data row0 col6\" >65.20</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row0_col7\" class=\"data row0 col7\" >4.09</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row0_col8\" class=\"data row0 col8\" >1.00</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row0_col9\" class=\"data row0 col9\" >296.00</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row0_col10\" class=\"data row0 col10\" >15.30</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row0_col11\" class=\"data row0 col11\" >396.90</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row0_col12\" class=\"data row0 col12\" >4.98</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row0_col13\" class=\"data row0 col13\" >24.00</td>\n",
" <th id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795level0_row1\" class=\"row_heading level0 row1\" >1</th>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row1_col0\" class=\"data row1 col0\" >0.03</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row1_col1\" class=\"data row1 col1\" >0.00</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row1_col2\" class=\"data row1 col2\" >7.07</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row1_col3\" class=\"data row1 col3\" >0.00</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row1_col4\" class=\"data row1 col4\" >0.47</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row1_col5\" class=\"data row1 col5\" >6.42</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row1_col6\" class=\"data row1 col6\" >78.90</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row1_col7\" class=\"data row1 col7\" >4.97</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row1_col8\" class=\"data row1 col8\" >2.00</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row1_col9\" class=\"data row1 col9\" >242.00</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row1_col10\" class=\"data row1 col10\" >17.80</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row1_col11\" class=\"data row1 col11\" >396.90</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row1_col12\" class=\"data row1 col12\" >9.14</td>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row1_col13\" class=\"data row1 col13\" >21.60</td>\n",
" <th id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795level0_row2\" class=\"row_heading level0 row2\" >2</th>\n",
" <td id=\"T_f61cd91c_5a0b_11ea_81e5_41c397e73795row2_col0\" class=\"data row2 col0\" >0.03</td>\n",
Loading
Loading full blame...