Skip to content
Snippets Groups Projects
02-DNN-Regression-Premium.ipynb 182 KiB
Newer Older
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![Fidle](../fidle/img/00-Fidle-header-01.png)\n",
    "\n",
    "# <!-- TITLE --> Regression with a Dense Network (DNN) - Advanced code\n",
    "  <!-- DESC -->  More advanced example of DNN network code - BHPD dataset\n",
    "  <!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "\n",
    "## Objectives :\n",
    " - Predicts **housing prices** from a set of house features. \n",
    " - Understanding the principle and the architecture of a regression with a dense neural network with backup and restore of the trained model. \n",
    "\n",
    "The **[Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html)** consists of price of houses in various places in Boston.  \n",
    "Alongside with price, the dataset also provide information such as Crime, areas of non-retail business in the town,  \n",
    "age of people who own the house and many other attributes...\n",
    "\n",
    "## What we're going to do :\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    "\n",
    " - (Retrieve data)\n",
    " - (Preparing the data)\n",
    " - (Build a model)\n",
    " - Train and save the model\n",
    " - Restore saved model\n",
    " - Evaluate the model\n",
    " - Make some predictions\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 1 - Import and init"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style>\n",
       "\n",
       "div.warn {    \n",
       "    background-color: #fcf2f2;\n",
       "    border-color: #dFb5b4;\n",
       "    border-left: 5px solid #dfb5b4;\n",
       "    padding: 0.5em;\n",
       "    font-weight: bold;\n",
       "    font-size: 1.1em;;\n",
       "    }\n",
       "\n",
       "\n",
       "\n",
       "div.nota {    \n",
       "    background-color: #DAFFDE;\n",
       "    border-left: 5px solid #92CC99;\n",
       "    padding: 0.5em;\n",
       "    }\n",
       "\n",
       "\n",
       "\n",
       "</style>\n",
       "\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "FIDLE 2020 - Practical Work Module\n",
      "Version              : 0.2.9\n",
      "Run time             : Wednesday 19 February 2020, 10:13:01\n",
      "TensorFlow version   : 2.0.0\n",
      "Keras version        : 2.2.4-tf\n"
     ]
    }
   ],
   "source": [
    "import tensorflow as tf\n",
    "from tensorflow import keras\n",
    "\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import pandas as pd\n",
    "import os,sys\n",
    "\n",
    "from IPython.display import display, Markdown\n",
    "from importlib import reload\n",
    "\n",
    "sys.path.append('..')\n",
    "import fidle.pwk as ooo\n",
    "\n",
    "ooo.init()\n",
    "os.makedirs('./run/models',   mode=0o750, exist_ok=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 2 - Retrieve data\n",
    "\n",
    "### 2.1 - Option 1  : From Keras\n",
    "Boston housing is a famous historic dataset, so we can get it directly from [Keras datasets](https://www.tensorflow.org/api_docs/python/tf/keras/datasets)  "
   ]
  },
  {
   "cell_type": "raw",
   "metadata": {},
   "source": [
    "(x_train, y_train), (x_test, y_test) = keras.datasets.boston_housing.load_data(test_split=0.2, seed=113)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.2 - Option 2 : From a csv file\n",
    "More fun !"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style  type=\"text/css\" >\n",
       "</style><table id=\"T_07301338_52f8_11ea_a38b_eb599e736fda\" ><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>        <th class=\"col_heading level0 col13\" >medv</th>    </tr></thead><tbody>\n",
       "                <tr>\n",
       "                        <th id=\"T_07301338_52f8_11ea_a38b_eb599e736fdalevel0_row0\" class=\"row_heading level0 row0\" >0</th>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow0_col0\" class=\"data row0 col0\" >0.01</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow0_col1\" class=\"data row0 col1\" >18.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow0_col2\" class=\"data row0 col2\" >2.31</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow0_col3\" class=\"data row0 col3\" >0.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow0_col4\" class=\"data row0 col4\" >0.54</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow0_col5\" class=\"data row0 col5\" >6.58</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow0_col6\" class=\"data row0 col6\" >65.20</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow0_col7\" class=\"data row0 col7\" >4.09</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow0_col8\" class=\"data row0 col8\" >1.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow0_col9\" class=\"data row0 col9\" >296.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow0_col10\" class=\"data row0 col10\" >15.30</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow0_col11\" class=\"data row0 col11\" >396.90</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow0_col12\" class=\"data row0 col12\" >4.98</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow0_col13\" class=\"data row0 col13\" >24.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_07301338_52f8_11ea_a38b_eb599e736fdalevel0_row1\" class=\"row_heading level0 row1\" >1</th>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow1_col0\" class=\"data row1 col0\" >0.03</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow1_col1\" class=\"data row1 col1\" >0.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow1_col2\" class=\"data row1 col2\" >7.07</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow1_col3\" class=\"data row1 col3\" >0.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow1_col4\" class=\"data row1 col4\" >0.47</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow1_col5\" class=\"data row1 col5\" >6.42</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow1_col6\" class=\"data row1 col6\" >78.90</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow1_col7\" class=\"data row1 col7\" >4.97</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow1_col8\" class=\"data row1 col8\" >2.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow1_col9\" class=\"data row1 col9\" >242.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow1_col10\" class=\"data row1 col10\" >17.80</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow1_col11\" class=\"data row1 col11\" >396.90</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow1_col12\" class=\"data row1 col12\" >9.14</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow1_col13\" class=\"data row1 col13\" >21.60</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_07301338_52f8_11ea_a38b_eb599e736fdalevel0_row2\" class=\"row_heading level0 row2\" >2</th>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow2_col0\" class=\"data row2 col0\" >0.03</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow2_col1\" class=\"data row2 col1\" >0.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow2_col2\" class=\"data row2 col2\" >7.07</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow2_col3\" class=\"data row2 col3\" >0.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow2_col4\" class=\"data row2 col4\" >0.47</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow2_col5\" class=\"data row2 col5\" >7.18</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow2_col6\" class=\"data row2 col6\" >61.10</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow2_col7\" class=\"data row2 col7\" >4.97</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow2_col8\" class=\"data row2 col8\" >2.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow2_col9\" class=\"data row2 col9\" >242.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow2_col10\" class=\"data row2 col10\" >17.80</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow2_col11\" class=\"data row2 col11\" >392.83</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow2_col12\" class=\"data row2 col12\" >4.03</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow2_col13\" class=\"data row2 col13\" >34.70</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_07301338_52f8_11ea_a38b_eb599e736fdalevel0_row3\" class=\"row_heading level0 row3\" >3</th>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow3_col0\" class=\"data row3 col0\" >0.03</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow3_col1\" class=\"data row3 col1\" >0.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow3_col2\" class=\"data row3 col2\" >2.18</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow3_col3\" class=\"data row3 col3\" >0.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow3_col4\" class=\"data row3 col4\" >0.46</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow3_col5\" class=\"data row3 col5\" >7.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow3_col6\" class=\"data row3 col6\" >45.80</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow3_col7\" class=\"data row3 col7\" >6.06</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow3_col8\" class=\"data row3 col8\" >3.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow3_col9\" class=\"data row3 col9\" >222.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow3_col10\" class=\"data row3 col10\" >18.70</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow3_col11\" class=\"data row3 col11\" >394.63</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow3_col12\" class=\"data row3 col12\" >2.94</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow3_col13\" class=\"data row3 col13\" >33.40</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_07301338_52f8_11ea_a38b_eb599e736fdalevel0_row4\" class=\"row_heading level0 row4\" >4</th>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow4_col0\" class=\"data row4 col0\" >0.07</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow4_col1\" class=\"data row4 col1\" >0.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow4_col2\" class=\"data row4 col2\" >2.18</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow4_col3\" class=\"data row4 col3\" >0.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow4_col4\" class=\"data row4 col4\" >0.46</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow4_col5\" class=\"data row4 col5\" >7.15</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow4_col6\" class=\"data row4 col6\" >54.20</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow4_col7\" class=\"data row4 col7\" >6.06</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow4_col8\" class=\"data row4 col8\" >3.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow4_col9\" class=\"data row4 col9\" >222.00</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow4_col10\" class=\"data row4 col10\" >18.70</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow4_col11\" class=\"data row4 col11\" >396.90</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow4_col12\" class=\"data row4 col12\" >5.33</td>\n",
       "                        <td id=\"T_07301338_52f8_11ea_a38b_eb599e736fdarow4_col13\" class=\"data row4 col13\" >36.20</td>\n",
       "            </tr>\n",
       "    </tbody></table>"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x7faa97ce3ad0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Données manquantes :  0   Shape is :  (506, 14)\n"
     ]
    }
   ],
   "source": [
    "data = pd.read_csv('./data/BostonHousing.csv', header=0)\n",
    "\n",
    "display(data.head(5).style.format(\"{0:.2f}\"))\n",
    "print('Données manquantes : ',data.isna().sum().sum(), '  Shape is : ', data.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 3 - Preparing the data\n",
    "### 3.1 - Split data\n",
    "We will use 80% of the data for training and 20% for validation.  \n",
    "x will be input data and y the expected output"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original data shape was :  (506, 14)\n",
      "x_train :  (354, 13) y_train :  (354,)\n",
      "x_test  :  (152, 13) y_test  :  (152,)\n"
     ]
    }
   ],
   "source": [
    "# ---- Split => train, test\n",
    "#\n",
    "data_train = data.sample(frac=0.7, axis=0)\n",
    "data_test  = data.drop(data_train.index)\n",
    "\n",
    "# ---- Split => x,y (medv is price)\n",
    "#\n",
    "x_train = data_train.drop('medv',  axis=1)\n",
    "y_train = data_train['medv']\n",
    "x_test  = data_test.drop('medv',   axis=1)\n",
    "y_test  = data_test['medv']\n",
    "\n",
    "print('Original data shape was : ',data.shape)\n",
    "print('x_train : ',x_train.shape, 'y_train : ',y_train.shape)\n",
    "print('x_test  : ',x_test.shape,  'y_test  : ',y_test.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.2 - Data normalization\n",
    "**Note :** \n",
    " - All input data must be normalized, train and test.  \n",
    " - To do this we will subtract the mean and divide by the standard deviation.  \n",
    " - But test data should not be used in any way, even for normalization.  \n",
    " - The mean and the standard deviation will therefore only be calculated with the train data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style  type=\"text/css\" >\n",
       "</style><table id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fda\" ><caption>Before normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
       "                <tr>\n",
       "                        <th id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdalevel0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow0_col0\" class=\"data row0 col0\" >354.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow0_col1\" class=\"data row0 col1\" >354.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow0_col2\" class=\"data row0 col2\" >354.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow0_col3\" class=\"data row0 col3\" >354.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow0_col4\" class=\"data row0 col4\" >354.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow0_col5\" class=\"data row0 col5\" >354.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow0_col6\" class=\"data row0 col6\" >354.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow0_col7\" class=\"data row0 col7\" >354.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow0_col8\" class=\"data row0 col8\" >354.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow0_col9\" class=\"data row0 col9\" >354.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow0_col10\" class=\"data row0 col10\" >354.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow0_col11\" class=\"data row0 col11\" >354.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow0_col12\" class=\"data row0 col12\" >354.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdalevel0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow1_col0\" class=\"data row1 col0\" >3.91</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow1_col1\" class=\"data row1 col1\" >11.73</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow1_col2\" class=\"data row1 col2\" >11.21</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow1_col3\" class=\"data row1 col3\" >0.07</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow1_col4\" class=\"data row1 col4\" >0.56</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow1_col5\" class=\"data row1 col5\" >6.28</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow1_col6\" class=\"data row1 col6\" >68.51</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow1_col7\" class=\"data row1 col7\" >3.84</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow1_col8\" class=\"data row1 col8\" >9.96</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow1_col9\" class=\"data row1 col9\" >414.16</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow1_col10\" class=\"data row1 col10\" >18.52</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow1_col11\" class=\"data row1 col11\" >351.61</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow1_col12\" class=\"data row1 col12\" >12.76</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdalevel0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow2_col0\" class=\"data row2 col0\" >9.14</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow2_col1\" class=\"data row2 col1\" >23.48</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow2_col2\" class=\"data row2 col2\" >6.75</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow2_col3\" class=\"data row2 col3\" >0.26</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow2_col4\" class=\"data row2 col4\" >0.12</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow2_col5\" class=\"data row2 col5\" >0.69</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow2_col6\" class=\"data row2 col6\" >28.19</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow2_col7\" class=\"data row2 col7\" >2.17</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow2_col8\" class=\"data row2 col8\" >8.87</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow2_col9\" class=\"data row2 col9\" >168.41</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow2_col10\" class=\"data row2 col10\" >2.20</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow2_col11\" class=\"data row2 col11\" >96.84</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow2_col12\" class=\"data row2 col12\" >7.23</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdalevel0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow3_col0\" class=\"data row3 col0\" >0.01</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow3_col1\" class=\"data row3 col1\" >0.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow3_col2\" class=\"data row3 col2\" >0.46</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow3_col3\" class=\"data row3 col3\" >0.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow3_col4\" class=\"data row3 col4\" >0.39</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow3_col5\" class=\"data row3 col5\" >3.56</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow3_col6\" class=\"data row3 col6\" >2.90</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow3_col7\" class=\"data row3 col7\" >1.13</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow3_col8\" class=\"data row3 col8\" >1.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow3_col9\" class=\"data row3 col9\" >187.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow3_col10\" class=\"data row3 col10\" >12.60</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow3_col11\" class=\"data row3 col11\" >0.32</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow3_col12\" class=\"data row3 col12\" >1.73</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdalevel0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow4_col0\" class=\"data row4 col0\" >0.08</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow4_col1\" class=\"data row4 col1\" >0.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow4_col2\" class=\"data row4 col2\" >5.19</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow4_col3\" class=\"data row4 col3\" >0.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow4_col4\" class=\"data row4 col4\" >0.45</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow4_col5\" class=\"data row4 col5\" >5.89</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow4_col6\" class=\"data row4 col6\" >45.02</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow4_col7\" class=\"data row4 col7\" >2.09</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow4_col8\" class=\"data row4 col8\" >4.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow4_col9\" class=\"data row4 col9\" >285.50</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow4_col10\" class=\"data row4 col10\" >17.40</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow4_col11\" class=\"data row4 col11\" >370.98</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow4_col12\" class=\"data row4 col12\" >7.12</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdalevel0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow5_col0\" class=\"data row5 col0\" >0.32</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow5_col1\" class=\"data row5 col1\" >0.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow5_col2\" class=\"data row5 col2\" >9.79</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow5_col3\" class=\"data row5 col3\" >0.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow5_col4\" class=\"data row5 col4\" >0.54</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow5_col5\" class=\"data row5 col5\" >6.21</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow5_col6\" class=\"data row5 col6\" >76.95</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow5_col7\" class=\"data row5 col7\" >3.21</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow5_col8\" class=\"data row5 col8\" >5.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow5_col9\" class=\"data row5 col9\" >332.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow5_col10\" class=\"data row5 col10\" >19.10</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow5_col11\" class=\"data row5 col11\" >390.69</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow5_col12\" class=\"data row5 col12\" >11.49</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdalevel0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow6_col0\" class=\"data row6 col0\" >4.08</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow6_col1\" class=\"data row6 col1\" >19.50</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow6_col2\" class=\"data row6 col2\" >18.10</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow6_col3\" class=\"data row6 col3\" >0.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow6_col4\" class=\"data row6 col4\" >0.63</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow6_col5\" class=\"data row6 col5\" >6.60</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow6_col6\" class=\"data row6 col6\" >94.47</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow6_col7\" class=\"data row6 col7\" >5.21</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow6_col8\" class=\"data row6 col8\" >24.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow6_col9\" class=\"data row6 col9\" >666.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow6_col10\" class=\"data row6 col10\" >20.20</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow6_col11\" class=\"data row6 col11\" >395.98</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow6_col12\" class=\"data row6 col12\" >16.96</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdalevel0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow7_col0\" class=\"data row7 col0\" >88.98</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow7_col1\" class=\"data row7 col1\" >100.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow7_col2\" class=\"data row7 col2\" >27.74</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow7_col3\" class=\"data row7 col3\" >1.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow7_col4\" class=\"data row7 col4\" >0.87</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow7_col5\" class=\"data row7 col5\" >8.78</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow7_col6\" class=\"data row7 col6\" >100.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow7_col7\" class=\"data row7 col7\" >12.13</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow7_col8\" class=\"data row7 col8\" >24.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow7_col9\" class=\"data row7 col9\" >711.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow7_col10\" class=\"data row7 col10\" >22.00</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow7_col11\" class=\"data row7 col11\" >396.90</td>\n",
       "                        <td id=\"T_07389f4e_52f8_11ea_a38b_eb599e736fdarow7_col12\" class=\"data row7 col12\" >37.97</td>\n",
       "            </tr>\n",
       "    </tbody></table>"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x7faa96773f90>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<style  type=\"text/css\" >\n",
       "</style><table id=\"T_073f797c_52f8_11ea_a38b_eb599e736fda\" ><caption>After normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
       "                <tr>\n",
       "                        <th id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdalevel0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow0_col0\" class=\"data row0 col0\" >354.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow0_col1\" class=\"data row0 col1\" >354.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow0_col2\" class=\"data row0 col2\" >354.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow0_col3\" class=\"data row0 col3\" >354.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow0_col4\" class=\"data row0 col4\" >354.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow0_col5\" class=\"data row0 col5\" >354.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow0_col6\" class=\"data row0 col6\" >354.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow0_col7\" class=\"data row0 col7\" >354.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow0_col8\" class=\"data row0 col8\" >354.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow0_col9\" class=\"data row0 col9\" >354.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow0_col10\" class=\"data row0 col10\" >354.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow0_col11\" class=\"data row0 col11\" >354.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow0_col12\" class=\"data row0 col12\" >354.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdalevel0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow1_col0\" class=\"data row1 col0\" >-0.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow1_col1\" class=\"data row1 col1\" >0.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow1_col2\" class=\"data row1 col2\" >0.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow1_col3\" class=\"data row1 col3\" >0.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow1_col4\" class=\"data row1 col4\" >-0.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow1_col5\" class=\"data row1 col5\" >0.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow1_col6\" class=\"data row1 col6\" >-0.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow1_col7\" class=\"data row1 col7\" >0.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow1_col8\" class=\"data row1 col8\" >-0.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow1_col9\" class=\"data row1 col9\" >0.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow1_col10\" class=\"data row1 col10\" >0.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow1_col11\" class=\"data row1 col11\" >0.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow1_col12\" class=\"data row1 col12\" >-0.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdalevel0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow2_col0\" class=\"data row2 col0\" >1.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow2_col1\" class=\"data row2 col1\" >1.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow2_col2\" class=\"data row2 col2\" >1.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow2_col3\" class=\"data row2 col3\" >1.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow2_col4\" class=\"data row2 col4\" >1.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow2_col5\" class=\"data row2 col5\" >1.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow2_col6\" class=\"data row2 col6\" >1.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow2_col7\" class=\"data row2 col7\" >1.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow2_col8\" class=\"data row2 col8\" >1.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow2_col9\" class=\"data row2 col9\" >1.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow2_col10\" class=\"data row2 col10\" >1.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow2_col11\" class=\"data row2 col11\" >1.00</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow2_col12\" class=\"data row2 col12\" >1.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdalevel0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow3_col0\" class=\"data row3 col0\" >-0.43</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow3_col1\" class=\"data row3 col1\" >-0.50</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow3_col2\" class=\"data row3 col2\" >-1.59</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow3_col3\" class=\"data row3 col3\" >-0.28</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow3_col4\" class=\"data row3 col4\" >-1.48</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow3_col5\" class=\"data row3 col5\" >-3.93</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow3_col6\" class=\"data row3 col6\" >-2.33</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow3_col7\" class=\"data row3 col7\" >-1.25</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow3_col8\" class=\"data row3 col8\" >-1.01</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow3_col9\" class=\"data row3 col9\" >-1.35</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow3_col10\" class=\"data row3 col10\" >-2.69</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow3_col11\" class=\"data row3 col11\" >-3.63</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow3_col12\" class=\"data row3 col12\" >-1.52</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdalevel0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow4_col0\" class=\"data row4 col0\" >-0.42</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow4_col1\" class=\"data row4 col1\" >-0.50</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow4_col2\" class=\"data row4 col2\" >-0.89</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow4_col3\" class=\"data row4 col3\" >-0.28</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow4_col4\" class=\"data row4 col4\" >-0.92</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow4_col5\" class=\"data row4 col5\" >-0.56</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow4_col6\" class=\"data row4 col6\" >-0.83</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow4_col7\" class=\"data row4 col7\" >-0.81</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow4_col8\" class=\"data row4 col8\" >-0.67</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow4_col9\" class=\"data row4 col9\" >-0.76</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow4_col10\" class=\"data row4 col10\" >-0.51</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow4_col11\" class=\"data row4 col11\" >0.20</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow4_col12\" class=\"data row4 col12\" >-0.78</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdalevel0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow5_col0\" class=\"data row5 col0\" >-0.39</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow5_col1\" class=\"data row5 col1\" >-0.50</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow5_col2\" class=\"data row5 col2\" >-0.21</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow5_col3\" class=\"data row5 col3\" >-0.28</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow5_col4\" class=\"data row5 col4\" >-0.17</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow5_col5\" class=\"data row5 col5\" >-0.10</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow5_col6\" class=\"data row5 col6\" >0.30</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow5_col7\" class=\"data row5 col7\" >-0.29</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow5_col8\" class=\"data row5 col8\" >-0.56</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow5_col9\" class=\"data row5 col9\" >-0.49</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow5_col10\" class=\"data row5 col10\" >0.26</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow5_col11\" class=\"data row5 col11\" >0.40</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow5_col12\" class=\"data row5 col12\" >-0.18</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdalevel0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow6_col0\" class=\"data row6 col0\" >0.02</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow6_col1\" class=\"data row6 col1\" >0.33</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow6_col2\" class=\"data row6 col2\" >1.02</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow6_col3\" class=\"data row6 col3\" >-0.28</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow6_col4\" class=\"data row6 col4\" >0.63</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow6_col5\" class=\"data row6 col5\" >0.46</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow6_col6\" class=\"data row6 col6\" >0.92</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow6_col7\" class=\"data row6 col7\" >0.63</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow6_col8\" class=\"data row6 col8\" >1.58</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow6_col9\" class=\"data row6 col9\" >1.50</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow6_col10\" class=\"data row6 col10\" >0.76</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow6_col11\" class=\"data row6 col11\" >0.46</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow6_col12\" class=\"data row6 col12\" >0.58</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdalevel0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow7_col0\" class=\"data row7 col0\" >9.30</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow7_col1\" class=\"data row7 col1\" >3.76</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow7_col2\" class=\"data row7 col2\" >2.45</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow7_col3\" class=\"data row7 col3\" >3.62</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow7_col4\" class=\"data row7 col4\" >2.68</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow7_col5\" class=\"data row7 col5\" >3.61</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow7_col6\" class=\"data row7 col6\" >1.12</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow7_col7\" class=\"data row7 col7\" >3.82</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow7_col8\" class=\"data row7 col8\" >1.58</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow7_col9\" class=\"data row7 col9\" >1.76</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow7_col10\" class=\"data row7 col10\" >1.58</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow7_col11\" class=\"data row7 col11\" >0.47</td>\n",
       "                        <td id=\"T_073f797c_52f8_11ea_a38b_eb599e736fdarow7_col12\" class=\"data row7 col12\" >3.49</td>\n",
       "            </tr>\n",
       "    </tbody></table>"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x7faa9625a3d0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n",
    "\n",
    "mean = x_train.mean()\n",
    "std  = x_train.std()\n",
    "x_train = (x_train - mean) / std\n",
    "x_test  = (x_test  - mean) / std\n",
    "\n",
    "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"After normalization :\"))\n",
    "\n",
    "x_train, y_train = np.array(x_train), np.array(y_train)\n",
    "x_test,  y_test  = np.array(x_test),  np.array(y_test)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 4 - Build a model\n",
    "More informations about : \n",
    " - [Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)\n",
    " - [Activation](https://www.tensorflow.org/api_docs/python/tf/keras/activations)\n",
    " - [Loss](https://www.tensorflow.org/api_docs/python/tf/keras/losses)\n",
    " - [Metrics](https://www.tensorflow.org/api_docs/python/tf/keras/metrics)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "  def get_model_v1(shape):\n",
    "    \n",
    "    model = keras.models.Sequential()\n",
    "    model.add(keras.layers.Input(shape, name=\"InputLayer\"))\n",
    "    model.add(keras.layers.Dense(64, activation='relu', name='Dense_n1'))\n",
    "    model.add(keras.layers.Dense(64, activation='relu', name='Dense_n2'))\n",
    "    model.add(keras.layers.Dense(1, name='Output'))\n",
    "    \n",
    "    model.compile(optimizer = 'rmsprop',\n",
    "                  loss      = 'mse',\n",
    "                  metrics   = ['mae', 'mse'] )\n",
    "    return model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 5 - Train the model\n",
    "### 5.1 - Get it"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: \"sequential\"\n",
      "_________________________________________________________________\n",
      "Layer (type)                 Output Shape              Param #   \n",
      "=================================================================\n",
      "Dense_n1 (Dense)             (None, 64)                896       \n",
      "_________________________________________________________________\n",
      "Dense_n2 (Dense)             (None, 64)                4160      \n",
      "_________________________________________________________________\n",
      "Output (Dense)               (None, 1)                 65        \n",
      "=================================================================\n",
      "Total params: 5,121\n",
      "Trainable params: 5,121\n",
      "Non-trainable params: 0\n",
      "_________________________________________________________________\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAGVCAIAAADls7hIAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde1wU5f448Ge4LCwLuyAJCwuKWkRe2Aj80RqEgkGFYGwgmmgdD8Q39QApKph6vJFpmHC+aiocA6VM4fXCAtPyoHQOCAkWmBpi4I27gguCclmZ3x/Pab7TLiw7sOzs4uf9l/vMM898dmI/zeWZzxAkSSIAAABqM2A7AAAA0DOQNwEAgBnImwAAwAzkTQAAYMaI/qGkpOSzzz5jKxQAANBNEolk1apV1Mc/HW/evXs3JydH6yEBoFV1dXXwd05XWlpaWlrKdhS6q7S0tKSkhN5ipNwpOztbW/EAwIITJ06Eh4fD3zklLCwMwQ9/cHj/0MH1TQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBACoJSsri/iDubm5wtLbt28HBwd3dHQghBobG5OSkjw8PPh8vlAo9PHxyc3NHd5Gv/vuO2dnZyOjAe5gkyRZXFy8YsUKZ2dnExMTGxsbLy+vrKwses2NhISE48ePK6yYkJBAfZGXX355GFFB3gRAXZ2dnc8999y8efPYDoRNn3/+OUmSnZ2d9MaKigoPDw9/f38+n48QioqKSklJ2bJlS2NjY2lpqYODg1QqTUhIYLShmpqa4ODgxMTE5ubmATtcv37dy8ururo6Jyenvb29tLR0woQJS5YsWbNmDdUnKioqMTFx48aN9BU/+eQTkiRJkjQ0NGQUEgXyJgDqIkmyv7+/v7+frQDMzc29vLzY2vpgOjo6goKC3n777ZUrV1KNycnJgYGBPB7Pycnpiy++EIlEycnJLS0t6g+7cePGWbNmXbp0ycLCYrA+RkZGJ06ccHV1NTU1nTx5ckZGhrW19d69e3t6enCHKVOm5ObmJiUlnThxYthfcIDtanAsAMY2CwuLmpoatqPQObt27Wpqatq0aRPVkp+fT+/A4XCmTp1aX19//fp1GxsbNYf95z//yeVyVXRwcXHp6+tT2JCjo2NFRUV3d7eJiQluFIvFoaGhq1evlkqlA57vDwMcbwIAho8kyfT0dE9PT3t7exXdamtrEULjxo1Tf2TVSXNAMpnsxo0bbm5uAoGA3h4SElJXV3fq1CmmAw4G8iYAajl58iR1M6G7u1uh5datW+Hh4ZaWltbW1vPmzaMOS5OTk3EHBweHsrIyPz8/CwsLMzOzOXPmFBcX4z7bt2/Hfahz8DNnzuCWZ555hj5OV1dXcXExXqSpQ6cRqqysbG5uFovFKvpkZmbW1NQ4OztPnTp1lMLo6OgoLi4ODg4WCoVHjhxRWPriiy8ihL7//ntNbQ7yJgBqeeutt0iSnD9//oAtcXFxcXFx9fX1x48fP3fu3KJFi3Cf+Ph4kiTFYrFMJouNjd2+fXtTU9O///3vtrY2X1/fH3/8ESG0YcMGkiR5PB418uuvv06SpLu7O9WCx+HxeK+88gq+pyGXy6mlvr6+1tbWrDxjfuXKFYSQg4PDgEuvXbsWGxu7bNkyKysrfDt+NGLYvn27QCDw8vIyNDTMzc2dPn26QgeRSESFqhGQNwHQgMjISIlEwuPx5s6dGxgYWFZWdv/+fXqHrq6u/fv34z4eHh5ZWVm9vb2xsbEa2Xp/fz9OphoZjZHGxkaEkMJ5McXV1TU7O3vlypVXrlyZOXPmKMWwYcOGnp6e3377zcXFxc3Nbdu2bQod+Hw+QRA4VI3QiUN9APQdPSk4OjoihBoaGqizbIQQj8fDZ4vYjBkz7O3tKysrGxsb7ezsRrj1wsLCEY4wbPiShbGx8WAdzp075+LiMtphcDgcFxeXzz//vLm5edOmTRKJZO7cufQORkZGjx8/1tTm4HgTAA2gH3BxOByEkMJ0JUtLS4VV8J1lRlNzdJCpqSlCSOG+NouCgoKQ0g19hJBcLh/GjabBQN4EQBtaW1sVzqNxxqTm5RgYGPT29tI7yGQyhUFG6frgSOCD5fb2drYD+S88/aitrY3e2NHRQZLkyI/rKZA3AdCG7u7usrIy6uOvv/7a0NAgFoupH7OdnV19fT3Voamp6c6dOwqDmJmZUbn1+eefP3To0ChHPTR8E6aurm7ApXK5fPRO0uPj4yMiIhQaT58+jf582QQhhHes8v2iYYO8CYA2CASC9evXl5SUdHV1lZeXR0REcDic1NRUqoO/v39DQ8PevXs7OztrampiY2OVp4i/9NJL1dXVd+/eLSkpqa2t9fb2xu0s3k8Xi8U2NjaVlZXKi9LS0ng83tq1a5UXRUREEARx8+bNEW79q6++2rp1661bt3p6em7durVu3bqsrCx3d/fIyEh6t4qKCoSQv7//CDdHgbwJgFrwbM1vvvkGIcTlciMiIkpLS+ktGzZsQAgRBLFz506EkJubG/1JdnNz8//93//dsmWLnZ3dq6++amVlde7cOR8fH6rD9u3bIyMjP/74Yxsbm/fee2/NmjVCobC1tZUgCOrJ7pSUFFdX1xdeeCE8PDw1NfWFF17A7XK5nK376QRBREZG/vTTTw0NDQqLVNzlb2xsNDc3nzBhgoqR8/Pz8UzV+vr6J0+e4H+np6dTHTZt2pSWlnbhwoU5c+bw+fwZM2YUFBTs2LHjP//5j8KlzNzcXJFIFBgYOIIv+mckDS4cQgIwpmn/71wsFotEIm1ukZHQ0NDQ0NAhux09ehT9UdeDTiaTiUSi6OhoNTf34MEDLpcbGRnJONBhqaioIAji2LFjyosMDQ09PT2HHEF5/8DxJgBgRAQCQV5eXk5Ozr59+4bsTJJkTEwMn89XnmU5Gmpra6VSaWJi4sKFCzU47HDyprm5OUGTnJyswYBGSJdjY0SXv4guxwZG2wcffKBcf9PNza28vPz06dO4/qYKzc3NtbW1BQUFQqFwNMP8r4MHDyYlJSUlJdEbqfqbT548Gea49INP9c9ffvnlF4TQ/Pnz1emsZbocGyO6/EV0ObYhafM8/dNPP6X/3D766CPtbJcRNc/Tn1pj6jxdN2sRjjGwk0cIP1dO2b59O9sRAQ3Q47wJAACsgLwJAADMaCxv6lctQrlcfvz48ddee00oFHK53BkzZqSmpuIHimUyGf2mBz6xksvlVEtoaCge5N69ezExMU5OThwOZ/z48VKpFE+vVdgb169fX7BggbW1Nf6oUCYHdrKu7WQAhka/+DLy+0K4FuH8+fMvXLjQ2dl59uxZLpc7c+ZMeh+xWMzj8SQSCe5TVlbm6urK4XAKCwupPvQ6g5i7u7u1tTW9RbmP6tjo8vLyEEIff/xxW1vbvXv3/vGPfxgYGNAvRQUEBBgYGPz+++/0tSQSyZdffon/3dDQMHHiRFtb21OnTj18+PDKlSs+Pj6mpqYXLlxQ2Bs+Pj7nz5/v6uoqLS01NDS8d+8eSZJz5swZN25cSUmJiiBhJ49wJw8G5ikrgPtCqinvn1HJm3l5efRNIoTof8e4NPQvv/xCtVy+fBkhJBaLqRYt/KRnz55Nb4mIiDA2Nm5vb8cfcWno5cuXUx2KiopEIlFvby/++O677yKEqF84SZKNjY0mJibu7u4Ke+O7775TDsDHx8fKyor++1f/i8BOVnMnDwbypgLIm6pp6X76gLUI6R1U1CIcjXiUzZs37/z58/QWsVjc19d39epV/NHf33/GjBkZGRmtra245dNPP/3b3/5G1Rk8efKkgYEB/UE6oVA4bdq0S5cuKdQ4+H//7/8pB1BYWNjW1iaRSIb9FWAn00cecCerRoA/5OTk5OTksB2F7srJyVH44xmVusXDq0XY0NDQ0tKiwVpPKrS3t+/evTs3N7euro5erevRo0fUv+Pi4v7617/u379/48aN1dXV586d++KLL/Cinp4eXDhrwDLXN27coL82gP7+Aw2CnTzCnYyPOgFCaM+ePQihDz/8kO1AdBTeP3Ts1HvHtQgJWjFBLdciDAoK+s9//pOamrpo0aJnnnmGIIiUlJQPP/yQpNUgWLx48fr16/fu3bt27drdu3e/++67VlZWeJGJiYmlpWVnZ+fjx4915PVYymAnq7ZgwQKNj6mnsrOzEeyQweH9Q8fOPCS2ahEaGRlVVVU9efKkuLhYKBTGxMSMHz8epwblGvomJibLly9vaWnZvXv3l19+qfAqGKlUKpfLqTvU2M6dOydMmEB/YRaLYCcDMErYyZujWotwSIaGhrNnz25qavr000/v37//+PHj8+fPHzhwQLnn8uXLcX2wuXPnPvvss/RFO3bsmDJlyrJly06fPt3e3t7W1nbw4MGtW7cmJyerc3CkhYKJsJMBGC30m0Rq3mdUuJb06aefkiRZUlJCb8TP4dJbAgMD8eq4pta1a9cCAgIsLCy4XK6Pj09RURF9EzKZLDIy0s7Ojsvlenl5lZWVUe9EXbduHe5TVVXl7e3N4/EcHR337ds3YGzKfvvtN5Ik7927Fx0d7ejoaGxsbGtr+95771ElDun3akmSjIqKQgj9+OOPyvuhtbV11apVkydPNjY2Hj9+vL+//9mzZ/Eihb2hvFe9vb1V30+HnTzynTwYuJ+uAO6nq6axeUgjoeO1CBUcPnxY4UeuF2AnqwB5UwHkTdXGVF0P7Thw4MCqVavYjmKMg52sF7KysqipOQp15BBCt2/fDg4OxnXkGhsbk5KSPDw8+Hy+UCj08fHJzc0d3ka/++47Z2fnAS/LkCRZXFy8YsUKZ2dnExMTGxsbLy+vrKwsknYSlpCQoDxxgqojRxDEyy+/PIyoIG8OID09PSQkpLOz88CBAw8ePID7jKMBdrKewvXeOzs76Y0VFRUeHh7+/v58Ph8hFBUVlZKSsmXLlsbGxtLSUgcHB6lUSl2lUVNNTU1wcHBiYmJzc/OAHa5fv+7l5VVdXZ2Tk9Pe3l5aWjphwoQlS5asWbOG6hMVFZWYmLhx40b6ip988gk+bDQ0NGQU0v+hH3yO9vmLXtQiJEkyLS0NIWRkZOTq6nrp0iW2w2EGdvKQtHyePtgzV7oz/gjfk9He3u7g4EB/T0ZgYGBGRgb1saenRyQSGRoaNjc3qx/VokWLduzY0dfXh9dV7vDbb78ZGRm1tbXRN2RtbW1iYtLd3U014vdkHD9+XHmEYb8nA94vBJ46kDcVjDBvfvTRR0ZGRvX19SrWfe211xBC//73v9WP6tGjR/gfg+XNAeFn5GQyGb0xLCzMwcGhr69PoTO8XwgAwAKSJNPT0z09Pe3t7VV0q62tRQiNGzdO/ZEV3kmpDplMduPGDTc3N4VnzEJCQurq6k6dOsV0wMFA3gRgUHgW1JQpUzgcjpWV1RtvvEE9cT+SWny6U+tv5CorK5ubm3EdmcFkZmbW1NQ4OztPnTp1lMLo6OgoLi4ODg4WCoVHjhxRWIoPQnEdGY2AvAnAwJqammbOnPnVV1+lpqbev3//p59+MjMz8/Pzw6/w3rBhA/nnqayvv/46SZLUHFj0x0sy6OfR+DEn3C4Wi2UyWWxs7Pbt25uamv7973+3tbX5+vr++OOPIxwf08KzFQihK1euIITotQLorl27Fhsbu2zZMisrK3w7fjRi2L59u0Ag8PLyMjQ0zM3NnT59ukIHkUhEhaoRkDcBGFhiYuLNmzdTUlLmzZvH5/OdnZ2/+uorOzu7mJiYwe7wMtXV1bV//36JRMLj8Tw8PLKysnp7exUeNh22/v5+nEw1MtpgcHmtAWuvIIRcXV2zs7NXrlx55coVegUvzdqwYUNPT89vv/3m4uLi5uam/IZhPp9PEIQGK4FB3gRgYHjKYWBgINViYmLi5+f3+PFjTZ3xjWqtv5HXKlRHd3c3Qogq/afs3Llzqampqq9+jhyHw3Fxcfn888+Dg4M3bdr0r3/9S6GDkZGRcnmEYYO8CcAAcBU7U1NTCwsLerutrS1CqKmpSSNbGbDWH/qjcpVeMDU1RQj19fWxHch/BQUFIYTy8/MV2uVy+TBuNA0G8iYAAzAxMREIBN3d3Q8fPqS34zN0oVCIP46wFh+u9Udv0XKtv5HD5bVwpVRdYGJighBqa2ujN3Z0dJAkqcGys5A3ARhYSEgIQog+eaWnp6egoIDL5QYEBOCWEdbiY6vWnwbhmzAK5fcpcrncxcVllDYdHx8fERGh0Hj69Gn057chIITwPlS+XzRskDcBGNiOHTsmTZoUFxeXn5//8OHD6urqd955p7GxMTU1FZ+toxHX4hvVWn/auZ8uFottbGwqKyuVF6WlpfF4vLVr1yovioiIIAji5s2bI9z6V199tXXr1lu3bvX09Ny6dWvdunVZWVnu7u6RkZH0bvgdqP7+/iPc3P+hT4KH54XA00D9v/P79+/HxcVNmjTJ2NhYIBAEBAQUFBTQOwy7Fh85yrX+SDVqFVJG+LzQ+vXrB3xe6MCBA1wul/4GU4qvr6+5ublcLlexOfw+VAVpaWlUh/b29vT09ICAAPyaaHNzc3d39x07dlAPGlHCwsLo7/ujwHOWAKhLR/7OdafW3wjzpkwmE4lE9OfTVXvw4AGXy42MjGQc6LDg59OPHTumvAieswQAsEMgEOTl5eXk5Ozbt2/IziRJxsTE8Pl85VmWo6G2tlYqlSYmJi5cuFCDw0LeBAAw8MEHHyjX33RzcysvLz99+jSuv6lCc3NzbW1tQUEBNSdhVB08eDApKSkpKYneSNXffPLkyfCGhbwJgLbh58orKyvr6+sJgtiwYQPbEaklIiKCOlFVqL+JEHJycsrPz8f1N1UQCoVFRUXTpk0btTD/ZOfOncpHmlT9TZIkh3ffDF5uBYC2xcfHx8fHsx0FGD443gQAAGYgbwIAADOQNwEAgBnImwAAwMwA94VOnDih/TgA0JqSkhIEf+c0+Oly2CGDqaurUyzMTJ8Er/yiYQAAAArPCxHkKJeDBmB48Ltb4b3qQAfB9U0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYIYgSZLtGABACKHo6Ojr169TH3/++edJkyZZWVnhj4aGhpmZmQ4ODixFB8D/MWI7AAD+y9bW9tChQ/SWy5cvU/+ePHkyJE2gI+A8HeiKd955Z7BFHA7nvffe02IsAKgC5+lAh0yfPv3atWsD/k1ev37d2dlZ+yEBoAyON4EOWbp0qaGhoUIjQRBisRiSJtAdkDeBDlm0aNGTJ08UGg0NDd99911W4gFgQHCeDnTLrFmzfvrpp/7+fqqFIIi7d++KRCIWowKADo43gW5ZsmQJQRDURwMDAy8vL0iaQKdA3gS6JSwsjP6RIIilS5eyFQwAA4K8CXTLM8884+fnR90dIggiJCSE3ZAAUAB5E+iciIgIfNnd0NAwICDA2tqa7YgA+BPIm0DnSKVSDoeDECJJMiIigu1wAFAEeRPoHB6PN2/ePIQQh8MJCgpiOxwAFEHeBLpo8eLFCKGQkBAej8d2LAAoIVnF9rcHAOil48ePs5i42K+HFBcXJ5FI2I4C6JysrKyFCxcaGf3fn2hJSUlKSsrx48dZjEqn7NmzByH04Ycfsh2ItoWHh7MbAPt5UyKRLFiwgO0ogM4JDg42NTVVaExJSYG/Fkp2djZC6CncIaznTbi+CXSUctIEQEdA3gQAAGYgbwIAADOQNwEAgBnImwA8LW7fvh0cHNzR0YEQamxsTEpK8vDw4PP5QqHQx8cnNzd3eMN+9913zs7O9JkPFJIki4uLV6xY4ezsbGJiYmNj4+XllZWVRZ+DmJCQoHdzJCBvgrGvs7Pzueeew88gPbUqKio8PDz8/f35fD5CKCoqKiUlZcuWLY2NjaWlpQ4ODlKpNCEhgdGYNTU1wcHBiYmJzc3NA3a4fv26l5dXdXV1Tk5Oe3t7aWnphAkTlixZsmbNGqpPVFRUYmLixo0bR/LttAzyJhj7SJLs7++n10LWMnNzcy8vL7a2jhDq6OgICgp6++23V65cSTUmJycHBgbyeDwnJ6cvvvhCJBIlJye3tLSoP+zGjRtnzZp16dIlCwuLwfoYGRmdOHHC1dXV1NR08uTJGRkZ1tbWe/fu7enpwR2mTJmSm5ublJR04sSJYX9BLWN//iYAo83CwqKmpobtKNi0a9eupqamTZs2US35+fn0DhwOZ+rUqfX19devX7exsVFz2H/+859cLldFBxcXl76+PoUNOTo6VlRUdHd3m5iY4EaxWBwaGrp69WqpVDrg+b6ugeNNAMY4kiTT09M9PT3t7e1VdKutrUUIjRs3Tv2RVSfNAclkshs3bri5uQkEAnp7SEhIXV3dqVOnmA7ICsibYIw7efIk8Yfu7m6Fllu3boWHh1taWlpbW8+bN486LE1OTsYdHBwcysrK/Pz8LCwszMzM5syZU1xcjPts374d96HOwc+cOYNbnnnmGfo4XV1dxcXFeJH2j6cqKyubm5vFYrGKPpmZmTU1Nc7OzlOnTh2lMDo6OoqLi4ODg4VC4ZEjRxSWvvjiiwih77//fpS2rmEsPhuP76mx+3w+0CP4ruvw1p0/fz5C6PHjxwot8+fPv3DhQmdn59mzZ7lc7syZM+lricViHo8nkUhwn7KyMldXVw6HU1hYSPXh8XivvPIKfS13d3dra2t6i3IfbM6cOePGjSspKRnelwoNDQ0NDR2y29GjRxFCH3/88YBLr169GhMTY2BgYGVldfHixeFFIhKJDA0NVXTYtm0bTjizZ8++fPmycof29naEkLe3tzqbYz1vwPEmeKpFRkZKJBIejzd37tzAwMCysrL79+/TO3R1de3fvx/38fDwyMrK6u3tjY2N1cjW+/v7qUQwehobGxFCCufFFFdX1+zs7JUrV165cmXmzJmjFMOGDRt6enp+++03FxcXNzc3Ko1S+Hw+QRA4VN2nB5dgARg99Ezh6OiIEGpoaKDOshFCPB4Pn0JiM2bMsLe3r6ysbGxstLOzG+HWCwsLRziCOvDVCWNj48E6nDt3zsXFZbTD4HA4Li4un3/+eXNz86ZNmyQSydy5c+kdjIyMHj9+PNphaAQcb4KnGv0oDL+cQ2G6kqWlpcIq+HYzo/k67MIVUhTua7MI1/BXuKGPEJLL5cO40cQKyJsAqNLa2qpwHo0zJjVZx8DAoLe3l95BJpMpDEJ/I7z24eNifAFRF+DpR21tbfTGjo4OkiRHfgivHZA3AVClu7u7rKyM+vjrr782NDSIxWLqF25nZ1dfX091aGpqunPnjsIgZmZmVG59/vnnDx06NMpR/8n06dMRQnV1dQMulcvlo3eSHh8fr/xmvdOnT6M/XyFBCOF9iEPVfZA3AVBFIBCsX7++pKSkq6urvLw8IiKCw+GkpqZSHfz9/RsaGvbu3dvZ2VlTUxMbG6s8b/yll16qrq6+e/duSUlJbW2tt7c3bvf19bW2ti4tLR3VryAWi21sbCorK5UXpaWl8Xi8tWvXKi+KiIggCOLmzZsj3PpXX321devWW7du9fT03Lp1a926dVlZWe7u7pGRkfRuFRUVCCF/f/8Rbk5LWLyXT+rAfAKgR4Y3D0mhXMXixYtLSkroLR999BH55zPxwMBAvK5YLBaJRNeuXQsICLCwsOByuT4+PkVFRfTxZTJZZGSknZ0dl8v18vIqKytzd3fH46xbtw73qaqq8vb25vF4jo6O+/bto9b19va2srK6cOHC8HaImvOQSJJcv369kZFRfX29QvuBAwe4XG58fLzyKr6+vubm5nK5XMWweXl5yiklLS2N6tDe3p6enh4QEODk5MThcMzNzd3d3Xfs2PHo0SOFocLCwkQiUW9vrzpfh/W8AXkT6I2RzN8cHpw3tblFRtTPmzKZTCQSRUdHqznygwcPuFxuZGTkCKJjoKKigiCIY8eOqdmf9byhB+fp5ubmBA2eoCsWi5cvX37p0iW2oxtdKip0qeNp3nWATiAQ5OXl5eTk7Nu3b8jOJEnGxMTw+XzlWZajoba2ViqVJiYmLly4UAub0wg9yJudnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5R84as0KWOp3PXgQG5ubmVl5efPn0a199Uobm5uba2tqCgQCgUaiGwgwcPJiUlJSUlaWFbmqIHeVOBoaGhra3t/Pnzz507t3bt2oyMjEWLFpFj7lXs6lToYuop2XUagZ8rr6ysrK+vJwhiw4YNbEekAU5OTvn5+bj+pgpCobCoqGjatGnaiWrnzp16dKSJ6V/epPvkk088PT2//fbbr7/+mu1YNOyf//xnQkLC6NWAGMO7TiMUbpVs376d7YiADtHvvEkQBK7Dun//frZj0bDRfnBiDO86AEabfudNhBAu4VVaWko9Rnbv3r2YmBg872H8+PFSqRRPDUPqFRBDCPX09GzatMnFxcXMzGzcuHFBQUHffvvtkydPqA4qNqGamgFoh37tOgB0CAv38GmQevMJ6Dc3FFCFABoaGkiSbGhomDhxoq2t7alTpx4+fHjlyhUfHx9TU1P6FLkhC4hFRkYKBIIffvjh0aNHTU1N8fHxCKHz58/jpepsQjV1KphRVFToUqcK2Vjaddqfh6Tj1J+HNMaomTdGMQAWt01qIm9Sd4Txj//dd99FCH355ZdUh8bGRhMTE3d3d6oF//jz8vKoltDQUITQvXv38MdJkybNmjWLvhVnZ2fqx6/OJlQbMgA6FXnTx8dnyFnTY2nXQd5UAHmTLXpfRw4X7DM2Nsa1v06ePGlgYEB/c6FQKJw2bdqlS5fq6uocHByodhUFxF5//fXPP//8/fffX7Zs2cyZMw0NDa9fv051Vn8Tqg1ZwWxII6xCpqe7To/e3jXa8CPnsEO0T+/zZlFREUJIIjcOHrUAACAASURBVJEYGxv39PTgoi8Dlmi9ceMG/ZepooDYvn37JBJJZmamn58fQsjb2zs6OjokJAQhxGgTqg1ZwWy06emuCw8PV/cbPh1gh2ifft8X6u/vx88/rFixAiFkYmJiaWlpZGTU19enfGg9Z84cNYclCGLJkiX/+te/ZDLZyZMnSZKUSqWfffaZBjfBOv3ddSM9xRpDnubzdHbpd95MTEy8ePFiSEhIWFgYbpFKpXK5nHpzFrZz584JEybI5XI1h7W0tKyqqkIIGRsbv/baa/hWMvWmPY1sgnWw6wAYNv3Lm/39/S0tLd98842fn9+uXbuWLVv25ZdfUnVhd+zYMWXKlGXLlp0+fbq9vb2tre3gwYNbt25NTk5mNIf8f/7nfy5fvtzT09PS0rJr1y6SJH19fTW7iZFjWoUMdh0AmsH68faQ98V4PB49YIIgBALBjBkzPvjgg0uXLin3b21tXbVq1eTJk42NjcePH+/v73/27Fm8SM0CYhUVFdHR0S+88AKehPjyyy+npaVRr9BSvQnV1K9gNmSFLlKNKmRjadeRcD9dydN8ns7u/XSCZPViAUEQx48fX7BgAYsxAH1x4sSJ8PBwdv9idQq+xpKdnc12INrGet7Qv/N0AABgF+RNAJ4Wt2/fDg4OxnXkGhsbk5KSPDw8+Hy+UCj08fFRKIyvpr6+vj179ri7u1tYWNjY2Lzxxhv4sYgBOwcHBxMEoVAkJSEhAV+B0SOQNzWMGNzmzZvZjg48vSoqKjw8PPz9/XEduaioqJSUlC1btjQ2NpaWljo4OEil0oSEBEZjdnV1+fr6ZmRk7Nmzp6Wlpby83NzcPDg4+OrVq8qdjxw5MuBV+6ioqMTExI0bNw7ve7GDxWurpA5c3wV6RMv3hXg83iuvvKLL46t/X6i9vd3BwYH+nozAwMCMjAzqY09PD36it7m5Wf0APvjgAz6f39TURLV0dnaamJj8+uuvCj3r6+utrKyWLFmCENq2bZvCUvyeDPVTAet5A443ARj7du3a1dTUtGnTJqolPz8flwvAOBzO1KlTnzx5Qn8uVrXm5uZDhw4tXrzY1taWauTxeN3d3cqv842KigoLCxvsdZVisTg0NHT16tX6Mo0X8iYAYxxJkunp6Z6envb29iq61dbWIoTGjRun5rC4QiCuRqja4cOHr169mpycrKJPSEhIXV0d9YiEjoO8CcYgPEt0ypQpHA7HysrqjTfeOH/+PF60fft2fLmZ+sGfOXMGt1BFVfBLMrq6uoqLi/EiPC0ftxME4eDgUFZW5ufnZ2FhYWZmNmfOHOohqJGMP0oqKyubm5vFYrGKPpmZmTU1Nc7OzlOnTlVz2J9//hkhZGVltXr1akdHRw6HM3HixJiYmLa2Nnq3urq61atXHz58WPUbX1588UWE0Pfff6/m1lnG4jUCUgeuUwA9oub1zcbGxkmTJtna2ubl5bW3t1+/fl0qlRIEQX9qQPnaoru7u7W1Nb1lsOuPYrGYx+NJJBJchLSsrMzV1ZXD4RQWFmpkfHXKqmJqXt88evQoQujjjz8ecOnVq1djYmLwu04vXrw45GgUXFRQKBQuXry4pqbmwYMHmZmZPB7P2dlZJpNR3QICApYvX06PRPn6JkmSuOaLt7e3OptmPW/A8SYYaxITE2/evJmSkjJv3jw+n+/s7PzVV1/Z2dnFxMSM5OWgdF1dXfv375dIJDwez8PDIysrq7e3NzY2ViODU49XaWQ09EfBwAHLUCGEXF1ds7OzV65ceeXKFXqFwCF1d3cjhLhcbkZGxuTJky0tLZcuXZqYmFhdXb17927cJy0t7caNG7t27RpyND6fTxAEDlX3Qd4EYw2ehxgYGEi1mJiY+Pn5PX78WFOngTweD59XYjNmzLC3t6+srNTIz76wsLCtrU0ikYx8KAwnOGNj48E6nDt3LjU1VfXVT2X4Kd65c+fSLzIEBQWhP06379y5s2bNmsOHDys87zsYIyMj6h0EOg7yJhhTcJVPU1NThatp+J5vU1OTRrZiaWmp0GJjY4MQamlp0cj4mmVqaooQot4ipSlOTk4IIWtra3oj3g/37t1DCOHrJLNnz6amMON5SBs3bsQff//9d/q6crl8tF9HqCmQN8GYYmJiIhAIuru7Hz58SG/HZ+hCoRB/NDAw6O3tpXeQyWQKQ1GVopS1trYqnEfjjImzxsjH1yw7OzuEEL6AqEH4xpfCITbeD/j/UitWrFC4LKhwffPZZ5+lVuzo6CBJEoeq+yBvgrEGl5enz2jp6ekpKCjgcrkBAQG4xc7Orr6+nurQ1NR0584dhXHMzMyo3Pf8888fOnSIWtTd3V1WVkZ9/PXXXxsaGsRiMfWzH+H4moVnU+KXaiiTy+UuLi7DGPbNN98UiURnzpzB1wEw/ETQW2+9xXQ0vLuUJ37qJsibYKzZsWPHpEmT4uLi8vPzHz58WF1d/c477zQ2NqamplIztP39/RsaGvbu3dvZ2VlTUxMbG0sdKlJeeuml6urqu3fvlpSU1NbWent7U4sEAsH69etLSkq6urrKy8sjIiI4HE5qairVYSTjMy2rOiSxWGxjY1NZWam8KC0tjcfjrV27VnlRREQEQRA3b94cbFgTE5P09PTW1taFCxfeuHFDJpMdPXp0x44dnp6eMTExTIPEr4MebGK8ztHivfsBILbnEwA9ov5zlvfv34+Li5s0aZKxsbFAIAgICCgoKKB3kMlkkZGRdnZ2XC7Xy8urrKzM3d0d/yLWrVuH+1RVVXl7e/N4PEdHx3379lHrisVikUh07dq1gIAACwsLLpfr4+NTVFSkqfGHLKtKUf85y/Xr1xsZGdXX1yu0HzhwgMvlxsfHK6/i6+trbm4ul8tVj3zhwoWAgACBQMDhcFxcXDZv3vzo0SPlbtHR0QqZJyAggN4hLCxMJBL19vaq83VYzxuQN4He0JG6xThvsh0FSTLJmzKZTCQS0Z9PV+3BgwdcLjcyMnIE0TGAn08/duyYmv1Zzxtwng7A2CcQCPLy8nJycvDL+FQjSTImJobP52/btk0LsdXW1kql0sTExIULF2phcxoBeROAp4Kbm1t5efnp06dx/U0Vmpuba2trCwoKqOkHo+rgwYNJSUlJSUla2JamQN4EQF34ufLKysr6+nqCIDZs2MB2RMw4OTnl5+fj+psqCIXCoqKiadOmaSeqnTt36tGRJgYvEQRAXfHx8fHx8WxHAdgHx5sAAMAM5E0AAGAG8iYAADADeRMAAJhh/77Qnj17srOz2Y4C6AH8hHVYWBjbgegK/Cwm7BDtI0jNlUcdBvhPDgZz+vRpNzc37UwhBHpn1apVGixRyhTLeROAweAXwy5YsIDtQABQBNc3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzRmwHAMB/yWQykiTpLV1dXQ8ePKA+mpubGxsbaz0uABQRCn+pALDF19f3/Pnzgy01NDSsr6+3tbXVZkgADAjO04GuWLRoEUEQAy4yMDB49dVXIWkCHQF5E+iK0NBQI6OBLxwRBLF06VItxwPAYCBvAl1hZWXl7+9vaGiovMjAwCAkJET7IQEwIMibQIdERET09/crNBoZGQUGBgoEAlZCAkAZ5E2gQ4KDg01MTBQanzx5EhERwUo8AAwI8ibQIWZmZiEhIQqTjbhc7ptvvslWSAAog7wJdMs777zT19dHfTQ2Ng4NDeVyuSyGBIACyJtAtwQEBNAvZfb19b3zzjssxgOAMsibQLcYGxsvXLiQw+Hgj5aWln5+fuyGBIACyJtA5yxatKi3txchZGxsHBERMdikTgDYAs9ZAp3T399vb2/f3NyMECoqKnrllVfYjgiAP4HjTaBzDAwMlixZghCys7ObNWsW2+EAoIjlM6ATJ06wGwDQTc888wxCyNPTMzs7m+1YgC6aNWuWg4MDa5snWcXa1wYA6LPjx4+zmLjYv+J+/PjxBQsWsB0F0Dk5OTmhoaH0lhMnToSHh8P/bilhYWEIoafwkHywullaA9c3gY5SSJoA6A7ImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CcDT4vbt28HBwR0dHQihxsbGpKQkDw8PPp8vFAp9fHxyc3OHMWZfX9+ePXvc3d0tLCxsbGzeeOONvLy8weY8BAcHEwSxfft2emNCQsLx48eHsWkWQd4EY19nZ+dzzz03b948tgNhU0VFhYeHh7+/P5/PRwhFRUWlpKRs2bKlsbGxtLTUwcFBKpUmJCQwGrOrq8vX1zcjI2PPnj0tLS3l5eXm5ubBwcFXr15V7nzkyJG8vDzl9qioqMTExI0bNw7ve7EC8iYY+0iS7O/vV34Dh9aYm5t7eXmxtXWEUEdHR1BQ0Ntvv71y5UqqMTk5OTAwkMfjOTk5ffHFFyKRKDk5uaWlRf1h16xZc/ny5R9++OHVV1/lcrkTJkzIyMhQrtiPEGpoaIiLi8OPzyqYMmVKbm5uUlKSHj09CHkTjH0WFhY1NTXfffcd24GwZteuXU1NTZs2baJa8vPz3333Xeojh8OZOnXqkydPrl+/ruaYzc3Nhw4dWrx4Mf39zDwer7u7e/r06Qqdo6KiwsLC/P39BxxKLBaHhoauXr1aLper+5VYBXkTgDGOJMn09HRPT097e3sV3WpraxFC48aNU3PYb7/99smTJ+ocRx8+fPjq1avJyckq+oSEhNTV1Z06dUrNrbML8iYY406ePEn8obu7W6Hl1q1b4eHhlpaW1tbW8+bNq6mpwWslJyfjDg4ODmVlZX5+fhYWFmZmZnPmzCkuLsZ9tm/fjvtQuePMmTO4Bdclocbp6uoqLi7Gi7RfTrSysrK5uVksFqvok5mZWVNT4+zsPHXqVDWH/fnnnxFCVlZWq1evdnR05HA4EydOjImJaWtro3erq6tbvXr14cOHLSwsVIz24osvIoS+//57NbfOMhafjcc33dh9Ph/oEXzXdXjrzp8/HyH0+PFjhZb58+dfuHChs7Pz7NmzXC535syZ9LXEYjGPx5NIJLhPWVmZq6srh8MpLCyk+vB4vFdeeYW+lru7u7W1Nb1FuQ82Z86ccePGlZSUDO9LhYaGhoaGDtnt6NGjCKGPP/54wKVXr16NiYkxMDCwsrK6ePGi+lvHO1AoFC5evLimpubBgweZmZk8Hs/Z2Vkmk1HdAgICli9fTo9k27ZtyqO1t7cjhLy9vdXZNOt5A443wVMtMjJSIpHweLy5c+cGBgaWlZXdv3+f3qGrq2v//v24j4eHR1ZWVm9vb2xsrEa23t/fTyWC0dPY2IgQGuwF9K6urtnZ2StXrrxy5crMmTPVHxYfvHO53IyMjMmTJ1taWi5dujQxMbG6unr37t24T1pa2o0bN3bt2jXkaHw+nyAIHKrug7wJnmr0TOHo6IgQamhooHfg8Xj4FBKbMWOGvb19ZWWlRn7hhYWFbW1tEolk5EOpgBOcwtuV6c6dO5eamqr66qcyHo+HEJo7dy79ykNQUBD643T7zp07a9asOXz4MO45JCMjo8ePHzOKgS2QN8FTjX4Uhl8GpzBdydLSUmEVGxsbhBCj+TrsMjU1RQjR366sEU5OTggha2treiPeOffu3UMI5eXltbe3z549m7qajOchbdy4EX/8/fff6evK5XJ9eeEz5E0AVGltbVU4j8YZEycIhJCBgQF+ixxFJpMpDMJuvUg7OzuEEL6AqEH4bpjCcTfeOXhm0ooVKxQuCypc33z22WepFTs6OkiSxKHqPsibAKjS3d1dVlZGffz1118bGhrEYjH1C7ezs6uvr6c6NDU13blzR2EQMzMzKrc+//zzhw4dGuWo/wTPpqyrqxtwqVwud3FxGcawb775pkgkOnPmDL4OgOEngt566y2mo+F9qDzxUzdB3gRAFYFAsH79+pKSkq6urvLy8oiICA6Hk5qaSnXw9/dvaGjYu3dvZ2dnTU1NbGwsdShKeemll6qrq+/evVtSUlJbW+vt7Y3bfX19ra2tS0tLR/UriMViGxubyspK5UVpaWk8Hm/t2rXKiyIiIgiCuHnz5mDDmpiYpKent7a2Lly48MaNGzKZ7OjRozt27PD09IyJiWEaZEVFBUJosInxOkeL9+4HgNieTwD0yPDmISmUq1i8eHFJSQm95aOPPiL/fCYeGBiI1xWLxSKR6Nq1awEBARYWFlwu18fHp6ioiD6+TCaLjIy0s7PjcrleXl5lZWXu7u54nHXr1uE+VVVV3t7ePB7P0dFx37591Lre3t5WVlYXLlwY3g5Rcx4SSZLr1683MjKqr69XaD9w4ACXy42Pj1dexdfX19zcXC6Xqx75woULAQEBAoGAw+G4uLhs3rz50aNHyt2io6MVMk9AQAC9Q1hYmEgk6u3tVefrsJ43IG8CvTGS+ZvDg/OmNrfIiPp5UyaTiUSi6OhoNUd+8OABl8uNjIwcQXQMVFRUEARx7NgxNfuznjf04Dzd3NycoMETdMVi8fLlyy9dusR2dKPiwYMHBw4c8PX1HTduHJfLfe655xYvXjzgeZZqT+GuAwMSCAR5eXk5OTn79u0bsjNJkjExMXw+f9u2bVqIrba2ViqVJiYmLly4UAub0wg9yJudnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5Rw9asWfO3v/1t/vz5165da21tPXz4cEVFhbu7+8mTJxmN8xTuOjAYNze38vLy06dP4/qbKjQ3N9fW1hYUFAiFQi0EdvDgwaSkpKSkJC1sS2NYPNYl1T7epv/46fD17ODgYOq5i7Hhr3/96/vvv09vwVfNn3vuOaZDjaVdp83z9E8//ZT+M8HXQHWN+ufpY4yaeWP06MHxpgqffPKJp6fnt99++/XXX7Mdiyalp6cfPHiQ3iIWi7lcbk1NDamhZ/LG6q7TFIVbJQolysFTTr/zJkEQuA7r/v372Y5ldHV1dT1+/Hj69OmamkH99Ow6ADROv/Mm+uOhhdLSUuoxsnv37sXExDg5OXE4nPHjx0ulUnySi9QrIIYQ6unp2bRpk4uLi5mZ2bhx44KCgnCpQaqDik2opmYAyrKzsxFCH330EcPdo4p+7ToAdAhL1wf+C43s+iZJklQhgIaGBpIkGxoaJk6caGtre+rUqYcPH165csXHx8fU1JQ+RW7IAmKRkZECgeCHH3549OhRU1NTfHw8Quj8+fN4qTqbUE2dCmZ0TU1Ntra2ypNC1KlCNpZ2nfbnIek4uL7JWgAsbpvURN6k7gjjHz8u/f/ll19SHRobG01MTNzd3akW/OPHb93DQkNDEUL37t3DHydNmjRr1iz6VpydnakfvzqbUG3IAOju37//4osvhoeHK89A9vHxGXLW9FjadZA3FUDeZIu2S09rHC4rYGxsjCtsnzx50sDAgP7mQqFQOG3atEuXLtXV1Tk4OFDtAxYQw4O8/vrrn3/++fvvv79s2bKZM2caGhrSX7qi/iZUUxEApaurKyAgYOrUqUeOHDE0NFQYobCwUM1tDUhPd11YWNiwv/IYgx/QhB2ifXp/fbOoqAghJJFIjI2Ne3p62tvb+/v7BQIBfb43Luh/48YN+ooqCojt27fvyJEjtbW1fn5+fD7/9ddfp57VY7QJ1YasYCaXy/HDZ5mZmcpJc+T0d9cBwC79Pt7s7+/Hzz+sWLECIWRiYmJpadnZ2fn48eORvMUFFwpcsmRJX19fYWFhcnKyVCrdvXv3qlWrNLUJdURHR/f09OTm5lIbevbZZ7Oysl5++eWRD66/uw7fIgPojyPNp3CHsFuXD+n78WZiYuLFixdDQkKoUxWpVCqXy6k3Z2E7d+6cMGGC+q8YtbS0rKqqQggZGxu/9tpr+FYy9aY9jWxiSJs3b7569eo333wz4NuoR24M7zoARpv+5c3+/v6WlpZvvvnGz89v165dy5Yt+/LLL6n//+zYsWPKlCnLli07ffp0e3t7W1vbwYMHt27dmpyczOgY53/+538uX77c09PT0tKya9cukiR9fX01uwkVMjIytmzZ8tNPP1lYWNBPaRXmKjGtQvY07DoAtIHFe1KkevfFFF5OQhCEQCCYMWPGBx98cOnSJeX+ra2tq1atmjx5srGx8fjx4/39/c+ePYsXqVlArKKiIjo6+oUXXsCTEF9++eW0tDT684gqNqGamgEEBgYO9t+LPutoyCpkY2nXkXA/XQncT2cLQY7yu/RUIwji+PHjCxYsYDEGoC9OnDgRHh7O7l+sTnmar2+ymzf07zwdADA8t2/fDg4OxvWQGhsbk5KSPDw8+Hy+UCj08fFRKPCspr6+vj179ri7u1tYWNjY2Lzxxht4eu+AnYODgwmCUHjYPyEhAZ9J6BHImwA8FSoqKjw8PPz9/fl8PkIoKioqJSVly5YtjY2NpaWlDg4OUqk0ISGB0ZhdXV2+vr4ZGRl79uxpaWkpLy83NzcPDg6+evWqcucjR47gtw8piIqKSkxM3Lhx4/C+Fysgb2oYMbjNmzezHR1gwNzcHD/Cr6fj03V0dAQFBb399tu4mAuWnJwcGBjI4/GcnJy++OILkUiUnJzM6P3Ga9asuXz58g8//PDqq69yudwJEyZkZGQMOAOkoaEhLi4OvwdYwZQpU3Jzc5OSkk6cODGMr8YKuImpYXD1DeigXbt2NTU1bdq0iWrJz8+nd+BwOFOnTq2vr79+/brye+UG1NzcfOjQoffffx+/9Rfj8Xj011tSoqKiwsLCvL298auAFYjF4tDQ0NWrV0ulUr2YWQHHmwCMcSRJpqene3p62tvbq+hWW1uLEBo3bpyaw+JKV+ocMh8+fPjq1avJyckq+oSEhNTV1VFTfXUc5E0wBuHZTlOmTOFwOFZWVm+88cb58+fxou3bt+PLJtQP/syZM7iFKg6QnJxMEERXV1dxcTFehA+CcDtBEA4ODmVlZX5+fhYWFmZmZnPmzKEm849k/FFSWVnZ3NwsFotV9MnMzKypqXF2dp46daqaw+IHZK2srFavXu3o6MjhcCZOnBgTE9PW1kbvVldXt3r16sOHD1tYWKgY7cUXX0QIff/992punWUszoEidWAeFtAjas7fbGxsnDRpkq2tbV5eXnt7+/Xr16VSKUEQaWlpVB8ej/fKK6/Q13J3d7e2tqa3KPfBxGIxj8eTSCS4mF5ZWZmrqyuHwyksLNTI+OqUB8TUnL+JT40//vjjAZdevXo1JiYGv7Pv4sWLQ45GwcWxhELh4sWLa2pqHjx4kJmZyePxnJ2dZTIZ1S0gIGD58uX0SLZt26Y8Wnt7O0LI29tbnU2znjfgeBOMNYmJiTdv3kxJSZk3bx6fz3d2dv7qq6/s7OxiYmKam5s1somurq79+/dLJBIej+fh4ZGVldXb2xsbG6uRwanHBDQyGvqj8BW9Ggudq6trdnb2ypUrr1y5Qq90NSR8HZPL5WZkZEyePNnS0nLp0qWJiYnV1dW7d+/GfdLS0m7cuLFr164hR+Pz+QRB4FB1H+RNMNbgeYj0Z65MTEz8/PweP36sqdNAHo+HzyuxGTNm2NvbV1ZWauRnX1hY2NbWJpFIRj4UhhOcsbHxYB3OnTuXmpqq+uqnMvw02ty5c+kXGYKCgtAfp9t37txZs2bN4cOHFZ5bG4yRkRFVS1vHQd4EYwquVmdqaqpwNQ3f821qatLIViwtLRVa8D1oRpN4tMbU1BQhRL0NRVOcnJwQQtbW1vRGvB/u3buHEMLXSWbPnk1NxcPzkDZu3Ig//v777/R15XI5l8vVbJCjBPImGFNMTEwEAkF3d/fDhw/p7fgMnXohuIGBQW9vL72DTCZTGEpFsbLW1laF82icMakZPCMcX7Ps7OwQQvgCogbhG18Kh9h4P+D/S61YsULhsqDC9c1nn32WWrGjo4MkSRyq7oO8CcaakJAQhBB9RktPT09BQQGXyw0ICMAtdnZ29fX1VIempqY7d+4ojGNmZkblvueff/7QoUPUou7u7rKyMurjr7/+2tDQIBaLqZ/9CMfXrOnTpyOE6urqBlwql8tdXFyGMeybb74pEonOnDlDn7CJnwh66623mI6GdxcOVfdB3gRjzY4dOyZNmhQXF5efn//w4cPq6up33nmnsbExNTWVmqHt7+/f0NCwd+/ezs7Ompqa2NhY5cneL730UnV19d27d0tKSmpra729valFAoFg/fr1JSUlXV1d5eXlERERHA4nNTWV6jCS8ZmWBxySWCy2sbGprKxUXpSWlsbj8dauXau8KCIigiCImzdvDjasiYlJenp6a2vrwoULb9y4IZPJjh49umPHDk9Pz5iYGKZB4tea+vv7M12RHVq8dz8AxPZ8AqBH1K8jd//+/bi4uEmTJhkbGwsEgoCAgIKCAnoHmUwWGRlpZ2fH5XK9vLzKysrc3d3xL2LdunW4T1VVlbe3N4/Hc3R03LdvH7WuWCwWiUTXrl0LCAiwsLDgcrk+Pj5FRUWaGn/I8oAU9evIrV+/3sjIqL6+XqH9wIEDXC43Pj5eeRVfX19zc3PltwEquHDhQkBAgEAg4HA4Li4umzdvfvTokXK36OhohcwTEBBA74BfCdPb26vO12E9b0DeBHpDR+pv4rzJdhQkySRvymQykUgUHR2t5sgPHjzgcrnKr54eJRUVFQRBHDt2TM3+rOcNOE8HYOwTCAR5eXk5OTn4pVKqkSQZExPD5/O3bdumhdhqa2ulUmliYuLChQu1sDmNgLwJwFPBzc2tvLz89OnTuP6mCs3NzbW1tQUFBdT0g4kfVAAAFiBJREFUg1F18ODBpKSkpKQkLWxLUyBvAqAu/Fx5ZWVlfX09QRAbNmxgOyJmnJyc8vPzcf1NFYRCYVFR0bRp07QT1c6dO/XoSBPTg5JNAOiI+Pj4+Ph4tqMA7IPjTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAhlicc0/CK8wAAMPC7vNCLM9D0rv3zQOtCQ8Pj4uL02D5XjCWzJo1i8WtE3DQB3QTQRDHjx9fsGAB24EAoAiubwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZozYDgCA/zp27NjDhw/pLf/6179kMhn1MSQkZPz48VqPCwBFBEmSbMcAAEIIvffee5mZmcbGxvgj/sskCAIh9OTJE3Nz85aWFhMTEzZDBAAhBOfpQHcsWrQIIdT3B7lcLpfL8b8NDQ3DwsIgaQIdAcebQFfI5XJbW9u2trYBlxYUFPj6+mo5JAAGBMebQFcYGRktWrSIOk+ne+aZZ3x8fLQfEgADgrwJdMiiRYv6+voUGo2NjZcsWWJoaMhKSAAog/N0oENIkpwwYUJdXZ1C+8WLF2fOnMlKSAAog+NNoEMIgoiIiFA4VXd0dPTw8GArJACUQd4EukXhVN3Y2Pi9997Ds5EA0BFwng50jouLy/Xr16mPV65cmTZtGovxAKAAjjeBzlmyZAl1qj516lRImkDXQN4EOiciIkIulyOEjI2N3333XbbDAUARnKcDXeTh4XHp0iWCIG7dujVhwgS2wwHgT+B4E+iipUuXIoQ8PT0haQIdpAf1kEpKSj777DO2owBa1d3dTRBET09PWFgY27EArZJIJKtWrWI7iiHowfHm3bt3c3Jy2I4CjK6cnBz6dHdTU1NbW1sHBwcWQ2JRXV3d0/k3X1paWlJSwnYUQ9OD400sOzub7RDAKCII4sMPP1ywYAHV8vvvvz/77LMshsSiEydOhIeHP4V/8/pyeqEHx5vg6fTUJk2g+yBvAgAAM5A3AQCAGcibAADADORNAPTe7du3g4ODOzo6EEKNjY1JSUkeHh58Pl8oFPr4+OTm5g5jzL6+vj179ri7u1tYWNjY2Lzxxht5eXmDPSYTHBxMEMT27dvpjQkJCcePHx/GpnUf5E2gxzo7O5977rl58+axHQibKioqPDw8/P39+Xw+QigqKiolJWXLli2NjY2lpaUODg5SqTQhIYHRmF1dXb6+vhkZGXv27GlpaSkvLzc3Nw8ODr569apy5yNHjuTl5Sm3R0VFJSYmbty4cXjfS5dB3gR6jCTJ/v7+/v5+tgIwNzf38vJia+sIoY6OjqCgoLfffnvlypVUY3JycmBgII/Hc3Jy+uKLL0QiUXJycktLi/rDrlmz5vLlyz/88MOrr77K5XInTJiQkZEx4HvxGhoa4uLilixZorxoypQpubm5SUlJJ06cGMZX02WQN4Ees7CwqKmp+e6779gOhDW7du1qamratGkT1ZKfn08vhsLhcKZOnfrkyRN6aT7VmpubDx06tHjxYltbW6qRx+N1d3dPnz5doXNUVFRYWJi/v/+AQ4nF4tDQ0NWrV+NCLWMG5E0A9BVJkunp6Z6envb29iq61dbWIoTGjRun5rDffvvtkydP1DmOPnz48NWrV5OTk1X0CQkJqaurO3XqlJpb1wuQN4G+OnnyJPGH7u5uhZZbt26Fh4dbWlpaW1vPmzevpqYGr5WcnIw7ODg4lJWV+fn5WVhYmJmZzZkzp7i4GPfZvn077kPljjNnzuCWZ555hj5OV1dXcXExXmRkpO2n7yorK5ubm8VisYo+mZmZNTU1zs7OU6dOVXPYn3/+GSFkZWW1evVqR0dHDoczceLEmJgYhVc019XVrV69+vDhwxYWFipGe/HFFxFC33//vZpb1w+kzsO35NiOAowuhNDx48eHseL8+fMRQo8fP1ZomT9//oULFzo7O8+ePcvlcmfOnElfSywW83g8iUSC+5SVlbm6unI4nMLCQqoPj8d75ZVX6Gu5u7tbW1vTW5T7YHPmzBk3blxJSckwvhGp9t/80aNHEUIff/zxgEuvXr0aExNjYGBgZWV18eJF9beOd6BQKFy8eHFNTc2DBw8yMzN5PJ6zs7NMJqO6BQQELF++nB7Jtm3blEdrb29HCHl7e6uz6dDQ0NDQUPVDZQscb4KxKTIyUiKR8Hi8uXPnBgYGlpWV3b9/n96hq6tr//79uI+Hh0dWVlZvb29sbKxGtt7f349/YBoZbTCNjY0IIYFAMOBSV1fX7OzslStXXrlyhdHbQPHBO5fLzcjImDx5sqWl5dKlSxMTE6urq3fv3o37pKWl3bhxY9euXUOOxufzCYLAoY4ZkDfB2ETPFI6OjgihhoYGegcej4dPIbEZM2bY29tXVlZq5BdeWFjY1tYmkUhGPpQKOMEpvP6T7ty5c6mpqaqvfirj8XgIoblz59KvPAQFBaE/Trfv3LmzZs2aw4cP455DMjIyevz4MaMYdBzkTTA20Y/COBwOQkhhupKlpaXCKjY2NgghRvN12GVqaooQor/+UyOcnJwQQtbW1vRGvHPu3buHEMrLy2tvb589ezZ1NRnPQ9q4cSP++Pvvv9PXlcvlXC5Xs0GyC/ImeEq1trYqnEfjjIkTBELIwMCgt7eX3kEmkykMwu4Liu3s7BBC+AKiBuG7YQrH3Xjn4JlJK1asULjep3B9k17LqqOjgyRJHOqYAXkTPKW6u7vLysqoj7/++mtDQ4NYLKZ+4XZ2dvX19VSHpqamO3fuKAxiZmZG5dbnn3/+0KFDoxz1n+DZlPR6z3RyudzFxWUYw7755psikejMmTP4OgCGnwh66623mI6G96HyxE+9BnkTPKUEAsH69etLSkq6urrKy8sjIiI4HE5qairVwd/fv6GhYe/evZ2dnTU1NbGxsdShKOWll16qrq6+e/duSUlJbW2tt7c3bvf19bW2ti4tLR3VryAWi21sbCorK5UXpaWl8Xi8tWvXKi+KiIggCOLmzZuDDWtiYpKent7a2rpw4cIbN27IZLKjR4/u2LHD09MzJiaGaZAVFRUIocEmxusrLd67HyaYh/Q0QMznISmUq1i8eLHCKxY++ugj8s9n4oGBgXhdsVgsEomuXbsWEBBgYWHB5XJ9fHyKioro48tkssjISDs7Oy6X6+XlVVZW5u7ujsdZt24d7lNVVeXt7c3j8RwdHfft20et6+3tbWVldeHCheHtDfX/5tevX29kZFRfX6/QfuDAAS6XGx8fr7yKr6+vubm5XC5XPfKFCxcCAgIEAgGHw3Fxcdm8efOjR4+Uu0VHRyuklICAAHqHsLAwkUjU29urztfRl3lIepCPIG8+DYaRN0cC502tbY4p9f/mZTKZSCSKjo5Wc+QHDx5wudzIyMgRRMdARUUFQRDHjh1Ts7++5E04TwdAjwkEgry8vJycnH379g3ZmSTJmJgYPp+/bds2LcRWW1srlUoTExMXLlyohc1p0xjMm+Xl5e+9956Tk5OpqamlpeXMmTO3bt2qfCdU35mbmxM0+LEQsVi8fPnyS5cusR0d0B43N7fy8vLTp0/j+psqNDc319bWFhQUCIVCLQR28ODBpKSkpKQkLWxLy8Za3kxMTHz55ZetrKzy8/NlMtnNmzf//ve/5+bmOjs7U08fjw2dnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5RF+HnyisrK+vr6wmC2LBhA9sRaYCTk1N+fj6uv6mCUCgsKiqaNm2adqLauXPn2DvS/C+2LxQMTf1rPfjs48CBAwrtXV1duGz1b7/9xnTrgz2ArCkjGZ+eN+nwXdTg4GDqaT/dh7R7fVPHPbXX9OH6prb9/vvvW7Zseemll5Rv8JmZme3Zs+fhw4fDmEWhjz755BNPT89vv/3266+/ZjsWAMagsZM3Dxw4IJfLB3tvvbe3t729/dmzZ3EtwrGNIAhc/Xv//v1sxwLAGDR28uaPP/6IEFJRixAv+s9//oNGVmBRLwo44u2WlpZSDy/fu3cvJibGycmJw+GMHz9eKpXiCclIvbKVCKGenp5Nmza5uLiYmZmNGzcuKCgIF7ilOqjYBABjCtsXCoam5rUe/HjcTz/9NFiHiIgI9OdihSMpsKgLBRwHu75JkiRVfqahoYEkyYaGhokTJ9ra2p46derhw4dXrlzx8fExNTWlT8wesmxlZGSkQCD44YcfHj161NTUFB8fjxA6f/48XqrOJlRAcH2TBq5v6rixc7yJDVlnQYOFGHS5gKPCiomJibdv3/7ss8/efPNNc3PzadOmff311yRJ/u1vf1NYUUXZyoKCgmnTpr322mtcLtfW1vbTTz91dnYexiYA0Hfaruw/euzt7RsbG1tbWwfrgBcxrUWogooCjiOv/lJYWDiS1XExG2NjY3xZ4OTJkwYGBvT35QqFwmnTpl26dKmurs7BwYFqH7BsJR7k9ddf//zzz99///1ly5bNnDnT0NCQ/qov9TcxmPDw8PDw8JF86zGG3WJLbAkNDWU7hKGNnbzp4+Nz6dKlioqK119/fcAOuPzB7NmzNbXFAQs4NjQ0tLS0sF41q6ioCCEkkUiMjY17enpwqbEBC4PfuHGDntRUlK3ct2+fRCLJzMz08/NDCHl7e0dHR4eEhCCEGG1iMHFxcaNd6FdflJSUpKSk4LP1p8qePXvYDkEtYydvRkdH/+Mf/8jOzk5ISFBeWlRU1NDQEBQUNGHCBKpxhAUWcQFHegcdKeDY39+Pn7pbsWIFQsjExMTS0rKzs/Px48cjufWEy9MuWbKkr6+vsLAwOTlZKpXu3r171apVGtmERCJZsGDBsMMbY1JSUp7CvZGdnc12CGoZO9c3nZ2d//73v//8888HDx5UWPTo0aO4uDhra+uUlBR6+wgLLOpsAcfExMSLFy+GhIRQs7KkUqlcLld4Ymrnzp0TJkxQ/8XWlpaWVVVVCCFjY+PXXnsN34Wn3u+qkU0AoB/YuyWlLkb3FhMTEw0NDT/88MMrV650d3c/ePAgLy/Pzc1NJBKVl5crdMaTHP/3f/9/e/cf0sQbxwH8OdqmS91RUS5OyDkYZT9WMigCESbMwhJavyQEIRIJYklJNcEockThH45vfxgrIoIiCwo2jIhVf0STVJpggdImlTYPtMwVLVmsPx467uvmdbeb7e72ef3n3eNzj/P4sN3z7P38F41G3717d+DAAYqi5s1379ixgyTJDx8+vHz5UqVSvX37Fh83m80kSVZXV3PMp4vpX+h8+q9fv2iafvjwodVqRQgdPnyYnfpF07TRaCwrK+vt7Z2ZmZmenu7u7l66dCl7Cjt5Y8jTp08jhF6/fo1/JEmyqqpqaGgoFovRNH3u3DmEUEdHB/9LcEAwn84C8+kSJ4P/jdB7qL+/v7Gxcc2aNRqNpqioyGKxdHR0sPcvZYgJWMx6gOO8LbEIgiBJcuPGjUePHh0cHExuPz09feLEibKyMrVavXLlSpvN9uTJE3yKZ2xlMBhsbm5et24dXr+5bds2j8fD/ionxyX+CuomG9RNiSMSi7xVqXg9PT0HDx6U2jg3b948NTW10BYFQCiCIO7evZuDT/RSkuY9/w/gJ0vSf8qpnOebAADG+/fv6+rqcLJcJBJxuVwWi0Wn0+n1+qqqqnlR+fz19vaaTKaUU39nzpzJnQUAUDcBUJpgMGixWGw2G06Wa2pq6urqOn/+fCQS6evrKykpsdvtKZedcAiFQnV1dU6nk6bplA2ampqcTmd7e3sG/gDJg7opmCIDHHNKYWEhkxsgx/65zc7O7t69e+/evXhaEuvs7KytrS0oKCgtLb1x4wZFUZ2dnYJ2im9vb9++ffvg4GBRUVHKBkaj8cGDBy6Xq6enR+zfIHnKWb/5z7S2tuKvZgMgQZcvX56cnDx79ixzxOfzsRtoNJry8vKJiYmRkZHkHToXcv36da1Wy93GbDbv27fv5MmTdrs9gyE1EgTvNwFQjkQice3ata1bt3J/nxinKS5fvpx/z38tmtiePXvGx8eZVb1KBXUTyAle6mQ0GjUazbJly3bu3Pns2TN8SvHZgHwMDQ3RNM2RpogQunnzZigUMplM5eXlGR8ATmx4/PhxxnuWluwug+IjZ9ey5RTEY/1mJBIxGAzFxcVer/fr168jIyN2u50gCI/Hw7SRezYglvY9f+vWLfT/sES2N2/eOBwOvIXfq1ev0ug/kUhQFLVkyZKFzuKYgsrKyvQ6l8v6TXi/CWTD6XSOjY11dXXt2rVLp9OZTKbbt2+vXr3a4XAsNMkrlJSzAfnAOVgp01UQQps2bbp3796xY8eGh4fZwVcZpNPpCILAw1AwqJtANvCqw9raWuZIXl5edXX1jx8/MvXBkCMbUHznz58///z586JmPsViMYSQWq1eqMHTp0/dbncG0xSTqVQqJjZbqaBuAnnAUXX5+fnz1sEUFxcjhCYnJzNylZTZgOhP0pX05efnI4SYzVGyIh6P85xEki+om0Ae8vLySJKMxWLRaJR9HH9C1+v1+MeMZAOyj0gkG5AnnMWFHzJmxezsbOLPpjUKBnUTyAbOSGavcfn586ff79dqtTU1NfiIUrMBedqwYQNCaKHYhHg8vnbt2kUdAH5x8DAUDOomkI2LFy8aDIaWlhafzxeNRkdHRw8dOhSJRNxuN/60jhCy2WyfPn26cuXKt2/fQqHQ8ePHk5d2V1RUjI6Ofvz4MRAIhMPhyspK5hRJkm1tbYFA4Pv37wMDAw0NDRqNxu12Mw3E9G+1WlesWNHX15f5l+YPs9m8atUqvLXBPB6Pp6Cg4NSpU8mnGhoaCIIYGxsTPwC8g6nNZhPflaRlczKfH1iHlAsQvxy5qamplpYWg8GgVqtJkqypqfH7/ewGss4GZIi559va2lQq1cTExLzj3d3dWq22tbU1+VesVmthYWE8Hufo1uv1JlcP9gowbP/+/RRFzc3NpTd4uaxDkkE9grqZC3jWzUWF62Z2x4CJuednZmYoimpububZ/suXL1qt9siRI+ldji0YDBIEcefOnbR7kEvdhM/pACgKSZJer/f+/ft4jyluiUTC4XDodLoLFy6IvG44HLbb7U6ns76+XmRX0gd1EwCl2bJly8DAwKNHj3D+JgeapsPhsN/vZxYkpO3q1asul8vlconsRxagbgKgwGzA0tJSn8+H8zc56PX6Fy9erF+/XvwVL126lAvvNDElZz0BwBNkAwJB4P0mAAAIA3UTAACEgboJAADCQN0EAABhZDMvlAubPeW4QCCQ7SFIBX4pcvCeHx8fLykpyfYoeMj2wvu/y51NmQEAsvi+EJFYzPRpAABQHni+CQAAwkDdBAAAYaBuAgCAMFA3AQBAmN/I1Q74MRFjcwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<IPython.core.display.Image object>"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model=get_model_v1( (13,) )\n",
    "\n",
    "model.summary()\n",
    "keras.utils.plot_model( model, to_file='./run/model.png', show_shapes=True, show_layer_names=True, dpi=96)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 5.2 - Add callback"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "os.makedirs('./run/models',   mode=0o750, exist_ok=True)\n",
    "save_dir = \"./run/models/best_model.h5\"\n",
    "\n",
    "savemodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, save_best_only=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 5.3 - Train it"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Train on 354 samples, validate on 152 samples\n",
      "Epoch 1/100\n",
      "354/354 [==============================] - 1s 2ms/sample - loss: 483.2389 - mae: 20.0008 - mse: 483.2388 - val_loss: 421.2562 - val_mae: 18.2848 - val_mse: 421.2561\n",
      "Epoch 2/100\n",
      "354/354 [==============================] - 0s 232us/sample - loss: 270.7346 - mae: 13.9655 - mse: 270.7346 - val_loss: 187.7437 - val_mae: 10.9696 - val_mse: 187.7437\n",
      "Epoch 3/100\n",
      "354/354 [==============================] - 0s 223us/sample - loss: 108.5703 - mae: 7.5648 - mse: 108.5703 - val_loss: 70.6387 - val_mae: 6.1047 - val_mse: 70.6387\n",
      "Epoch 4/100\n",
      "354/354 [==============================] - 0s 234us/sample - loss: 53.8803 - mae: 5.1135 - mse: 53.8803 - val_loss: 40.0765 - val_mae: 4.6628 - val_mse: 40.0765\n",
      "Epoch 5/100\n",
      "354/354 [==============================] - 0s 223us/sample - loss: 34.2413 - mae: 4.1321 - mse: 34.2413 - val_loss: 29.1298 - val_mae: 3.8690 - val_mse: 29.1298\n",
      "Epoch 6/100\n",
      "354/354 [==============================] - 0s 226us/sample - loss: 24.9834 - mae: 3.4851 - mse: 24.9834 - val_loss: 22.8731 - val_mae: 3.3820 - val_mse: 22.8731\n",
      "Epoch 7/100\n",
      "354/354 [==============================] - 0s 228us/sample - loss: 21.2207 - mae: 3.2139 - mse: 21.2207 - val_loss: 20.9766 - val_mae: 3.2391 - val_mse: 20.9766\n",
      "Epoch 8/100\n",
      "354/354 [==============================] - 0s 223us/sample - loss: 19.2641 - mae: 3.0025 - mse: 19.2641 - val_loss: 19.5046 - val_mae: 3.0795 - val_mse: 19.5046\n",
      "Epoch 9/100\n",
      "354/354 [==============================] - 0s 220us/sample - loss: 17.8432 - mae: 2.8878 - mse: 17.8432 - val_loss: 18.3068 - val_mae: 3.0834 - val_mse: 18.3068\n",
      "Epoch 10/100\n",
      "354/354 [==============================] - 0s 224us/sample - loss: 16.7673 - mae: 2.7365 - mse: 16.7673 - val_loss: 17.4260 - val_mae: 3.0035 - val_mse: 17.4260\n",
      "Epoch 11/100\n",
      "354/354 [==============================] - 0s 225us/sample - loss: 15.6927 - mae: 2.6873 - mse: 15.6927 - val_loss: 17.3096 - val_mae: 3.0492 - val_mse: 17.3096\n",
      "Epoch 12/100\n",
      "354/354 [==============================] - 0s 222us/sample - loss: 15.4113 - mae: 2.6274 - mse: 15.4113 - val_loss: 15.7095 - val_mae: 2.8104 - val_mse: 15.7095\n",
      "Epoch 13/100\n",
      "354/354 [==============================] - 0s 220us/sample - loss: 14.7243 - mae: 2.5393 - mse: 14.7243 - val_loss: 15.6497 - val_mae: 2.9052 - val_mse: 15.6497\n",
      "Epoch 14/100\n",
      "354/354 [==============================] - 0s 228us/sample - loss: 14.2611 - mae: 2.5371 - mse: 14.2611 - val_loss: 14.9650 - val_mae: 2.8165 - val_mse: 14.9650\n",
      "Epoch 15/100\n",
      "354/354 [==============================] - 0s 222us/sample - loss: 14.0530 - mae: 2.5289 - mse: 14.0530 - val_loss: 14.8840 - val_mae: 2.8196 - val_mse: 14.8840\n",
      "Epoch 16/100\n",
      "354/354 [==============================] - 0s 224us/sample - loss: 13.3820 - mae: 2.4568 - mse: 13.3820 - val_loss: 13.7568 - val_mae: 2.6754 - val_mse: 13.7568\n",
      "Epoch 17/100\n",
      "354/354 [==============================] - 0s 218us/sample - loss: 13.2232 - mae: 2.4318 - mse: 13.2232 - val_loss: 13.6934 - val_mae: 2.6355 - val_mse: 13.6934\n",
      "Epoch 18/100\n",
      "354/354 [==============================] - 0s 183us/sample - loss: 12.8038 - mae: 2.3743 - mse: 12.8038 - val_loss: 13.7276 - val_mae: 2.6466 - val_mse: 13.7276\n",
      "Epoch 19/100\n",
      "354/354 [==============================] - 0s 223us/sample - loss: 12.4826 - mae: 2.3804 - mse: 12.4826 - val_loss: 13.0037 - val_mae: 2.5279 - val_mse: 13.0037\n",
      "Epoch 20/100\n",
      "354/354 [==============================] - 0s 222us/sample - loss: 12.2345 - mae: 2.3264 - mse: 12.2345 - val_loss: 12.8911 - val_mae: 2.5583 - val_mse: 12.8911\n",
      "Epoch 21/100\n",
      "354/354 [==============================] - 0s 231us/sample - loss: 12.0720 - mae: 2.3410 - mse: 12.0720 - val_loss: 12.5983 - val_mae: 2.5747 - val_mse: 12.5983\n",
      "Epoch 22/100\n",
      "354/354 [==============================] - 0s 224us/sample - loss: 11.7805 - mae: 2.2897 - mse: 11.7805 - val_loss: 12.1645 - val_mae: 2.5094 - val_mse: 12.1645\n",
      "Epoch 23/100\n",
      "354/354 [==============================] - 0s 174us/sample - loss: 11.4012 - mae: 2.2581 - mse: 11.4012 - val_loss: 13.6673 - val_mae: 2.7201 - val_mse: 13.6673\n",
      "Epoch 24/100\n",
      "354/354 [==============================] - 0s 227us/sample - loss: 11.2741 - mae: 2.2712 - mse: 11.2741 - val_loss: 11.6918 - val_mae: 2.4039 - val_mse: 11.6918\n",
      "Epoch 25/100\n",
      "354/354 [==============================] - 0s 179us/sample - loss: 11.2056 - mae: 2.2226 - mse: 11.2056 - val_loss: 12.3935 - val_mae: 2.6021 - val_mse: 12.3935\n",
      "Epoch 26/100\n",
      "354/354 [==============================] - 0s 173us/sample - loss: 10.8629 - mae: 2.2289 - mse: 10.8629 - val_loss: 11.9155 - val_mae: 2.3744 - val_mse: 11.9155\n",
      "Epoch 27/100\n",
      "354/354 [==============================] - 0s 218us/sample - loss: 11.0500 - mae: 2.2151 - mse: 11.0500 - val_loss: 11.2193 - val_mae: 2.3695 - val_mse: 11.2193\n",
      "Epoch 28/100\n",
      "354/354 [==============================] - 0s 180us/sample - loss: 10.4915 - mae: 2.1578 - mse: 10.4915 - val_loss: 11.9919 - val_mae: 2.5344 - val_mse: 11.9919\n",
      "Epoch 29/100\n",
      "354/354 [==============================] - 0s 182us/sample - loss: 10.5519 - mae: 2.1307 - mse: 10.5519 - val_loss: 11.3573 - val_mae: 2.4664 - val_mse: 11.3573\n",
      "Epoch 30/100\n",
      "354/354 [==============================] - 0s 170us/sample - loss: 10.0504 - mae: 2.1281 - mse: 10.0504 - val_loss: 11.7304 - val_mae: 2.5102 - val_mse: 11.7304\n",
      "Epoch 31/100\n",
      "354/354 [==============================] - 0s 216us/sample - loss: 9.8992 - mae: 2.1397 - mse: 9.8992 - val_loss: 10.9137 - val_mae: 2.3602 - val_mse: 10.9137\n",
      "Epoch 32/100\n",
      "354/354 [==============================] - 0s 175us/sample - loss: 9.9473 - mae: 2.0665 - mse: 9.9473 - val_loss: 11.1929 - val_mae: 2.4503 - val_mse: 11.1929\n",
      "Epoch 33/100\n",
      "354/354 [==============================] - 0s 168us/sample - loss: 9.6057 - mae: 2.0609 - mse: 9.6057 - val_loss: 11.5105 - val_mae: 2.4419 - val_mse: 11.5105\n",
      "Epoch 34/100\n",
      "354/354 [==============================] - 0s 178us/sample - loss: 9.6783 - mae: 2.0484 - mse: 9.6783 - val_loss: 11.0130 - val_mae: 2.4072 - val_mse: 11.0130\n",
      "Epoch 35/100\n",
      "354/354 [==============================] - 0s 211us/sample - loss: 9.3834 - mae: 2.0337 - mse: 9.3834 - val_loss: 10.8769 - val_mae: 2.3960 - val_mse: 10.8769\n",
      "Epoch 36/100\n",
      "354/354 [==============================] - 0s 222us/sample - loss: 9.4563 - mae: 2.0349 - mse: 9.4563 - val_loss: 10.7918 - val_mae: 2.4397 - val_mse: 10.7918\n",
      "Epoch 37/100\n",
      "354/354 [==============================] - 0s 223us/sample - loss: 9.4023 - mae: 2.0246 - mse: 9.4023 - val_loss: 10.4927 - val_mae: 2.3926 - val_mse: 10.4927\n",
      "Epoch 38/100\n",
      "354/354 [==============================] - 0s 175us/sample - loss: 8.9702 - mae: 2.0006 - mse: 8.9702 - val_loss: 10.9715 - val_mae: 2.4245 - val_mse: 10.9715\n",
      "Epoch 39/100\n",
      "354/354 [==============================] - 0s 174us/sample - loss: 9.0225 - mae: 2.0207 - mse: 9.0225 - val_loss: 10.9499 - val_mae: 2.4785 - val_mse: 10.9499\n",
      "Epoch 40/100\n",
      "354/354 [==============================] - 0s 177us/sample - loss: 8.8586 - mae: 1.9994 - mse: 8.8586 - val_loss: 10.5540 - val_mae: 2.3401 - val_mse: 10.5540\n",
      "Epoch 41/100\n",
      "354/354 [==============================] - 0s 214us/sample - loss: 8.7666 - mae: 1.9705 - mse: 8.7666 - val_loss: 10.3300 - val_mae: 2.3298 - val_mse: 10.3300\n",
      "Epoch 42/100\n",
      "354/354 [==============================] - 0s 177us/sample - loss: 8.4090 - mae: 1.9556 - mse: 8.4090 - val_loss: 11.9413 - val_mae: 2.5568 - val_mse: 11.9413\n",
      "Epoch 43/100\n",
      "354/354 [==============================] - 0s 216us/sample - loss: 8.4974 - mae: 1.9809 - mse: 8.4974 - val_loss: 10.2694 - val_mae: 2.2804 - val_mse: 10.2694\n",
      "Epoch 44/100\n",
      "354/354 [==============================] - 0s 179us/sample - loss: 8.4512 - mae: 1.9371 - mse: 8.4512 - val_loss: 10.6134 - val_mae: 2.3782 - val_mse: 10.6134\n",
      "Epoch 45/100\n",
      "354/354 [==============================] - 0s 168us/sample - loss: 8.3356 - mae: 1.9116 - mse: 8.3356 - val_loss: 10.5007 - val_mae: 2.3672 - val_mse: 10.5007\n",
      "Epoch 46/100\n",
      "354/354 [==============================] - 0s 220us/sample - loss: 8.0746 - mae: 1.9163 - mse: 8.0746 - val_loss: 9.9081 - val_mae: 2.1968 - val_mse: 9.9081\n",
      "Epoch 47/100\n",
      "354/354 [==============================] - 0s 183us/sample - loss: 8.2374 - mae: 1.9080 - mse: 8.2374 - val_loss: 10.2771 - val_mae: 2.3529 - val_mse: 10.2771\n",
      "Epoch 48/100\n",
      "354/354 [==============================] - 0s 216us/sample - loss: 8.0765 - mae: 1.9000 - mse: 8.0765 - val_loss: 9.7120 - val_mae: 2.1879 - val_mse: 9.7120\n",
      "Epoch 49/100\n",
      "354/354 [==============================] - 0s 163us/sample - loss: 7.7848 - mae: 1.8825 - mse: 7.7848 - val_loss: 10.2084 - val_mae: 2.2360 - val_mse: 10.2084\n",
      "Epoch 50/100\n",
      "354/354 [==============================] - 0s 178us/sample - loss: 7.5973 - mae: 1.8669 - mse: 7.5973 - val_loss: 10.1582 - val_mae: 2.2808 - val_mse: 10.1582\n",
      "Epoch 51/100\n",
      "354/354 [==============================] - 0s 168us/sample - loss: 7.8596 - mae: 1.9102 - mse: 7.8596 - val_loss: 9.9785 - val_mae: 2.3041 - val_mse: 9.9785\n",
      "Epoch 52/100\n",
      "354/354 [==============================] - 0s 172us/sample - loss: 7.5027 - mae: 1.8527 - mse: 7.5027 - val_loss: 10.2315 - val_mae: 2.3614 - val_mse: 10.2315\n",
      "Epoch 53/100\n",
      "354/354 [==============================] - 0s 174us/sample - loss: 7.3160 - mae: 1.8556 - mse: 7.3160 - val_loss: 10.7149 - val_mae: 2.4225 - val_mse: 10.7149\n",
      "Epoch 54/100\n",
      "354/354 [==============================] - 0s 178us/sample - loss: 7.4478 - mae: 1.8692 - mse: 7.4478 - val_loss: 13.1244 - val_mae: 2.7923 - val_mse: 13.1244\n",
      "Epoch 55/100\n",
      "354/354 [==============================] - 0s 222us/sample - loss: 7.2579 - mae: 1.8375 - mse: 7.2579 - val_loss: 9.4053 - val_mae: 2.1927 - val_mse: 9.4053\n",
      "Epoch 56/100\n",
      "354/354 [==============================] - 0s 178us/sample - loss: 7.3045 - mae: 1.8785 - mse: 7.3045 - val_loss: 10.3231 - val_mae: 2.4311 - val_mse: 10.3231\n",
      "Epoch 57/100\n",
      "354/354 [==============================] - 0s 168us/sample - loss: 6.8708 - mae: 1.8047 - mse: 6.8708 - val_loss: 11.3678 - val_mae: 2.6010 - val_mse: 11.3678\n",
      "Epoch 58/100\n",
      "354/354 [==============================] - 0s 180us/sample - loss: 6.9471 - mae: 1.8179 - mse: 6.9471 - val_loss: 10.2855 - val_mae: 2.3937 - val_mse: 10.2855\n",
      "Epoch 59/100\n",
      "354/354 [==============================] - 0s 217us/sample - loss: 6.8858 - mae: 1.7987 - mse: 6.8858 - val_loss: 9.1795 - val_mae: 2.1552 - val_mse: 9.1795\n",
      "Epoch 60/100\n",
      "354/354 [==============================] - 0s 179us/sample - loss: 6.8982 - mae: 1.7783 - mse: 6.8982 - val_loss: 10.0291 - val_mae: 2.3000 - val_mse: 10.0291\n",
      "Epoch 61/100\n",
      "354/354 [==============================] - 0s 168us/sample - loss: 6.8502 - mae: 1.7688 - mse: 6.8502 - val_loss: 9.5141 - val_mae: 2.2370 - val_mse: 9.5141\n",
      "Epoch 62/100\n",
      "354/354 [==============================] - 0s 173us/sample - loss: 6.6801 - mae: 1.7737 - mse: 6.6801 - val_loss: 9.6853 - val_mae: 2.2719 - val_mse: 9.6853\n",
      "Epoch 63/100\n",
      "354/354 [==============================] - 0s 178us/sample - loss: 6.5468 - mae: 1.7479 - mse: 6.5468 - val_loss: 9.5858 - val_mae: 2.2346 - val_mse: 9.5858\n",
      "Epoch 64/100\n",
      "354/354 [==============================] - 0s 172us/sample - loss: 6.3406 - mae: 1.6985 - mse: 6.3406 - val_loss: 9.8893 - val_mae: 2.2439 - val_mse: 9.8893\n",
      "Epoch 65/100\n",
      "354/354 [==============================] - 0s 177us/sample - loss: 6.4070 - mae: 1.7780 - mse: 6.4071 - val_loss: 10.4085 - val_mae: 2.3908 - val_mse: 10.4085\n",
      "Epoch 66/100\n",
      "354/354 [==============================] - 0s 170us/sample - loss: 6.4227 - mae: 1.7042 - mse: 6.4227 - val_loss: 9.5313 - val_mae: 2.1998 - val_mse: 9.5313\n",
      "Epoch 67/100\n",
      "354/354 [==============================] - 0s 178us/sample - loss: 6.3353 - mae: 1.7095 - mse: 6.3353 - val_loss: 9.9436 - val_mae: 2.2965 - val_mse: 9.9436\n",
      "Epoch 68/100\n",
      "354/354 [==============================] - 0s 173us/sample - loss: 5.8545 - mae: 1.6760 - mse: 5.8545 - val_loss: 9.9311 - val_mae: 2.2837 - val_mse: 9.9311\n",
      "Epoch 69/100\n",
      "354/354 [==============================] - 0s 171us/sample - loss: 6.1148 - mae: 1.7286 - mse: 6.1148 - val_loss: 9.6456 - val_mae: 2.1932 - val_mse: 9.6456\n",
      "Epoch 70/100\n",
      "354/354 [==============================] - 0s 179us/sample - loss: 6.0462 - mae: 1.7194 - mse: 6.0462 - val_loss: 10.7485 - val_mae: 2.3224 - val_mse: 10.7485\n",
      "Epoch 71/100\n",
      "354/354 [==============================] - 0s 171us/sample - loss: 5.8132 - mae: 1.7049 - mse: 5.8132 - val_loss: 9.8704 - val_mae: 2.1916 - val_mse: 9.8704\n",
      "Epoch 72/100\n",
      "354/354 [==============================] - 0s 174us/sample - loss: 5.7957 - mae: 1.6492 - mse: 5.7957 - val_loss: 10.0593 - val_mae: 2.3159 - val_mse: 10.0593\n",
      "Epoch 73/100\n",
      "354/354 [==============================] - 0s 178us/sample - loss: 5.9002 - mae: 1.6952 - mse: 5.9002 - val_loss: 10.1425 - val_mae: 2.3594 - val_mse: 10.1425\n",
      "Epoch 74/100\n",
      "354/354 [==============================] - 0s 174us/sample - loss: 5.5721 - mae: 1.6277 - mse: 5.5721 - val_loss: 9.9564 - val_mae: 2.2284 - val_mse: 9.9564\n",
      "Epoch 75/100\n",
      "354/354 [==============================] - 0s 177us/sample - loss: 5.6730 - mae: 1.6669 - mse: 5.6730 - val_loss: 10.0358 - val_mae: 2.2259 - val_mse: 10.0358\n",
      "Epoch 76/100\n",
      "354/354 [==============================] - 0s 168us/sample - loss: 5.5947 - mae: 1.6216 - mse: 5.5947 - val_loss: 9.7815 - val_mae: 2.2282 - val_mse: 9.7815\n",
      "Epoch 77/100\n",
      "354/354 [==============================] - 0s 175us/sample - loss: 5.2870 - mae: 1.6492 - mse: 5.2870 - val_loss: 9.3813 - val_mae: 2.1987 - val_mse: 9.3813\n",
      "Epoch 78/100\n",
      "354/354 [==============================] - 0s 166us/sample - loss: 5.6015 - mae: 1.6183 - mse: 5.6015 - val_loss: 9.5577 - val_mae: 2.2139 - val_mse: 9.5577\n",
      "Epoch 79/100\n",
      "354/354 [==============================] - 0s 191us/sample - loss: 5.3793 - mae: 1.6202 - mse: 5.3793 - val_loss: 9.4099 - val_mae: 2.1957 - val_mse: 9.4099\n",
      "Epoch 80/100\n",
      "354/354 [==============================] - 0s 172us/sample - loss: 5.4258 - mae: 1.5943 - mse: 5.4258 - val_loss: 9.7489 - val_mae: 2.2233 - val_mse: 9.7489\n",
      "Epoch 81/100\n",
      "354/354 [==============================] - 0s 181us/sample - loss: 5.3006 - mae: 1.5934 - mse: 5.3006 - val_loss: 10.0298 - val_mae: 2.2258 - val_mse: 10.0298\n",
      "Epoch 82/100\n",
      "354/354 [==============================] - 0s 177us/sample - loss: 5.2590 - mae: 1.5854 - mse: 5.2590 - val_loss: 9.9642 - val_mae: 2.2718 - val_mse: 9.9642\n",
      "Epoch 83/100\n",
      "354/354 [==============================] - 0s 178us/sample - loss: 5.1325 - mae: 1.5765 - mse: 5.1325 - val_loss: 10.0795 - val_mae: 2.2524 - val_mse: 10.0795\n",
      "Epoch 84/100\n",
      "354/354 [==============================] - 0s 174us/sample - loss: 5.0736 - mae: 1.5846 - mse: 5.0736 - val_loss: 10.1607 - val_mae: 2.3146 - val_mse: 10.1607\n",
      "Epoch 85/100\n",
      "354/354 [==============================] - 0s 168us/sample - loss: 5.0863 - mae: 1.5598 - mse: 5.0863 - val_loss: 10.0663 - val_mae: 2.2961 - val_mse: 10.0663\n",
      "Epoch 86/100\n",
      "354/354 [==============================] - 0s 175us/sample - loss: 5.0422 - mae: 1.5758 - mse: 5.0422 - val_loss: 9.3842 - val_mae: 2.2033 - val_mse: 9.3842\n",
      "Epoch 87/100\n",
      "354/354 [==============================] - 0s 179us/sample - loss: 4.8308 - mae: 1.5587 - mse: 4.8308 - val_loss: 9.4605 - val_mae: 2.1797 - val_mse: 9.4605\n",
      "Epoch 88/100\n",
      "354/354 [==============================] - 0s 172us/sample - loss: 4.7424 - mae: 1.5468 - mse: 4.7424 - val_loss: 12.0587 - val_mae: 2.6306 - val_mse: 12.0587\n",
      "Epoch 89/100\n",
      "354/354 [==============================] - 0s 172us/sample - loss: 4.9329 - mae: 1.5937 - mse: 4.9329 - val_loss: 9.9514 - val_mae: 2.2366 - val_mse: 9.9514\n",
      "Epoch 90/100\n",
      "354/354 [==============================] - 0s 176us/sample - loss: 4.7181 - mae: 1.5625 - mse: 4.7181 - val_loss: 9.6245 - val_mae: 2.1626 - val_mse: 9.6245\n",
      "Epoch 91/100\n",
      "354/354 [==============================] - 0s 182us/sample - loss: 4.6726 - mae: 1.5040 - mse: 4.6726 - val_loss: 9.9543 - val_mae: 2.2394 - val_mse: 9.9543\n",
      "Epoch 92/100\n",
      "354/354 [==============================] - 0s 180us/sample - loss: 4.7058 - mae: 1.5416 - mse: 4.7058 - val_loss: 10.6368 - val_mae: 2.3900 - val_mse: 10.6368\n",
      "Epoch 93/100\n",
      "354/354 [==============================] - 0s 176us/sample - loss: 4.6515 - mae: 1.5235 - mse: 4.6515 - val_loss: 10.0118 - val_mae: 2.2661 - val_mse: 10.0118\n",
      "Epoch 94/100\n",
      "354/354 [==============================] - 0s 163us/sample - loss: 4.6973 - mae: 1.5262 - mse: 4.6973 - val_loss: 9.4214 - val_mae: 2.1961 - val_mse: 9.4214\n",
      "Epoch 95/100\n",
      "354/354 [==============================] - 0s 174us/sample - loss: 4.7056 - mae: 1.5392 - mse: 4.7056 - val_loss: 9.6110 - val_mae: 2.1998 - val_mse: 9.6110\n",
      "Epoch 96/100\n",
      "354/354 [==============================] - 0s 167us/sample - loss: 4.4156 - mae: 1.4496 - mse: 4.4156 - val_loss: 10.1083 - val_mae: 2.3143 - val_mse: 10.1083\n",
      "Epoch 97/100\n",
      "354/354 [==============================] - 0s 173us/sample - loss: 4.5201 - mae: 1.5019 - mse: 4.5201 - val_loss: 9.7179 - val_mae: 2.2635 - val_mse: 9.7179\n",
      "Epoch 98/100\n",
      "354/354 [==============================] - 0s 179us/sample - loss: 4.3824 - mae: 1.4403 - mse: 4.3824 - val_loss: 10.2802 - val_mae: 2.2846 - val_mse: 10.2802\n",
      "Epoch 99/100\n",
      "354/354 [==============================] - 0s 175us/sample - loss: 4.3252 - mae: 1.4806 - mse: 4.3252 - val_loss: 9.5943 - val_mae: 2.1745 - val_mse: 9.5943\n",
      "Epoch 100/100\n",
      "354/354 [==============================] - 0s 178us/sample - loss: 4.4134 - mae: 1.4451 - mse: 4.4134 - val_loss: 12.2396 - val_mae: 2.6152 - val_mse: 12.2396\n"
     ]
    }
   ],
   "source": [
    "history = model.fit(x_train,\n",
    "                    y_train,\n",
    "                    epochs          = 100,\n",
    "                    batch_size      = 10,\n",
    "                    verbose         = 1,\n",
    "                    validation_data = (x_test, y_test),\n",
    "                    callbacks       = [savemodel_callback])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 6 - Evaluate\n",
    "### 6.1 - Model evaluation\n",
    "MAE =  Mean Absolute Error (between the labels and predictions)  \n",
    "A mae equal to 3 represents an average error in prediction of $3k."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "x_test / loss      : 12.2396\n",
      "x_test / mae       : 2.6152\n",
      "x_test / mse       : 12.2396\n"
     ]
    }
   ],
   "source": [
    "score = model.evaluate(x_test, y_test, verbose=0)\n",
    "\n",
    "print('x_test / loss      : {:5.4f}'.format(score[0]))\n",
    "print('x_test / mae       : {:5.4f}'.format(score[1]))\n",
    "print('x_test / mse       : {:5.4f}'.format(score[2]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 6.2 - Training history\n",
    "What was the best result during our training ?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "min( val_mae ) : 2.1552\n"
     ]
    }
   ],
   "source": [