Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
"# <!-- TITLE --> [GTS6] - CNN with GTSRB dataset - Full convolutions as a batch\n",
"<!-- DESC --> Episode 6 : Run Full convolution notebook as a batch\n",
"<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
"## Objectives :\n",
" - Run a notebook code as a **job**\n",
" - Follow up with Tensorboard\n",
" \n",
"The German Traffic Sign Recognition Benchmark (GTSRB) is a dataset with more than 50,000 photos of road signs from about 40 classes. \n",
"The final aim is to recognise them ! \n",
"Description is available there : http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset\n",
"Our main steps:\n",
" - Run Full-convolution.ipynb as a batch :\n",
" - Notebook mode\n",
" - Script mode \n",
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"### Step 0 - Just for convenience"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>\n",
"\n",
"div.warn { \n",
" background-color: #fcf2f2;\n",
" border-color: #dFb5b4;\n",
" border-left: 5px solid #dfb5b4;\n",
" padding: 0.5em;\n",
" font-weight: bold;\n",
" font-size: 1.1em;;\n",
" }\n",
"\n",
"\n",
"\n",
"div.nota { \n",
" background-color: #DAFFDE;\n",
" border-left: 5px solid #92CC99;\n",
" padding: 0.5em;\n",
" }\n",
"\n",
"div.todo:before { content:url();\n",
" float:left;\n",
" margin-right:20px;\n",
" margin-top:-20px;\n",
" margin-bottom:20px;\n",
"}\n",
"div.todo{\n",
" font-weight: bold;\n",
" font-size: 1.1em;\n",
" margin-top:40px;\n",
"}\n",
"div.todo ul{\n",
" margin: 0.2em;\n",
"}\n",
"div.todo li{\n",
" margin-left:60px;\n",
" margin-top:0;\n",
" margin-bottom:0;\n",
"}\n",
"\n",
"\n",
"</style>\n",
"\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"FIDLE 2020 - Practical Work Module\n",
"Version : 0.4.3\n",
"Run time : Friday 28 February 2020, 17:55:56\n",
"TensorFlow version : 2.0.0\n",
"Keras version : 2.2.4-tf\n"
]
}
],
"source": [
"import sys\n",
"sys.path.append('..')\n",
"import fidle.pwk as ooo\n",
"ooo.init()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 1 - Run a notebook as a batch\n",
"To run a notebook in a command line : \n",
"```jupyter nbconvert (...) --to notebook --execute <notebook>``` \n",
"For example : \n",
"```jupyter nbconvert --ExecutePreprocessor.timeout=-1 --to notebook --output='./run/full_convolutions' --execute '05-Full-convolutions.ipynb'```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2 - Export as a script (What we're going to do this time)\n",
"```jupyter nbconvert --to script <notebook>``` \n",
"To run the script : \n",
"```ipython <script>```"
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[NbConvertApp] Converting notebook 05-Full-convolutions.ipynb to script\n",
"[NbConvertApp] Writing 13061 bytes to ./run/full_convolutions_01.py\n"
]
}
],
"source": [
"%%bash\n",
"\n",
"# ---- This will convert a notebook to a notebook.py script\n",
"jupyter nbconvert --to script --output='./run/full_convolutions_01' '05-Full-convolutions.ipynb'"
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"-rwxr-xr-x 1 paroutyj l-simap 13061 Feb 28 17:56 ./run/full_convolutions_01.py\n"
"!ls -l ./run/*.py"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting ./run/full_convolutions_01.sh\n"
"%%writefile \"./run/full_convolutions_01.sh\"\n",
"#!/bin/bash\n",
"#OAR -n Full convolutions\n",
"#OAR -t gpu\n",
"#OAR -l /nodes=1/gpudevice=1,walltime=01:00:00\n",
"#OAR --stdout full_convolutions_%jobid%.out\n",
"#OAR --stderr full_convolutions_%jobid%.err\n",
"#OAR --project fidle\n",
"# use :\n",
"# OAR -l /nodes=1/core=32,walltime=02:00:00\n",
"# and add a 2>/dev/null to ipython xxx\n",
"\n",
"# ----------------------------------\n",
"# _ _ _\n",
"# | |__ __ _| |_ ___| |__\n",
"# | '_ \\ / _` | __/ __| '_ \\\n",
"# | |_) | (_| | || (__| | | |\n",
"# |_.__/ \\__,_|\\__\\___|_| |_|\n",
"# Full convolutions\n",
"# ----------------------------------\n",
"#\n",
"RUN_DIR=~/fidle/GTSRB\n",
"RUN_SCRIPT=./run/full_convolutions_01.py\n",
"\n",
"# ---- Cuda Conda initialization\n",
"#\n",
"echo '------------------------------------------------------------'\n",
"echo \"Start : $0\"\n",
"echo '------------------------------------------------------------'\n",
"#\n",
"source /applis/environments/cuda_env.sh dahu 10.0\n",
"source /applis/environments/conda.sh\n",
"#\n",
"conda activate \"$CONDA_ENV\"\n",
"\n",
"# ---- Run it...\n",
"#\n",
"cd $RUN_DIR\n",
"ipython $RUN_SCRIPT"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.2 - Have a look"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"-rwxr-xr-x 1 paroutyj l-simap 13061 Feb 28 16:31 ./run/full_convolutions_01.py\n",
"-rwxr-xr-x 1 paroutyj l-simap 1015 Feb 28 16:31 ./run/full_convolutions_01.sh\n"
]
}
],
"source": [
"%%bash\n",
"chmod 755 ./run/*.sh\n",
"chmod 755 ./run/*.py\n",
"ls -l ./run/*full_convolutions*"
]
},
{
"metadata": {},
"source": [
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
"### 2.3 - Job submission\n",
"Have to be done on the frontal :\n",
"```bash\n",
"# hostname\n",
"f-dahu\n",
"\n",
"# pwd\n",
"/home/paroutyj\n",
"\n",
"# oarsub -S ~/fidle/GTSRB/run/full_convolutions_01.sh\n",
"[GPUNODE] Adding gpu node restriction\n",
"[ADMISSION RULE] Modify resource description with type constraints\n",
"\n",
"#oarstat -u\n",
"Job id S User Duration System message\n",
"--------- - -------- ---------- ------------------------------------------------\n",
"5878410 R paroutyj 0:19:56 R=8,W=1:0:0,J=I,P=fidle,T=gpu (Karma=0.005,quota_ok)\n",
"5896266 W paroutyj 0:00:00 R=8,W=1:0:0,J=B,N=Full convolutions,P=fidle,T=gpu\n",
"\n",
"# ls -l\n",
"total 8\n",
"-rw-r--r-- 1 paroutyj l-simap 0 Feb 28 15:58 full_convolutions_5896266.err\n",
"-rw-r--r-- 1 paroutyj l-simap 5703 Feb 28 15:58 full_convolutions_5896266.out\n",
"```\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<div class='todo'>\n",
" Your mission if you accept it: Run our full_convolution code in batch mode.<br>\n",
" For that :\n",
" <ul>\n",
" <li>Validate the full_convolution notebook on short tests</li>\n",
" <li>Submit it in batch mode for validation</li>\n",
" <li>Modify the notebook for a full run and submit it :-)</li>\n",
" </ul>\n",
" \n",
"</div>"
"<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 4
}