{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n", "\n", "# <!-- TITLE --> [GTS6] - CNN with GTSRB dataset - Full convolutions as a batch\n", "<!-- DESC --> Episode 6 : Run Full convolution notebook as a batch\n", "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n", "\n", "## Objectives :\n", " - Run a notebook code as a **job**\n", " - Follow up with Tensorboard\n", " \n", "The German Traffic Sign Recognition Benchmark (GTSRB) is a dataset with more than 50,000 photos of road signs from about 40 classes. \n", "The final aim is to recognise them ! \n", "Description is available there : http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset\n", "\n", "\n", "## What we're going to do :\n", "Our main steps:\n", " - Run Full-convolution.ipynb as a batch :\n", " - Notebook mode\n", " - Script mode \n", " - Tensorboard follow up" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Step 0 - Just for convenience" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>\n", "\n", "div.warn { \n", " background-color: #fcf2f2;\n", " border-color: #dFb5b4;\n", " border-left: 5px solid #dfb5b4;\n", " padding: 0.5em;\n", " font-weight: bold;\n", " font-size: 1.1em;;\n", " }\n", "\n", "\n", "\n", "div.nota { \n", " background-color: #DAFFDE;\n", " border-left: 5px solid #92CC99;\n", " padding: 0.5em;\n", " }\n", "\n", "div.todo:before { content:url();\n", " float:left;\n", " margin-right:20px;\n", " margin-top:-20px;\n", " margin-bottom:20px;\n", "}\n", "div.todo{\n", " font-weight: bold;\n", " font-size: 1.1em;\n", " margin-top:40px;\n", "}\n", "div.todo ul{\n", " margin: 0.2em;\n", "}\n", "div.todo li{\n", " margin-left:60px;\n", " margin-top:0;\n", " margin-bottom:0;\n", "}\n", "\n", "\n", "</style>\n", "\n" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "FIDLE 2020 - Practical Work Module\n", "Version : 0.4.3\n", "Run time : Friday 28 February 2020, 17:55:56\n", "TensorFlow version : 2.0.0\n", "Keras version : 2.2.4-tf\n" ] } ], "source": [ "import sys\n", "sys.path.append('..')\n", "import fidle.pwk as ooo\n", "ooo.init()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 1 - Run a notebook as a batch\n", "To run a notebook in a command line : \n", "```jupyter nbconvert (...) --to notebook --execute <notebook>``` \n", "\n", "For example : \n", "```jupyter nbconvert --ExecutePreprocessor.timeout=-1 --to notebook --output='./run/full_convolutions' --execute '05-Full-convolutions.ipynb'```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 2 - Export as a script (What we're going to do this time)\n", "To export a notebook as a script : \n", "```jupyter nbconvert --to script <notebook>``` \n", "To run the script : \n", "```ipython <script>```" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[NbConvertApp] Converting notebook 05-Full-convolutions.ipynb to script\n", "[NbConvertApp] Writing 13061 bytes to ./run/full_convolutions_01.py\n" ] } ], "source": [ "%%bash\n", "\n", "# ---- This will convert a notebook to a notebook.py script\n", "#\n", "jupyter nbconvert --to script --output='./run/full_convolutions_01' '05-Full-convolutions.ipynb'" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-rwxr-xr-x 1 paroutyj l-simap 13061 Feb 28 17:56 ./run/full_convolutions_01.py\n" ] } ], "source": [ "!ls -l ./run/*.py" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 2 - Batch submission\n", "### 2.1 - Create batch script :" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Overwriting ./run/full_convolutions_01.sh\n" ] } ], "source": [ "%%writefile \"./run/full_convolutions_01.sh\"\n", "#!/bin/bash\n", "#OAR -n Full convolutions\n", "#OAR -t gpu\n", "#OAR -l /nodes=1/gpudevice=1,walltime=01:00:00\n", "#OAR --stdout full_convolutions_%jobid%.out\n", "#OAR --stderr full_convolutions_%jobid%.err\n", "#OAR --project fidle\n", "\n", "#---- With cpu\n", "# use :\n", "# OAR -l /nodes=1/core=32,walltime=02:00:00\n", "# and add a 2>/dev/null to ipython xxx\n", "\n", "# ----------------------------------\n", "# _ _ _\n", "# | |__ __ _| |_ ___| |__\n", "# | '_ \\ / _` | __/ __| '_ \\\n", "# | |_) | (_| | || (__| | | |\n", "# |_.__/ \\__,_|\\__\\___|_| |_|\n", "# Full convolutions\n", "# ----------------------------------\n", "#\n", "\n", "CONDA_ENV=fidle\n", "RUN_DIR=~/fidle/GTSRB\n", "RUN_SCRIPT=./run/full_convolutions_01.py\n", "\n", "# ---- Cuda Conda initialization\n", "#\n", "echo '------------------------------------------------------------'\n", "echo \"Start : $0\"\n", "echo '------------------------------------------------------------'\n", "#\n", "source /applis/environments/cuda_env.sh dahu 10.0\n", "source /applis/environments/conda.sh\n", "#\n", "conda activate \"$CONDA_ENV\"\n", "\n", "# ---- Run it...\n", "#\n", "cd $RUN_DIR\n", "ipython $RUN_SCRIPT" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.2 - Have a look" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-rwxr-xr-x 1 paroutyj l-simap 13061 Feb 28 16:31 ./run/full_convolutions_01.py\n", "-rwxr-xr-x 1 paroutyj l-simap 1015 Feb 28 16:31 ./run/full_convolutions_01.sh\n" ] } ], "source": [ "%%bash\n", "chmod 755 ./run/*.sh\n", "chmod 755 ./run/*.py\n", "ls -l ./run/*full_convolutions*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.3 - Job submission\n", "Have to be done on the frontal :\n", "```bash\n", "# hostname\n", "f-dahu\n", "\n", "# pwd\n", "/home/paroutyj\n", "\n", "# oarsub -S ~/fidle/GTSRB/run/full_convolutions_01.sh\n", "[GPUNODE] Adding gpu node restriction\n", "[ADMISSION RULE] Modify resource description with type constraints\n", "\n", "#oarstat -u\n", "Job id S User Duration System message\n", "--------- - -------- ---------- ------------------------------------------------\n", "5878410 R paroutyj 0:19:56 R=8,W=1:0:0,J=I,P=fidle,T=gpu (Karma=0.005,quota_ok)\n", "5896266 W paroutyj 0:00:00 R=8,W=1:0:0,J=B,N=Full convolutions,P=fidle,T=gpu\n", "\n", "# ls -l\n", "total 8\n", "-rw-r--r-- 1 paroutyj l-simap 0 Feb 28 15:58 full_convolutions_5896266.err\n", "-rw-r--r-- 1 paroutyj l-simap 5703 Feb 28 15:58 full_convolutions_5896266.out\n", "```\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<div class='todo'>\n", " Your mission if you accept it: Run our full_convolution code in batch mode.<br>\n", " For that :\n", " <ul>\n", " <li>Validate the full_convolution notebook on short tests</li>\n", " <li>Submit it in batch mode for validation</li>\n", " <li>Modify the notebook for a full run and submit it :-)</li>\n", " </ul>\n", " \n", "</div>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }