Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"German Traffic Sign Recognition Benchmark (GTSRB)\n",
"=================================================\n",
"\n",
"---\n",
"Introduction au Deep Learning (IDLE) \n",
"S. Aria, E. Maldonado, JL. Parouty \n",
"CNRS/SARI/DEVLOG - 2020\n",
"\n",
"Objectives of this practical work\n",
"---------------------------------\n",
" \n",
"Traffic sign classification with **CNN**, using Tensorflow and **Keras** \n",
"\n",
"\n",
"Prerequisite\n",
"------------\n",
"\n",
"Environment, with the following packages :\n",
" - Python 3.6\n",
" - numpy\n",
" - Matplotlib\n",
" - Tensorflow 2.0\n",
" - scikit-image\n",
" \n",
"You can create it from the `environment.yml` file :\n",
"```\n",
"# conda env create -f environment.yml\n",
"```\n",
"\n",
"About the dataset\n",
"-----------------\n",
"\n",
"Name : [German Traffic Sign Recognition Benchmark (GTSRB)](http://benchmark.ini.rub.de/?section=gtsrb) \n",
"Available [here](https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/published-archive.html) \n",
"or on **[kaggle](https://www.kaggle.com/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign)** \n",
"\n",
"A nice example from : [Alex Staravoitau](https://navoshta.com/traffic-signs-classification/) \n",
"\n",
"In few words :\n",
" - Images : Variable dimensions, rgb\n",
" - Train set : 39209 images \n",
" - Test set : 12630 images\n",
" - Classes : 0 to 42\n",
"\n",
"Episodes\n",
"--------\n",
" \n",
"**[01 - Preparation of data](01-Preparation-of-data.ipynb)**\n",
" - Understanding the dataset\n",
" - Preparing and formatting data\n",
" - Organize and backup data\n",
" \n",
"**[02 - First convolutions](02-First-convolutions.ipynb)**\n",
" - Read dataset\n",
" - Build a model\n",
" - Train the model\n",
" - Model evaluation\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}