{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "German Traffic Sign Recognition Benchmark (GTSRB)\n", "=================================================\n", "\n", "---\n", "Introduction au Deep Learning (IDLE) \n", "S. Aria, E. Maldonado, JL. Parouty \n", "CNRS/SARI/DEVLOG - 2020\n", "\n", "Objectives of this practical work\n", "---------------------------------\n", " \n", "Traffic sign classification with **CNN**, using Tensorflow and **Keras** \n", "\n", "\n", "Prerequisite\n", "------------\n", "\n", "Environment, with the following packages :\n", " - Python 3.6\n", " - numpy\n", " - Matplotlib\n", " - Tensorflow 2.0\n", " - scikit-image\n", " \n", "You can create it from the `environment.yml` file :\n", "```\n", "# conda env create -f environment.yml\n", "```\n", "\n", "About the dataset\n", "-----------------\n", "\n", "Name : [German Traffic Sign Recognition Benchmark (GTSRB)](http://benchmark.ini.rub.de/?section=gtsrb) \n", "Available [here](https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/published-archive.html) \n", "or on **[kaggle](https://www.kaggle.com/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign)** \n", "\n", "A nice example from : [Alex Staravoitau](https://navoshta.com/traffic-signs-classification/) \n", "\n", "In few words :\n", " - Images : Variable dimensions, rgb\n", " - Train set : 39209 images \n", " - Test set : 12630 images\n", " - Classes : 0 to 42\n", "\n", "Episodes\n", "--------\n", " \n", "**[01 - Preparation of data](01-Preparation-of-data.ipynb)**\n", " - Understanding the dataset\n", " - Preparing and formatting data\n", " - Organize and backup data\n", " \n", "**[02 - First convolutions](02-First-convolutions.ipynb)**\n", " - Read dataset\n", " - Build a model\n", " - Train the model\n", " - Model evaluation\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 4 }