Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
"# <!-- TITLE --> [IMDB2] - Reload and reuse a saved model\n",
"<!-- DESC --> Retrieving a saved model to perform a sentiment analysis (movie review)\n",
"<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
"## Objectives :\n",
" - The objective is to guess whether film reviews are **positive or negative** based on the analysis of the text. \n",
" - For this, we will use our **previously saved model**.\n",
"Original dataset can be find **[there](http://ai.stanford.edu/~amaas/data/sentiment/)** \n",
"Note that [IMDb.com](https://imdb.com) offers several easy-to-use [datasets](https://www.imdb.com/interfaces/) \n",
"For simplicity's sake, we'll use the dataset directly [embedded in Keras](https://www.tensorflow.org/api_docs/python/tf/keras/datasets)\n",
"## What we're going to do :\n",
"\n",
" - Preparing the data\n",
" - Retrieve our saved model\n",
" - Evaluate the result\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 1 - Init python stuff"
]
},
{
"cell_type": "code",
"data": {
"text/html": [
"<style>\n",
"\n",
"div.warn { \n",
" background-color: #fcf2f2;\n",
" border-color: #dFb5b4;\n",
" border-left: 5px solid #dfb5b4;\n",
" padding: 0.5em;\n",
" font-weight: bold;\n",
" font-size: 1.1em;;\n",
" }\n",
"\n",
"\n",
"\n",
"div.nota { \n",
" background-color: #DAFFDE;\n",
" border-left: 5px solid #92CC99;\n",
" padding: 0.5em;\n",
" }\n",
"\n",
"div.todo:before { content:url();\n",
" float:left;\n",
" margin-right:20px;\n",
" margin-top:-20px;\n",
" margin-bottom:20px;\n",
"}\n",
"div.todo{\n",
" font-weight: bold;\n",
" font-size: 1.1em;\n",
" margin-top:40px;\n",
"}\n",
"div.todo ul{\n",
" margin: 0.2em;\n",
"}\n",
"div.todo li{\n",
" margin-left:60px;\n",
" margin-top:0;\n",
" margin-bottom:0;\n",
"}\n",
"div .comment{\n",
" font-size:0.8em;\n",
" color:#696969;\n",
"}\n",
"\n",
"\n",
"\n",
"</style>\n",
"\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/markdown": [
"**FIDLE 2020 - Practical Work Module**"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Version : 0.6.1 DEV\n",
"Notebook id : IMDB2\n",
"Run time : Friday 18 December 2020, 18:21:49\n",
"TensorFlow version : 2.0.0\n",
"Keras version : 2.2.4-tf\n",
"Datasets dir : /home/pjluc/datasets/fidle\n",
"Running mode : full\n",
"Update keras cache : False\n",
"Save figs : True\n",
"Path figs : ./run/figs\n"
"source": [
"import numpy as np\n",
"\n",
"import tensorflow as tf\n",
"import tensorflow.keras as keras\n",
"import tensorflow.keras.datasets.imdb as imdb\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib\n",
"import pandas as pd\n",
"\n",
"\n",
"from importlib import reload\n",
"\n",
"import fidle.pwk as pwk\n",
"datasets_dir = pwk.init('IMDB2')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2 : Preparing the data\n",
"### 2.1 - Our reviews :"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"reviews = [ \"This film is particularly nice, a must see.\",\n",
" \"Some films are great classics and cannot be ignored.\",\n",
" \"This movie is just abominable and doesn't deserve to be seen!\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.2 - Retrieve dictionaries\n",
"Note : This dictionary is generated by [01-Embedding-Keras](01-Embedding-Keras.ipynb) notebook."
"metadata": {},
"outputs": [],
"source": [
"with open('./data/word_index.json', 'r') as fp:\n",
" word_index = json.load(fp)\n",
" index_word = {index:word for word,index in word_index.items()} "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.3 - Clean, index and padd"
]
},
{
"cell_type": "code",
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"metadata": {},
"outputs": [],
"source": [
"max_len = 256\n",
"vocab_size = 10000\n",
"\n",
"\n",
"nb_reviews = len(reviews)\n",
"x_data = []\n",
"\n",
"# ---- For all reviews\n",
"for review in reviews:\n",
" # ---- First index must be <start>\n",
" index_review=[1]\n",
" # ---- For all words\n",
" for w in review.split(' '):\n",
" # ---- Clean it\n",
" w_clean = re.sub(r\"[^a-zA-Z0-9]\", \"\", w)\n",
" # ---- Not empty ?\n",
" if len(w_clean)>0:\n",
" # ---- Get the index\n",
" w_index = word_index.get(w,2)\n",
" if w_index>vocab_size : w_index=2\n",
" # ---- Add the index if < vocab_size\n",
" index_review.append(w_index)\n",
" # ---- Add the indexed review\n",
" x_data.append(index_review) \n",
"\n",
"# ---- Padding\n",
"x_data = keras.preprocessing.sequence.pad_sequences(x_data, value = 0, padding = 'post', maxlen = max_len)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.4 - Have a look"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Text review : This film is particularly nice, a must see.\n",
"x_train[0] : [1, 2, 22, 9, 572, 2, 6, 215, 2, 0, 0, 0, 0, 0] (...)\n",
"Translation : <start> <unknown> film is particularly <unknown> a must <unknown> <pad> <pad> <pad> <pad> <pad> (...)\n",
"\n",
"Text review : Some films are great classics and cannot be ignored.\n",
"x_train[1] : [1, 2, 108, 26, 87, 2239, 5, 566, 30, 2, 0, 0, 0, 0, 0] (...)\n",
"Translation : <start> <unknown> films are great classics and cannot be <unknown> <pad> <pad> <pad> <pad> <pad> (...)\n",
"\n",
"Text review : This movie is just abominable and doesn't deserve to be seen!\n",
"x_train[2] : [1, 2, 20, 9, 43, 2, 5, 152, 1833, 8, 30, 2, 0, 0, 0, 0, 0] (...)\n",
"Translation : <start> <unknown> movie is just <unknown> and doesn't deserve to be <unknown> <pad> <pad> <pad> <pad> <pad> (...)\n"
]
}
],
"source": [
"def translate(x):\n",
" return ' '.join( [index_word.get(i,'?') for i in x] )\n",
"\n",
"for i in range(nb_reviews):\n",
" imax=np.where(x_data[i]==0)[0][0]+5\n",
" print(f'\\nText review :', reviews[i])\n",
" print( f'x_train[{i:}] :', list(x_data[i][:imax]), '(...)')\n",
" print( 'Translation :', translate(x_data[i][:imax]), '(...)')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2 - Bring back the model"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"model = keras.models.load_model('./run/models/best_model.h5')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 4 - Predict"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"y_pred = model.predict(x_data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### And the winner is :"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"This film is particularly nice, a must see. => POSITIVE (0.56)\n",
"Some films are great classics and cannot be ignored. => POSITIVE (0.63)\n",
"This movie is just abominable and doesn't deserve to be seen! => NEGATIVE (0.35)\n"
"source": [
"for i in range(nb_reviews):\n",
" print(f'\\n{reviews[i]:<70} =>',('NEGATIVE' if y_pred[i][0]<0.5 else 'POSITIVE'),f'({y_pred[i][0]:.2f})')"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"End time is : Friday 18 December 2020, 18:21:50\n",
"Duration is : 00:00:01 555ms\n",
"This notebook ends here\n"
]
}
],
"source": [
"pwk.end()"
]
},
"<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}