Skip to content
Snippets Groups Projects
02-Prediction.ipynb 7 KiB
Newer Older
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Text Embedding - IMDB dataset\n",
    "=============================\n",
    "---\n",
    "Introduction au Deep Learning  (IDLE) - S. Arias, E. Maldonado, JL. Parouty - CNRS/SARI/DEVLOG - 2020  \n",
    "\n",
    "## Reviews analysis :\n",
    "\n",
    "The objective is to guess whether our new and personals films reviews are **positive or negative** .  \n",
    "For this, we will use our previously saved model.\n",
    "\n",
    "What we're going to do:\n",
    "\n",
    " - Preparing the data\n",
    " - Retrieve our saved model\n",
    " - Evaluate the result\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 1 - Init python stuff"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {},
   "outputs": [
    {
     "ename": "ModuleNotFoundError",
     "evalue": "No module named 'seaborn'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mModuleNotFoundError\u001b[0m                       Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-1-94e372328354>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      7\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      8\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mseaborn\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     10\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mpandas\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'seaborn'"
     ]
    }
   ],
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "source": [
    "import numpy as np\n",
    "\n",
    "import tensorflow as tf\n",
    "import tensorflow.keras as keras\n",
    "import tensorflow.keras.datasets.imdb as imdb\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "import matplotlib\n",
    "import seaborn as sns\n",
    "import pandas as pd\n",
    "\n",
    "import os,sys,h5py,json,re\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "\n",
    "from importlib import reload\n",
    "\n",
    "sys.path.append('..')\n",
    "import fidle.pwk as ooo\n",
    "\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "ooo.init()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 2 : Preparing the data\n",
    "### 2.1 - Our reviews :"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {},
   "outputs": [],
   "source": [
    "reviews = [ \"This film is particularly nice, a must see.\",\n",
    "             \"Some films are classics and cannot be ignored.\",\n",
    "             \"This movie is just abominable and doesn't deserve to be seen!\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.2 - Retrieve dictionaries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('./data/word_index.json', 'r') as fp:\n",
    "    word_index = json.load(fp)\n",
    "    index_word = {index:word for word,index in word_index.items()} "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.3 - Clean, index and padd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {},
   "outputs": [],
   "source": [
    "max_len    = 256\n",
    "vocab_size = 10000\n",
    "\n",
    "\n",
    "nb_reviews = len(reviews)\n",
    "x_data     = []\n",
    "\n",
    "# ---- For all reviews\n",
    "for review in reviews:\n",
    "    # ---- First index must be <start>\n",
    "    index_review=[1]\n",
    "    # ---- For all words\n",
    "    for w in review.split(' '):\n",
    "        # ---- Clean it\n",
    "        w_clean = re.sub(r\"[^a-zA-Z0-9]\", \"\", w)\n",
    "        # ---- Not empty ?\n",
    "        if len(w_clean)>0:\n",
    "            # ---- Get the index\n",
    "            w_index = word_index.get(w,2)\n",
    "            if w_index>vocab_size : w_index=2\n",
    "            # ---- Add the index if < vocab_size\n",
    "            index_review.append(w_index)\n",
    "    # ---- Add the indexed review\n",
    "    x_data.append(index_review)    \n",
    "\n",
    "# ---- Padding\n",
    "x_data = keras.preprocessing.sequence.pad_sequences(x_data, value   = 0, padding = 'post', maxlen  = max_len)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.4 - Have a look"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {},
   "outputs": [],
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "source": [
    "def translate(x):\n",
    "    return ' '.join( [index_word.get(i,'?') for i in x] )\n",
    "\n",
    "for i in range(nb_reviews):\n",
    "    imax=np.where(x_data[i]==0)[0][0]+5\n",
    "    print(f'\\nText review      :',    reviews[i])\n",
    "    print(  f'x_train[{i:}]       :', list(x_data[i][:imax]), '(...)')\n",
    "    print(  'Translation      :', translate(x_data[i][:imax]), '(...)')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 2 - Bring back the model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {},
   "outputs": [],
   "source": [
    "model = keras.models.load_model('./run/models/best_model.h5')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 4 - Predict"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {},
   "outputs": [],
   "source": [
    "y_pred   = model.predict(x_data)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### And the winner is :"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {},
   "outputs": [],
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "source": [
    "for i in range(nb_reviews):\n",
    "    print(f'\\n{reviews[i]:<70} =>',('NEGATIVE' if y_pred[i][0]<0.5 else 'POSITIVE'),f'({y_pred[i][0]:.2f})')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {},
   "outputs": [],
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "source": [
    "a=[1]+[i for i in range(3)]\n",
    "a"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}