Skip to content
Snippets Groups Projects
ip2k.cpu 38.2 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
; Ubicom IP2K CPU description.  -*- Scheme -*-
; Copyright (C) 2002, 2009, 2011 Free Software Foundation, Inc.
;
; Contributed by Red Hat Inc;
;
; This file is part of the GNU Binutils.
;
; This program is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 3 of the License, or
; (at your option) any later version.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program; if not, write to the Free Software
; Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
; MA 02110-1301, USA.

(define-rtl-version 0 8)

(include "simplify.inc")

; define-arch must appear first

(define-arch
  (name ip2k) ; name of cpu family
  (comment "Ubicom IP2000 family")
  (default-alignment aligned)
  (insn-lsb0? #t)
  (machs ip2022 ip2022ext)
  (isas ip2k)
)

; Attributes.

(define-attr
  (for insn)
  (type boolean)
  (name EXT-SKIP-INSN)
  (comment "instruction is a PAGE, LOADL, LOADH or BREAKX instruction")
)

(define-attr
  (for insn)
  (type boolean)
  (name SKIPA)
  (comment "instruction is a SKIP instruction")
)

; Instruction set parameters.

(define-isa
  (name ip2k)
  (comment "Ubicom IP2000 ISA")

  (default-insn-word-bitsize 16)
  (default-insn-bitsize 16)
  (base-insn-bitsize 16)
)

; Cpu family definitions.


(define-cpu
  ; cpu names must be distinct from the architecture name and machine names.
  (name ip2kbf)
  (comment "Ubicom IP2000 Family")
  (endian big)
  (word-bitsize 16)
)

(define-mach
  (name ip2022)
  (comment "Ubicom IP2022")
  (cpu ip2kbf)
)

(define-mach
  (name ip2022ext)
  (comment "Ubicom IP2022 extended")
  (cpu ip2kbf)
)


; Model descriptions.

(define-model
  (name ip2k) (comment "VPE 2xxx") (attrs)
  (mach ip2022ext)

  (unit u-exec "Execution Unit" ()
	1 1 ; issue done
	() ; state
	() ; inputs
	() ; outputs
	() ; profile action (default)
	)
)


; FIXME: It might simplify things to separate the execute process from the
; one that updates the PC.

; Instruction fields.
;
; Attributes:
; XXX: what VPE attrs
; PCREL-ADDR: pc relative value (for reloc and disassembly purposes)
; ABS-ADDR: absolute address (for reloc and disassembly purposes?)
; RESERVED: bits are not used to decode insn, must be all 0
; RELOC: there is a relocation associated with this field (experiment)


(dnf f-imm8      "imm8"                () 7 8)
(dnf f-reg       "reg"         (ABS-ADDR) 8 9)
(dnf f-addr16cjp "addr16cjp"   (ABS-ADDR) 12 13)
(dnf f-dir       "dir"                 () 9 1)
(dnf f-bitno     "bit number"          () 11 3)
(dnf f-op3       "op3"                 () 15 3)
(dnf f-op4       "op4"                 () 15 4)
(dnf f-op4mid    "op4mid"              () 11 4)
(dnf f-op6       "op6"                 () 15 6)
(dnf f-op8       "op8"                 () 15 8)
(dnf f-op6-10low "op6-10low"           () 9 10)
(dnf f-op6-7low  "op6-7low"            () 9 7)
(dnf f-reti3     "reti3"               () 2 3)
(dnf f-skipb     "sb/snb"      (ABS-ADDR) 12 1)
(dnf f-page3     "page3"               ()  2 3)
;(define-ifield (name f-page3) (comment "page3") (attrs) (start 2) (length 3)
;  (encode (value pc) (srl WI value 13))
;  (decode (value pc) (sll WI value 13))
;)
; To fix the page/call asymmetry
;(define-ifield (name f-page3) (comment "page3") (attrs) (start 2) (length 3)
;  (encode (value pc) (srl WI value 13))
;  (decode (value pc) (sll WI value 13))
;)



; Enums.

; insn-op6: bits 15-10
(define-normal-insn-enum insn-op6 "op6 enums" () OP6_ f-op6
  (OTHER1 OTHER2 SUB DEC OR AND XOR ADD 
   TEST NOT INC DECSZ RR RL SWAP INCSZ
   CSE POP SUBC DECSNZ MULU MULS INCSNZ  ADDC
   - - - - - - - -   
   - - - - - - - -
   - - - - - - - -
   - - - - - - - -
   - - - - - - - -   
   )
)

; insn-dir: bit 9
(define-normal-insn-enum insn-dir "dir enums" () DIR_ f-dir
  ; This bit specifies the polarity of many two-operand instructions:
  ; TO_W writes result to W regiser  (eg. ADDC W,$fr)
  ; NOTTO_W writes result in general register  (eg. ADDC $fr,W)
  (TO_W NOTTO_W)
)


; insn-op4: bits 15-12
(define-normal-insn-enum insn-op4 "op4 enums" () OP4_ f-op4
  (- - - - - - - LITERAL
   CLRB SETB SNB SB - - - -
   )
)

; insn-op4mid: bits 11-8
; used for f-op4=LITERAL
(define-normal-insn-enum insn-op4mid "op4mid enums" () OP4MID_ f-op4mid
  (LOADH_L LOADL_L MULU_L MULS_L PUSH_L  -  CSNE_L CSE_L
   RETW_L CMP_L SUB_L ADD_L MOV_L OR_L AND_L XOR_L)
)

; insn-op3: bits 15-13
(define-normal-insn-enum insn-op3 "op3 enums" () OP3_ f-op3
  (- - - - - - CALL JMP)
)


  
; Hardware pieces.

; Bank-relative general purpose registers

; (define-pmacro (build-reg-name n) (.splice (.str "$" n) n))

(define-keyword
  (name register-names)
  (enum-prefix H-REGISTERS-)
  (values
   ; These are the "Special Purpose Registers" that are not reserved
   ("ADDRSEL" #x2) ("ADDRX" #x3)
   ("IPH" #x4) ("IPL" #x5) ("SPH" #x6) ("SPL" #x7)
   ("PCH" #x8) ("PCL" #x9) ("WREG" #xA) ("STATUS" #xB)
   ("DPH" #xC) ("DPL" #xD) ("SPDREG" #xE) ("MULH" #xF)
   ("ADDRH" #x10) ("ADDRL" #x11) ("DATAH" #x12) ("DATAL" #x13)
   ("INTVECH" #x14) ("INTVECL" #x15) ("INTSPD" #x16) ("INTF" #x17)
   ("INTE" #x18) ("INTED" #x19) ("FCFG" #x1A) ("TCTRL" #x1B)
   ("XCFG" #x1C) ("EMCFG" #x1D) ("IPCH" #x1E) ("IPCL" #x1F)
   ("RAIN" #x20) ("RAOUT" #x21) ("RADIR" #x22) ("LFSRH" #x23)
   ("RBIN" #x24) ("RBOUT" #x25) ("RBDIR" #x26) ("LFSRL" #x27)
   ("RCIN" #x28) ("RCOUT" #x29) ("RCDIR" #x2A) ("LFSRA" #x2B)
   ("RDIN" #x2C) ("RDOUT" #x2D) ("RDDIR" #x2E)   
   ("REIN" #x30) ("REOUT" #x31) ("REDIR" #x32)   
   ("RFIN" #x34) ("RFOUT" #x35) ("RFDIR" #x36)
                 ("RGOUT" #x39) ("RGDIR" #x3A)
   ("RTTMR" #x40) ("RTCFG" #x41) ("T0TMR" #x42) ("T0CFG" #x43)
   ("T1CNTH" #x44) ("T1CNTL" #x45) ("T1CAP1H" #x46) ("T1CAP1L" #x47)
   ("T1CAP2H" #x48) ("T1CMP2H" #x48) ("T1CAP2L" #x49) ("T1CMP2L" #x49) ; note aliases
                                     ("T1CMP1H" #x4A) ("T1CMP1L" #x4B)
   ("T1CFG1H" #x4C) ("T1CFG1L" #x4D) ("T1CFG2H" #x4E) ("T1CFG2L" #x4F)
   ("ADCH" #x50) ("ADCL" #x51) ("ADCCFG" #x52) ("ADCTMR" #x53)
   ("T2CNTH" #x54) ("T2CNTL" #x55) ("T2CAP1H" #x56) ("T2CAP1L" #x57)
   ("T2CAP2H" #x58) ("T2CMP2H" #x58) ("T2CAP2L" #x59) ("T2CMP2L" #x59) ; note aliases
                                     ("T2CMP1H" #x5A) ("T2CMP1L" #x5B)
   ("T2CFG1H" #x5C) ("T2CFG1L" #x5D) ("T2CFG2H" #x5E) ("T2CFG2L" #x5F)
   ("S1TMRH" #x60) ("S1TMRL" #x61) ("S1TBUFH" #x62) ("S1TBUFL" #x63)
   ("S1TCFG" #x64) ("S1RCNT" #x65) ("S1RBUFH" #x66) ("S1RBUFL" #x67)
   ("S1RCFG" #x68) ("S1RSYNC" #x69) ("S1INTF" #x6A) ("S1INTE" #x6B)
   ("S1MODE" #x6C) ("S1SMASK" #x6D) ("PSPCFG" #x6E) ("CMPCFG" #x6F)
   ("S2TMRH" #x70) ("S2TMRL" #x71) ("S2TBUFH" #x72) ("S2TBUFL" #x73)
   ("S2TCFG" #x74) ("S2RCNT" #x75) ("S2RBUFH" #x76) ("S2RBUFL" #x77)
   ("S2RCFG" #x78) ("S2RSYNC" #x79) ("S2INTF" #x7A) ("S2INTE" #x7B)
   ("S2MODE" #x7C) ("S2SMASK" #x7D) ("CALLH" #x7E) ("CALLL" #x7F))
  )

(define-hardware
  (name h-spr)
  (comment "special-purpose registers")
  (type register QI (128))
  (get (index) (c-call QI "get_spr" index ))
  (set (index newval) (c-call VOID "set_spr" index newval ))
)


;;(define-hardware
;;  (name h-gpr-global)
;;  (comment "gpr registers - global")
;;  (type register QI (128))
;;)

; The general register

(define-hardware
  (name h-registers)
  (comment "all addressable registers")
  (attrs VIRTUAL)
  (type register QI (512))
  (get (index) (c-call QI "get_h_registers" index ))
  (set (index newval) (c-call VOID "set_h_registers" index newval ))
)

; The hardware stack.
; Use {push,pop}_pc_stack c-calls to operate on this hardware element.

(define-hardware
  (name h-stack)
  (comment "hardware stack")
  (type register UHI (16))
)

(dsh h-pabits "page bits" () (register QI))
(dsh h-zbit "zero bit" () (register BI))
(dsh h-cbit "carry bit" () (register BI))
(dsh h-dcbit "digit-carry bit" () (register BI))
(dnh h-pc "program counter" (PC PROFILE) (pc) () () ())


; Operands

(define-operand (name addr16cjp) (comment "13-bit address") (attrs) 
  (type h-uint) (index f-addr16cjp) (handlers (parse "addr16_cjp") (print "dollarhex_cj"))) ; overload lit8 printer
(define-operand (name fr) (comment "register") (attrs) 
  (type h-registers) (index f-reg) (handlers (parse "fr") (print "fr")))
(define-operand (name lit8) (comment "8-bit signed literal") (attrs)
  (type h-sint) (index f-imm8) (handlers (parse "lit8") (print "dollarhex8")))
(define-operand (name bitno) (comment "bit number") (attrs)
  (type h-uint) (index f-bitno) (handlers (parse "bit3")(print "decimal")))
(define-operand (name addr16p) (comment "page number") (attrs)
  (type h-uint) (index f-page3) (handlers (parse "addr16_cjp") (print "dollarhex_p")))
(define-operand (name addr16h) (comment "high 8 bits of address") (attrs)
  (type h-uint) (index f-imm8) (handlers (parse "addr16") (print "dollarhex_addr16h")))
(define-operand (name addr16l) (comment "low 8 bits of address") (attrs)
  (type h-uint) (index f-imm8) (handlers (parse "addr16") (print "dollarhex_addr16l")))
(define-operand (name reti3) (comment "reti flags") (attrs)
  (type h-uint) (index f-reti3) (handlers (print "dollarhex")))
(dnop pabits   "page bits"                 () h-pabits f-nil)
(dnop zbit     "zero bit"                  () h-zbit f-nil)
(dnop cbit     "carry bit"                 () h-cbit f-nil)
(dnop dcbit    "digit carry bit"           () h-dcbit f-nil)
;;(dnop bank     "bank register"             () h-bank-no f-nil)

(define-pmacro w     (reg h-spr #x0A))
(define-pmacro mulh  (reg h-spr #x0F))
(define-pmacro dph   (reg h-spr #x0C))
(define-pmacro dpl   (reg h-spr #x0D))
(define-pmacro sph   (reg h-spr #x06))
(define-pmacro spl   (reg h-spr #x07))
(define-pmacro iph   (reg h-spr #x04))
(define-pmacro ipl   (reg h-spr #x05))
(define-pmacro addrh (reg h-spr #x10))
(define-pmacro addrl (reg h-spr #x11))



; Pseudo-RTL for DC flag calculations
; "DC" = "digit carry", ie carry between nibbles
(define-pmacro (add-dcflag a b c)
  (add-cflag (sll QI a 4) (sll QI b 4) c)
)

(define-pmacro (sub-dcflag a b c)
  (sub-cflag (sll QI a 4) (sll QI b 4) c)
)

; Check to see if an fr is one of IPL, SPL, DPL, ADDRL, PCL.
(define-pmacro (LregCheck isLreg fr9bit)
   (sequence()
      (set isLreg #x0) ;; Assume it's not an Lreg
      (if (or (or (eq fr9bit #x5) (eq fr9bit #x7))
	      (or (eq fr9bit #x9)
		  (or (eq fr9bit #xd) (eq fr9bit #x11))))
          (set isLreg #x1)
      )
   )
) 


; Instructions, in order of the "Instruction Set Map" table on
; pp 19-20 of IP2022 spec V1.09

(dni jmp "Jump"
     ()
     "jmp $addr16cjp"
     (+ OP3_JMP addr16cjp)
     (set pc (or (sll pabits 13) addr16cjp))
     ()
)

; note that in call, we push pc instead of pc + 1 because the ip2k increments
; the pc prior to execution of the instruction
(dni call "Call"
     ()
     "call $addr16cjp"
     (+ OP3_CALL addr16cjp)
     (sequence ()
	       (c-call "push_pc_stack" pc)
	       (set pc (or (sll pabits 13) addr16cjp)))
     ()
)

(dni sb "Skip if bit set"
     ()
     "sb $fr,$bitno"
     (+ OP4_SB bitno fr)
     (if (and fr (sll 1 bitno))
	 (skip 1))
     ()
)

(dni snb "Skip if bit clear"
     ()
     "snb $fr,$bitno"
     (+ OP4_SNB bitno fr)
     (if (not (and fr (sll 1 bitno)))
	 (skip 1))
     ()
)

(dni setb "Set bit"
     ()
     "setb $fr,$bitno"
     (+ OP4_SETB bitno fr)
     (set fr (or fr (sll 1 bitno)))
     ()
)

(dni clrb "Clear bit"
     ()
     "clrb $fr,$bitno"
     (+ OP4_CLRB bitno fr)
     (set fr (and fr (inv (sll 1 bitno))))
     ()
)

(dni xorw_l "XOR W,literal"
     ()
     "xor W,#$lit8"
     (+ OP4_LITERAL OP4MID_XOR_L lit8)
     (sequence ()
	       (set w (xor w lit8))
	       (set zbit (zflag w)))
     ()
)

(dni andw_l "AND W,literal"
     ()
     "and W,#$lit8"
     (+ OP4_LITERAL OP4MID_AND_L lit8)
     (sequence ()
	       (set w (and w lit8))
	       (set zbit (zflag w)))
     ()
)

(dni orw_l "OR W,literal"
     ()
     "or W,#$lit8"
     (+ OP4_LITERAL OP4MID_OR_L lit8)
     (sequence ()
	       (set w (or w lit8))
	       (set zbit (zflag w)))
     ()
)

(dni addw_l "ADD W,literal"
     ()
     "add W,#$lit8"
     (+ OP4_LITERAL OP4MID_ADD_L lit8)
     (sequence ()
	       (set cbit (add-cflag w lit8 0))
	       (set dcbit (add-dcflag w lit8 0))
	       (set w (add w lit8))
	       (set zbit (zflag w)))
     ()
)

(dni subw_l "SUB W,literal"
     ()
     "sub W,#$lit8"
     (+ OP4_LITERAL OP4MID_SUB_L lit8)
     (sequence ()
	       (set cbit (not (sub-cflag lit8 w 0)))
	       (set dcbit (not (sub-dcflag lit8 w 0)))
	       (set zbit (zflag (sub w lit8)))
	       (set w (sub lit8 w)))
     ()
)

(dni cmpw_l "CMP W,literal"
     ()
     "cmp W,#$lit8"
     (+ OP4_LITERAL OP4MID_CMP_L lit8)
     (sequence ()
	       (set cbit (not (sub-cflag lit8 w 0)))
	       (set dcbit (not (sub-dcflag lit8 w 0)))
	       (set zbit (zflag (sub w lit8))))
     ()
)

(dni retw_l "RETW literal"
     ()
     "retw #$lit8"
     (+ OP4_LITERAL OP4MID_RETW_L lit8)
     (sequence ((USI new_pc))
	       (set w lit8)
	       (set new_pc (c-call UHI "pop_pc_stack"))
	       (set pabits (srl new_pc 13))
	       (set pc new_pc))
     ()
)

(dni csew_l "CSE W,literal"
     ()
     "cse W,#$lit8"
     (+ OP4_LITERAL OP4MID_CSE_L lit8)
     (if (eq w lit8)
	 (skip 1))
     ()
)

(dni csnew_l "CSNE W,literal"
     ()
     "csne W,#$lit8"
     (+ OP4_LITERAL OP4MID_CSNE_L lit8)
     (if (not (eq w lit8))
	 (skip 1))
     ()
)

(dni push_l "Push #lit8"
     ()
     "push #$lit8"
     (+ OP4_LITERAL OP4MID_PUSH_L lit8)
     (sequence ()
        (c-call "push" lit8)
        (c-call VOID "adjuststackptr" (const -1))

     )
     ()
)

(dni mulsw_l "Multiply W,literal (signed)"
     ()
     "muls W,#$lit8"
     (+ OP4_LITERAL OP4MID_MULS_L lit8)
     (sequence ((SI tmp))
	       (set tmp (mul (ext SI w) (ext SI (and UQI #xff lit8))))
	       (set w (and tmp #xFF))
	       (set mulh (srl tmp 8)))
     ()
)

(dni muluw_l "Multiply W,literal (unsigned)"
     ()
     "mulu W,#$lit8"
     (+ OP4_LITERAL OP4MID_MULU_L lit8)
     (sequence ((USI tmp))
	       (set tmp (and #xFFFF (mul (zext USI w) (zext USI lit8))))
	       (set w (and tmp #xFF))
	       (set mulh (srl tmp 8)))
     ()
)

(dni loadl_l "LoadL literal"
    (EXT-SKIP-INSN)
    "loadl #$lit8"
    (+ OP4_LITERAL OP4MID_LOADL_L lit8)
    (set dpl (and lit8 #x00FF))
    ()
)

(dni loadh_l "LoadH literal"
    (EXT-SKIP-INSN)
    "loadh #$lit8"
    (+ OP4_LITERAL OP4MID_LOADH_L lit8)
    (set dph (and lit8 #x00FF))
    ()
)

(dni loadl_a "LoadL addr16l"
    (EXT-SKIP-INSN)
    "loadl $addr16l"
    (+ OP4_LITERAL OP4MID_LOADL_L addr16l)
    (set dpl (and addr16l #x00FF))
    ()
)

(dni loadh_a "LoadH addr16h"
    (EXT-SKIP-INSN)
    "loadh $addr16h"
    (+ OP4_LITERAL OP4MID_LOADH_L addr16h)
    (set dph (and addr16l #x0FF00))
    ()
)

;; THIS NO LONGER EXISTS -> Now LOADL
;;(dni bank_l "Bank literal"
;;     ()
;;     "bank #$lit8"
;;     (+ OP4_LITERAL OP4MID_BANK_L lit8)
;;     (set bank lit8)
;;     ()
;;)

(dni addcfr_w "Add w/carry fr,W"
     ()
     "addc $fr,W"
     (+ OP6_ADDC DIR_NOTTO_W fr)
     (sequence ((QI result) (BI newcbit) (QI isLreg) (HI 16bval))
	       (set newcbit (add-cflag w fr cbit))
	       (set dcbit (add-dcflag w fr cbit))
               ;; If fr is an Lreg, then we have to do 16-bit arithmetic.
               ;; We can take advantage of the fact that by a lucky
               ;; coincidence, the address of register xxxH is always      
               ;; one lower than the address of register xxxL.
               (LregCheck isLreg (ifield f-reg))
	       (if (eq isLreg #x1)
                  (sequence() 
                     (set 16bval (reg h-spr (sub (ifield f-reg) 1)))
		     (set 16bval (sll 16bval 8))
		     (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF))) 
                     (set 16bval (addc HI 16bval w cbit))
		     (set (reg h-spr (ifield f-reg)) (and 16bval #xFF))
		     (set (reg h-spr (sub (ifield f-reg) 1)) 
                          (and (srl 16bval 8) #xFF))
                     (set result (reg h-spr (ifield f-reg)))
                  )      
	       (set result (addc w fr cbit)) ;; else part
               )

	       (set zbit (zflag result))
	       (set cbit newcbit)
	       (set fr result))
     ()
)

(dni addcw_fr "Add w/carry W,fr"
     ()
     "addc W,$fr"
     (+ OP6_ADDC DIR_TO_W fr)
     (sequence ((QI result) (BI newcbit))
	       (set newcbit (add-cflag w fr cbit))
	       (set dcbit (add-dcflag w fr cbit))
	       (set result (addc w fr cbit))
	       (set zbit (zflag result))
	       (set cbit newcbit)
	       (set w result))
     ()
)


(dni incsnz_fr "Skip if fr++ not zero"
     ()
     "incsnz $fr"
     (+ OP6_INCSNZ DIR_NOTTO_W fr)
     (sequence ((QI isLreg) (HI 16bval))
        (LregCheck isLreg (ifield f-reg))
        ;; If fr is an Lreg, then we have to do 16-bit arithmetic.
        ;; We can take advantage of the fact that by a lucky
        ;; coincidence, the address of register xxxH is always
        ;; one lower than the address of register xxxL.
        (if (eq isLreg #x1)
           (sequence()
              ; Create the 16 bit value
              (set 16bval (reg h-spr (sub (ifield f-reg) 1)))
              (set 16bval (sll 16bval 8))
              (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF)))
              ; Do 16 bit arithmetic.
	      (set 16bval (add HI 16bval 1))
              ; Separate the 16 bit values into the H and L regs
              (set (reg h-spr (ifield f-reg)) (and 16bval #xFF))
              (set (reg h-spr (sub (ifield f-reg) 1))
                   (and (srl 16bval 8) #xFF))
              (set fr (reg h-spr (ifield f-reg)))
           )
	   (set fr (add fr 1)) ; Do 8 bit arithmetic.
        )
	(if (not (zflag fr))
	   (skip 1)))
     ()
)

(dni incsnzw_fr "Skip if W=fr+1  not zero"
     ()
     "incsnz W,$fr"
     (+ OP6_INCSNZ DIR_TO_W fr)
     (sequence ()
	       (set w (add fr 1))
	       (if (not (zflag w))
		   (skip 1)))
     ()
)

(dni mulsw_fr "Multiply W,fr (signed)"
     ()
     "muls W,$fr"
     (+ OP6_MULS DIR_TO_W fr)
     (sequence ((SI tmp))
	       (set tmp (mul (ext SI w) (ext SI fr)))
	       (set w (and tmp #xFF))
	       (set mulh (srl tmp 8)))
     ()
)

(dni muluw_fr "Multiply W,fr (unsigned)"
     ()
     "mulu W,$fr"
     (+ OP6_MULU DIR_TO_W fr)
     (sequence ((USI tmp))
	       (set tmp (and #xFFFF (mul (zext USI w) (zext USI fr))))
	       (set w (and tmp #xFF))
	       (set mulh (srl tmp 8)))
     ()
)

(dni decsnz_fr "Skip if fr-- not zero"
     ()
     "decsnz $fr"
     (+ OP6_DECSNZ DIR_NOTTO_W fr)
     (sequence ((QI isLreg) (HI 16bval))
         (LregCheck isLreg (ifield f-reg))
         ;; If fr is an Lreg, then we have to do 16-bit arithmetic.
         ;; We can take advantage of the fact that by a lucky
         ;; coincidence, the address of register xxxH is always
         ;; one lower than the address of register xxxL.
         (if (eq isLreg #x1)
            (sequence()
               ; Create the 16 bit value
               (set 16bval (reg h-spr (sub (ifield f-reg) 1)))
               (set 16bval (sll 16bval 8))
               (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF)))
               ; New 16 bit instruction
               (set 16bval (sub HI 16bval 1))
               ; Separate the 16 bit values into the H and L regs
               (set (reg h-spr (ifield f-reg)) (and 16bval #xFF))
               (set (reg h-spr (sub (ifield f-reg) 1))
                    (and (srl 16bval 8) #xFF))
               (set fr (reg h-spr (ifield f-reg)))
            )
            ; Original instruction
	    (set fr (sub fr 1))
         )
	    (if (not (zflag fr))
	       (skip 1)))
     ()
)

(dni decsnzw_fr "Skip if W=fr-1 not zero"
     ()
     "decsnz W,$fr"
     (+ OP6_DECSNZ DIR_TO_W fr)
     (sequence ()
	       (set w (sub fr 1))
	       (if (not (zflag w))
		   (skip 1)))
     ()
)

(dni subcw_fr "Subract w/carry W,fr"
     ()
     "subc W,$fr"
     (+ OP6_SUBC DIR_TO_W fr)
     (sequence ((QI result) (BI newcbit))
	       (set newcbit (not (sub-cflag fr w (not cbit))))
	       (set dcbit (not (sub-dcflag fr w (not cbit))))
	       (set result (subc fr w (not cbit)))
	       (set zbit (zflag result))
	       (set cbit newcbit)
	       (set w result))
     ()
)

(dni subcfr_w "Subtract w/carry fr,W"
     ()
     "subc $fr,W"
     (+ OP6_SUBC DIR_NOTTO_W fr)
     (sequence ((QI result) (BI newcbit) (QI isLreg) (HI 16bval))
	       (set newcbit (not (sub-cflag fr w (not cbit))))
	       (set dcbit (not (sub-dcflag fr w (not cbit))))
               (LregCheck isLreg (ifield f-reg))
               ;; If fr is an Lreg, then we have to do 16-bit arithmetic.
               ;; We can take advantage of the fact that by a lucky
               ;; coincidence, the address of register xxxH is always
               ;; one lower than the address of register xxxL.
               (if (eq isLreg #x1)
                  (sequence()
                     ; Create the 16 bit value
                     (set 16bval (reg h-spr (sub (ifield f-reg) 1)))
                     (set 16bval (sll 16bval 8))
                     (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF)))
                     ; New 16 bit instruction
	             (set 16bval (subc HI 16bval w (not cbit)))
                     ; Separate the 16 bit values into the H and L regs
                     (set (reg h-spr (ifield f-reg)) (and 16bval #xFF))
                     (set (reg h-spr (sub (ifield f-reg) 1))
                          (and (srl 16bval 8) #xFF))
                     (set result (reg h-spr (ifield f-reg)))
                  )
               ; Original instruction
	       (set result (subc fr w (not cbit)))
               )


	       (set zbit (zflag result))
	       (set cbit newcbit)
	       (set fr result))
     ()
)


(dni pop_fr "Pop fr"
     ()
     "pop $fr"
     (+ OP6_POP (f-dir 1) fr)
     (sequence()
        (set fr (c-call QI "pop")) 
        (c-call VOID "adjuststackptr" (const 1))
     )
     ()
)

(dni push_fr "Push fr"
     ()
     "push $fr"
     (+ OP6_POP (f-dir 0) fr)
     (sequence()
        (c-call "push" fr)
        (c-call VOID "adjuststackptr" (const -1))
     )
     ()
)

(dni csew_fr "Skip if equal W,fr"
     ()
     "cse W,$fr"
     (+ OP6_CSE (f-dir 1) fr)
     (if (eq w fr)
	 (skip 1))
     ()
)

(dni csnew_fr "Skip if not-equal W,fr"
     ()
     "csne W,$fr"
     (+ OP6_CSE (f-dir 0) fr)
     (if (not (eq w fr))
	 (skip 1))
     ()
)

;;(dni csaw_fr "Skip if W above fr"
;;     ((MACH ip2022ext))
;;     "csa W,$fr"
;;     (+ OP6_CSAB (f-dir 1) fr)
;;     (if (gt w fr)
;;	 (skip 1))
;;    ()
;;)

;;(dni csbw_fr "Skip if W below fr"
;;     ((MACH ip2022ext))
;;     "csb W,$fr"
;;     (+ OP6_CSAB (f-dir 0) fr)
;;     (if (lt w fr)
;;	 (skip 1))
;;    ()
;;)

(dni incsz_fr "Skip if fr++ zero"
     ()
     "incsz $fr"
     (+ OP6_INCSZ DIR_NOTTO_W fr)
     (sequence ((QI isLreg) (HI 16bval))
          (LregCheck isLreg (ifield f-reg))
          ;; If fr is an Lreg, then we have to do 16-bit arithmetic.
          ;; We can take advantage of the fact that by a lucky
          ;; coincidence, the address of register xxxH is always
          ;; one lower than the address of register xxxL.
          (if (eq isLreg #x1)
             (sequence()
                ; Create the 16 bit value
                (set 16bval (reg h-spr (sub (ifield f-reg) 1)))
                (set 16bval (sll 16bval 8))
                (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF)))
                ; New 16 bit instruction
                (set 16bval (add HI 16bval 1))
                ; Separate the 16 bit values into the H and L regs
                (set (reg h-spr (ifield f-reg)) (and 16bval #xFF))
                (set (reg h-spr (sub (ifield f-reg) 1))
                     (and (srl 16bval 8) #xFF))
                (set fr (reg h-spr (ifield f-reg)))
             )
             ; Original instruction
	     (set fr (add fr 1))
          )
	       (if (zflag fr)
		   (skip 1)))
     ()
)

(dni incszw_fr "Skip if W=fr+1 zero"
     ()
     "incsz W,$fr"
     (+ OP6_INCSZ DIR_TO_W fr)
     (sequence ()
	       (set w (add fr 1))
	       (if (zflag w)
		   (skip 1)))
     ()
)

(dni swap_fr "Swap fr nibbles"
     ()
     "swap $fr"
     (+ OP6_SWAP DIR_NOTTO_W fr)
     (set fr (or (and (sll fr 4) #xf0)
		 (and (srl fr 4) #x0f)))
     ()
)

(dni swapw_fr "Swap fr nibbles into W"
     ()
     "swap W,$fr"
     (+ OP6_SWAP DIR_TO_W fr)
     (set w (or (and (sll fr 4) #xf0)
		(and (srl fr 4) #x0f)))
     ()
)

(dni rl_fr "Rotate fr left with carry"
     ()
     "rl $fr"
     (+ OP6_RL DIR_NOTTO_W fr)
     (sequence ((QI newfr) (BI newc))
	       (set newc (and fr #x80))
	       (set newfr (or (sll fr 1) (if QI cbit 1 0)))
	       (set cbit (if QI newc 1 0))
	       (set fr newfr))
     ()
)

(dni rlw_fr "Rotate fr left with carry into W"
     ()
     "rl W,$fr"
     (+ OP6_RL DIR_TO_W fr)
     (sequence ((QI newfr) (BI newc))
	       (set newc (and fr #x80))
	       (set newfr (or (sll fr 1) (if QI cbit 1 0)))
	       (set cbit (if QI newc 1 0))
	       (set w newfr))
     ()
)

(dni rr_fr "Rotate fr right with carry"
     ()
     "rr $fr"
     (+ OP6_RR DIR_NOTTO_W fr)
     (sequence ((QI newfr) (BI newc))
	       (set newc (and fr #x01))
	       (set newfr (or (srl fr 1) (if QI cbit #x80 #x00)))
	       (set cbit (if QI newc 1 0))
	       (set fr newfr))
     ()
)

(dni rrw_fr "Rotate fr right with carry into W"
     ()
     "rr W,$fr"
     (+ OP6_RR DIR_TO_W fr)
     (sequence ((QI newfr) (BI newc))
	       (set newc (and fr #x01))
	       (set newfr (or (srl fr 1) (if QI cbit #x80 #x00)))
	       (set cbit (if QI newc 1 0))
	       (set w newfr))
     ()
)

(dni decsz_fr "Skip if fr-- zero"
     ()
     "decsz $fr"
     (+ OP6_DECSZ DIR_NOTTO_W fr)
     (sequence ((QI isLreg) (HI 16bval))
          (LregCheck isLreg (ifield f-reg))
          ;; If fr is an Lreg, then we have to do 16-bit arithmetic.
          ;; We can take advantage of the fact that by a lucky
          ;; coincidence, the address of register xxxH is always
          ;; one lower than the address of register xxxL.
          (if (eq isLreg #x1)
             (sequence()
                ; Create the 16 bit value
                (set 16bval (reg h-spr (sub (ifield f-reg) 1)))
                (set 16bval (sll 16bval 8))
                (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF)))
                ; New 16 bit instruction
                (set 16bval (sub HI 16bval 1))
                ; Separate the 16 bit values into the H and L regs
                (set (reg h-spr (ifield f-reg)) (and 16bval #xFF))
                (set (reg h-spr (sub (ifield f-reg) 1))
                     (and (srl 16bval 8) #xFF))
                (set fr (reg h-spr (ifield f-reg)))
             )
             ; Original instruction
	     (set fr (sub fr 1))
          )
	       (if (zflag fr)
		   (skip 1)))
     ()
)

(dni decszw_fr "Skip if W=fr-1 zero"
     ()
     "decsz W,$fr"
     (+ OP6_DECSZ DIR_TO_W fr)
     (sequence ()
	       (set w (sub fr 1))
	       (if (zflag w)
		   (skip 1)))
     ()
)

(dni inc_fr "Increment fr"
     ()
     "inc $fr"
     (+ OP6_INC DIR_NOTTO_W fr)
     (sequence ((QI isLreg) (HI 16bval))
          (LregCheck isLreg (ifield f-reg))
          ;; If fr is an Lreg, then we have to do 16-bit arithmetic.
          ;; We can take advantage of the fact that by a lucky
          ;; coincidence, the address of register xxxH is always
          ;; one lower than the address of register xxxL.
          (if (eq isLreg #x1)
             (sequence()
                ; Create the 16 bit value
                (set 16bval (reg h-spr (sub (ifield f-reg) 1)))
                (set 16bval (sll 16bval 8))
                (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF)))
                ; New 16 bit instruction
		(set 16bval (add HI 16bval 1))
                ; Separate the 16 bit values into the H and L regs
                (set (reg h-spr (ifield f-reg)) (and 16bval #xFF))