Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
from scipy.signal import convolve2d
from src.forward_model import CFA
def bilinear_demosaicing(op: CFA, y: np.ndarray) -> np.ndarray:
"""
Bilinear demosaicing method.
Args:
op (CFA): CFA operator.
y (np.ndarray): Mosaicked image.
Returns:
np.ndarray: Demosaicked image.
"""
# Copie des valeurs directement connues pour chaque canal
red = y[:, :, 0]
green = y[:, :, 1]
blue = y[:, :, 2]
# Création des masques pour chaque couleur selon le motif CFA
mask_red = (op.mask == 0) # Supposons que 0 correspond au rouge dans le masque
mask_green = (op.mask == 1) # Supposons que 1 correspond au vert
mask_blue = (op.mask == 2) # Supposons que 2 correspond au bleu
# Interpolation bilinéaire pour le rouge et le bleu
# Note: np.multiply multiplie les éléments correspondants des tableaux, c'est pourquoi nous utilisons np.multiply au lieu de *
red_interp = convolve2d(np.multiply(red, mask_red), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')
blue_interp = convolve2d(np.multiply(blue, mask_blue), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')
# Interpolation bilinéaire pour le vert
# Pour le vert, nous utilisons un autre noyau car il y a plus de pixels verts
green_interp = convolve2d(np.multiply(green, mask_green), [[0, 1/4, 0], [1/4, 1, 1/4], [0, 1/4, 0]], mode='same')
# Création de l'image interpolée
demosaicked_image = np.stack((red_interp, green_interp, blue_interp), axis=-1)
# Correction des valeurs interpolées: on réapplique les valeurs connues pour éviter le flou
demosaicked_image[:, :, 0][mask_red] = red[mask_red]
demosaicked_image[:, :, 1][mask_green] = green[mask_green]
demosaicked_image[:, :, 2][mask_blue] = blue[mask_blue]
# Clip pour s'assurer que toutes les valeurs sont dans la plage [0, 1]
demosaicked_image = np.clip(demosaicked_image, 0, 1)
return demosaicked_image
def quad_bayer_demosaicing(op: CFA, y: np.ndarray) -> np.ndarray:
"""
Demosaicing method for Quad Bayer CFA pattern.
Args:
op (CFA): CFA operator.
y (np.ndarray): Mosaicked image.
Returns:
np.ndarray: Demosaicked image.
"""
# Interpolation bilinéaire pour chaque canal
red_interp = convolve2d(np.multiply(y[:, :, 0], op.mask == 0), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')
green_interp = convolve2d(np.multiply(y[:, :, 1], op.mask == 1), [[0, 1/4, 0], [1/4, 1, 1/4], [0, 1/4, 0]], mode='same')
blue_interp = convolve2d(np.multiply(y[:, :, 2], op.mask == 2), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')
# Assemblage de l'image interpolée
demosaicked_image = np.stack((red_interp, green_interp, blue_interp), axis=-1)
# Réapplication des valeurs connues
demosaicked_image[:, :, 0][op.mask == 0] = y[:, :, 0][op.mask == 0]
demosaicked_image[:, :, 1][op.mask == 1] = y[:, :, 1][op.mask == 1]
demosaicked_image[:, :, 2][op.mask == 2] = y[:, :, 2][op.mask == 2]
# Clip des valeurs pour les maintenir dans la plage appropriée
demosaicked_image = np.clip(demosaicked_image, 0, 1)
return demosaicked_image