Skip to content
Snippets Groups Projects
Commit 221b1656 authored by Matthieu Muller's avatar Matthieu Muller
Browse files

Post merge changes

parent a959fb66
No related branches found
No related tags found
No related merge requests found
%% Cell type:code id:ec6da321 tags:
``` python
import numpy as np
from scipy.signal import convolve2d
from src.forward_model import CFA
def bilinear_demosaicing(op: CFA, y: np.ndarray) -> np.ndarray:
"""
Bilinear demosaicing method.
Args:
op (CFA): CFA operator.
y (np.ndarray): Mosaicked image.
Returns:
np.ndarray: Demosaicked image.
"""
# Copie des valeurs directement connues pour chaque canal
red = y[:, :, 0]
green = y[:, :, 1]
blue = y[:, :, 2]
# Création des masques pour chaque couleur selon le motif CFA
mask_red = (op.mask == 0) # Supposons que 0 correspond au rouge dans le masque
mask_green = (op.mask == 1) # Supposons que 1 correspond au vert
mask_blue = (op.mask == 2) # Supposons que 2 correspond au bleu
# Interpolation bilinéaire pour le rouge et le bleu
# Note: np.multiply multiplie les éléments correspondants des tableaux, c'est pourquoi nous utilisons np.multiply au lieu de *
red_interp = convolve2d(np.multiply(red, mask_red), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')
blue_interp = convolve2d(np.multiply(blue, mask_blue), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')
# Interpolation bilinéaire pour le vert
# Pour le vert, nous utilisons un autre noyau car il y a plus de pixels verts
green_interp = convolve2d(np.multiply(green, mask_green), [[0, 1/4, 0], [1/4, 1, 1/4], [0, 1/4, 0]], mode='same')
# Création de l'image interpolée
demosaicked_image = np.stack((red_interp, green_interp, blue_interp), axis=-1)
# Correction des valeurs interpolées: on réapplique les valeurs connues pour éviter le flou
demosaicked_image[:, :, 0][mask_red] = red[mask_red]
demosaicked_image[:, :, 1][mask_green] = green[mask_green]
demosaicked_image[:, :, 2][mask_blue] = blue[mask_blue]
# Clip pour s'assurer que toutes les valeurs sont dans la plage [0, 1]
demosaicked_image = np.clip(demosaicked_image, 0, 1)
return demosaicked_image
```
%% Cell type:code id:cf379598 tags:
``` python
def quad_bayer_demosaicing(op: CFA, y: np.ndarray) -> np.ndarray:
"""
Demosaicing method for Quad Bayer CFA pattern.
Args:
op (CFA): CFA operator.
y (np.ndarray): Mosaicked image.
Returns:
np.ndarray: Demosaicked image.
"""
# Interpolation bilinéaire pour chaque canal
red_interp = convolve2d(np.multiply(y[:, :, 0], op.mask == 0), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')
green_interp = convolve2d(np.multiply(y[:, :, 1], op.mask == 1), [[0, 1/4, 0], [1/4, 1, 1/4], [0, 1/4, 0]], mode='same')
blue_interp = convolve2d(np.multiply(y[:, :, 2], op.mask == 2), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')
# Assemblage de l'image interpolée
demosaicked_image = np.stack((red_interp, green_interp, blue_interp), axis=-1)
# Réapplication des valeurs connues
demosaicked_image[:, :, 0][op.mask == 0] = y[:, :, 0][op.mask == 0]
demosaicked_image[:, :, 1][op.mask == 1] = y[:, :, 1][op.mask == 1]
demosaicked_image[:, :, 2][op.mask == 2] = y[:, :, 2][op.mask == 2]
# Clip des valeurs pour les maintenir dans la plage appropriée
demosaicked_image = np.clip(demosaicked_image, 0, 1)
return demosaicked_image
```
%% Cell type:code id:3eec062c tags:
``` python
```
%% Cell type:code id:a6630396 tags:
``` python
```
%% Cell type:code id:ef4e59c8 tags:
``` python
```
import numpy as np
from scipy.signal import convolve2d
from src.forward_model import CFA
def bilinear_demosaicing(op: CFA, y: np.ndarray) -> np.ndarray:
"""
Bilinear demosaicing method.
Args:
op (CFA): CFA operator.
y (np.ndarray): Mosaicked image.
Returns:
np.ndarray: Demosaicked image.
"""
# Copie des valeurs directement connues pour chaque canal
red = y[:, :, 0]
green = y[:, :, 1]
blue = y[:, :, 2]
# Création des masques pour chaque couleur selon le motif CFA
mask_red = (op.mask == 0) # Supposons que 0 correspond au rouge dans le masque
mask_green = (op.mask == 1) # Supposons que 1 correspond au vert
mask_blue = (op.mask == 2) # Supposons que 2 correspond au bleu
# Interpolation bilinéaire pour le rouge et le bleu
# Note: np.multiply multiplie les éléments correspondants des tableaux, c'est pourquoi nous utilisons np.multiply au lieu de *
red_interp = convolve2d(np.multiply(red, mask_red), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')
blue_interp = convolve2d(np.multiply(blue, mask_blue), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')
# Interpolation bilinéaire pour le vert
# Pour le vert, nous utilisons un autre noyau car il y a plus de pixels verts
green_interp = convolve2d(np.multiply(green, mask_green), [[0, 1/4, 0], [1/4, 1, 1/4], [0, 1/4, 0]], mode='same')
# Création de l'image interpolée
demosaicked_image = np.stack((red_interp, green_interp, blue_interp), axis=-1)
# Correction des valeurs interpolées: on réapplique les valeurs connues pour éviter le flou
demosaicked_image[:, :, 0][mask_red] = red[mask_red]
demosaicked_image[:, :, 1][mask_green] = green[mask_green]
demosaicked_image[:, :, 2][mask_blue] = blue[mask_blue]
# Clip pour s'assurer que toutes les valeurs sont dans la plage [0, 1]
demosaicked_image = np.clip(demosaicked_image, 0, 1)
return demosaicked_image
def quad_bayer_demosaicing(op: CFA, y: np.ndarray) -> np.ndarray:
"""
Demosaicing method for Quad Bayer CFA pattern.
Args:
op (CFA): CFA operator.
y (np.ndarray): Mosaicked image.
Returns:
np.ndarray: Demosaicked image.
"""
# Interpolation bilinéaire pour chaque canal
red_interp = convolve2d(np.multiply(y[:, :, 0], op.mask == 0), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')
green_interp = convolve2d(np.multiply(y[:, :, 1], op.mask == 1), [[0, 1/4, 0], [1/4, 1, 1/4], [0, 1/4, 0]], mode='same')
blue_interp = convolve2d(np.multiply(y[:, :, 2], op.mask == 2), [[1/4, 1/2, 1/4], [1/2, 1, 1/2], [1/4, 1/2, 1/4]], mode='same')
# Assemblage de l'image interpolée
demosaicked_image = np.stack((red_interp, green_interp, blue_interp), axis=-1)
# Réapplication des valeurs connues
demosaicked_image[:, :, 0][op.mask == 0] = y[:, :, 0][op.mask == 0]
demosaicked_image[:, :, 1][op.mask == 1] = y[:, :, 1][op.mask == 1]
demosaicked_image[:, :, 2][op.mask == 2] = y[:, :, 2][op.mask == 2]
# Clip des valeurs pour les maintenir dans la plage appropriée
demosaicked_image = np.clip(demosaicked_image, 0, 1)
return demosaicked_image
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment