Skip to content
Snippets Groups Projects
README.org 34.24 KiB

SASA: a SimulAtor of Self-stabilizing Algorithms

#

TL;DR

<<sasa>> SASA is a Self-stabilizing Algorithms SimulAtor, based on the so-called Atomic State model (ASM) introduced by Dijkstra in its seminal article on Self-stabilizing distributed algorithms. This model is also sometimes named “locally shared memory model with composite atomicity”

Basically, one needs to provide:

  1. a topology, made of nodes and transitions (via a dot file)
  2. the algorithms attached to nodes (via =ocaml= programs)

The fastest way to get started is to copy the files provided in the test/skeleton directory, and to modify them:

cd test
cp -rf skeleton my_algo # copy a simple example
cd my_algo              # one may want to edit "p.ml" and "ring.dot"
make ring.cmxs          # compile anything that needs to be compiled
sasa ring.dot -l 4      # run a batch simulation for 4 steps

#+RESULTS[6abb8d69a9985c7f167f39a9515f09cdd53bc3e4]:

sasa -reg ring.dot
ocamlfind ocamlopt -package algo -shared state.ml p.ml config.ml ring.ml -o ring.cmxs
# Automatically generated by /home/jahier/.opam/4.10.0/bin/sasa version "4.3.5" ("a6897fa")
# on crevetete the 2/11/2020 at 15:28:50
#sasa ring.dot -l 4

#seed 972333160
#inputs 
#outputs "p1_i":int "p2_i":int "p3_i":int "p4_i":int "p5_i":int "p6_i":int "p7_i":int "Enab_p1_action2":bool "Enab_p1_action1":bool "Enab_p2_action2":bool "Enab_p2_action1":bool "Enab_p3_action2":bool "Enab_p3_action1":bool "Enab_p4_action2":bool "Enab_p4_action1":bool "Enab_p5_action2":bool "Enab_p5_action1":bool "Enab_p6_action2":bool "Enab_p6_action1":bool "Enab_p7_action2":bool "Enab_p7_action1":bool "p1_action2":bool "p1_action1":bool "p2_action2":bool "p2_action1":bool "p3_action2":bool "p3_action1":bool "p4_action2":bool "p4_action1":bool "p5_action2":bool "p5_action1":bool "p6_action2":bool "p6_action1":bool "p7_action2":bool "p7_action1":bool 


#step 0
#outs 4 5 2 1 9 0 4 t f t f f f t f f t t f t f t f t f f f t f f t f f t f 

#step 1
#outs 0 0 2 0 1 0 0 f t t f f t f f f t f t f t f t f f f t f f f t f f f t 

#step 2
#outs 1 0 1 0 1 0 1 f f f f f t f f f t f f f f f f f f f t f f f t f f f f 

#step 3
#outs 1 0 1 0 1 0 1 f f f f f t f f f t f f f f f f f f f t f f f f f f f f 

#step 4
#outs 1 0 1 0 1 0 1 f f f f f t f f f t f f f f f f f f f t f f f f f f f f 
#q

SASA source code: https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/synchrone/sasa

Some Tutorials: https://verimag.gricad-pages.univ-grenoble-alpes.fr/vtt/tags/sasa/

TAP article pre-print : Karine Altisen, Stéphane Devismes, Erwan Jahier. SASA: a SimulAtor of Self-stabilizing Algorithms. 14th International Conference on Tests and Proofs, Jun 2020, Bergen, Norway. hal-02521149

poster.png

Topology

<<dot>> <<topology>> The topology is given via .dot files, that should

  1. follow the graphviz/dot format
  2. have nodes labeled by the algo field
graph ring {
 p1 [algo="some_algo.ml"]
 p2 [algo="some_algo.ml"]
 p3 [algo="some_algo.ml"]
 p4 [algo="some_algo.ml"]
 p5 [algo="some_algo.ml"]
 p6 [algo="some_algo.ml"]
 p7 [algo="some_algo.ml"]

 p1 -- p2 -- p3 -- p4 -- p5 -- p6 -- p7 -- p1 
}

#+RESULTS[d65ee51636ffe73dde3eee3488f35b6066c52d98]: ring.dot

Of course the some_algo.ml file must exist and contains an algorithm.

In order to define an initial configuration, one can use the init node attribute.

graph ring {
 p1 [algo="some_algo.ml" init="i=1"]
 p2 [algo="some_algo.ml" init="i=2"]
 p3 [algo="some_algo.ml" init="i=42"]
 p4 [algo="some_algo.ml"]
 p5 [algo="some_algo.ml"]
 p6 [algo="some_algo.ml"]
 p7 [algo="some_algo.ml"]

 p1 -- p2 -- p3 -- p4 -- p5 -- p6 -- p7 -- p1 
}

#+RESULTS[774c94dfeb9d5c7279e1a267c805461b09ca5c4f]: ring_init.dot

One can use graph attributes to set parameters that can be used by all nodes during the simulation.

graph ring {
 graph [diameter="4" some_other_global_parameter="42"]
 p1 [algo="some_algo.ml" init="i=1"]
 p2 [algo="some_algo.ml" init="i=2"]
 p3 [algo="some_algo.ml" init="i=42"]
 p4 [algo="some_algo.ml"]
 p5 [algo="some_algo.ml"]
 p6 [algo="some_algo.ml"]
 p7 [algo="some_algo.ml"]

 p1 -- p2 -- p3 -- p4 -- p5 -- p6 -- p7 -- p1 
}

#+RESULTS[de8e9d4b7950f4da5976b90639faf6a2d36631ff]: ring_init.ml

Such parameters can be retrieved in algorithms using the Algo.get_graph_attribute : string -> string function. For example, if you know the graph diameter, you can define it as a graph attribute (a Algo.diameter: unit -> int function is provided, but it can be expensive to use for large graphs).

Some tools are provided in the sasa distributions to generate such kinds of dot graphs: https://verimag.gricad-pages.univ-grenoble-alpes.fr/vtt/articles/sasa-gg/

Algorithms

<<Algorithms>>

The following has been generated from algo.mli

Examples

Batch mode

./sasabatch.svg

Running batch simulations with Built-in daemons

To launch batch simulations, one can use the sasa Command Line Interface.

For instance, in order to simulate an algorithm defined in the ring.dot (cf test/coloring), you can launch the following command (the resulting produced outputs follows in green):