SASA: a SimulAtor of Self-stabilizing Algorithms
#
TL;DR
<<sasa>> SASA is a Self-stabilizing Algorithms SimulAtor, based on the so-called Atomic State model (ASM) introduced by Dijkstra in its seminal article on Self-stabilizing distributed algorithms. This model is also sometimes named “locally shared memory model with composite atomicity”Basically, one needs to provide:
- a topology, made of nodes and transitions (via a dot file)
- the algorithms attached to nodes (via =ocaml= programs)
The fastest way to get started is to copy the files provided in the
test/skeleton
directory, and to modify them:
cd test
cp -rf skeleton my_algo # copy a simple example
cd my_algo # one may want to edit "p.ml" and "ring.dot"
make ring.cmxs # compile anything that needs to be compiled
sasa ring.dot -l 4 # run a batch simulation for 4 steps
#+RESULTS[6abb8d69a9985c7f167f39a9515f09cdd53bc3e4]:
sasa -reg ring.dot ocamlfind ocamlopt -package algo -shared state.ml p.ml config.ml ring.ml -o ring.cmxs # Automatically generated by /home/jahier/.opam/4.10.0/bin/sasa version "4.3.5" ("a6897fa") # on crevetete the 2/11/2020 at 15:28:50 #sasa ring.dot -l 4 #seed 972333160 #inputs #outputs "p1_i":int "p2_i":int "p3_i":int "p4_i":int "p5_i":int "p6_i":int "p7_i":int "Enab_p1_action2":bool "Enab_p1_action1":bool "Enab_p2_action2":bool "Enab_p2_action1":bool "Enab_p3_action2":bool "Enab_p3_action1":bool "Enab_p4_action2":bool "Enab_p4_action1":bool "Enab_p5_action2":bool "Enab_p5_action1":bool "Enab_p6_action2":bool "Enab_p6_action1":bool "Enab_p7_action2":bool "Enab_p7_action1":bool "p1_action2":bool "p1_action1":bool "p2_action2":bool "p2_action1":bool "p3_action2":bool "p3_action1":bool "p4_action2":bool "p4_action1":bool "p5_action2":bool "p5_action1":bool "p6_action2":bool "p6_action1":bool "p7_action2":bool "p7_action1":bool #step 0 #outs 4 5 2 1 9 0 4 t f t f f f t f f t t f t f t f t f f f t f f t f f t f #step 1 #outs 0 0 2 0 1 0 0 f t t f f t f f f t f t f t f t f f f t f f f t f f f t #step 2 #outs 1 0 1 0 1 0 1 f f f f f t f f f t f f f f f f f f f t f f f t f f f f #step 3 #outs 1 0 1 0 1 0 1 f f f f f t f f f t f f f f f f f f f t f f f f f f f f #step 4 #outs 1 0 1 0 1 0 1 f f f f f t f f f t f f f f f f f f f t f f f f f f f f #q
SASA source code: https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/synchrone/sasa
Some Tutorials: https://verimag.gricad-pages.univ-grenoble-alpes.fr/vtt/tags/sasa/
TAP article pre-print : Karine Altisen, Stéphane Devismes, Erwan Jahier. SASA: a SimulAtor of Self-stabilizing Algorithms. 14th International Conference on Tests and Proofs, Jun 2020, Bergen, Norway. hal-02521149
Topology
<<dot>>
<<topology>>
The topology is given via .dot
files, that should
- follow the graphviz/dot format
- have nodes labeled by the
algo
field
graph ring {
p1 [algo="some_algo.ml"]
p2 [algo="some_algo.ml"]
p3 [algo="some_algo.ml"]
p4 [algo="some_algo.ml"]
p5 [algo="some_algo.ml"]
p6 [algo="some_algo.ml"]
p7 [algo="some_algo.ml"]
p1 -- p2 -- p3 -- p4 -- p5 -- p6 -- p7 -- p1
}
#+RESULTS[d65ee51636ffe73dde3eee3488f35b6066c52d98]: ring.dot
Of course the some_algo.ml
file must exist and contains an algorithm.
In order to define an initial configuration, one can use the init
node attribute.
graph ring {
p1 [algo="some_algo.ml" init="i=1"]
p2 [algo="some_algo.ml" init="i=2"]
p3 [algo="some_algo.ml" init="i=42"]
p4 [algo="some_algo.ml"]
p5 [algo="some_algo.ml"]
p6 [algo="some_algo.ml"]
p7 [algo="some_algo.ml"]
p1 -- p2 -- p3 -- p4 -- p5 -- p6 -- p7 -- p1
}
#+RESULTS[774c94dfeb9d5c7279e1a267c805461b09ca5c4f]: ring_init.dot
One can use graph attributes to set parameters that can be used by all nodes during the simulation.
graph ring {
graph [diameter="4" some_other_global_parameter="42"]
p1 [algo="some_algo.ml" init="i=1"]
p2 [algo="some_algo.ml" init="i=2"]
p3 [algo="some_algo.ml" init="i=42"]
p4 [algo="some_algo.ml"]
p5 [algo="some_algo.ml"]
p6 [algo="some_algo.ml"]
p7 [algo="some_algo.ml"]
p1 -- p2 -- p3 -- p4 -- p5 -- p6 -- p7 -- p1
}
#+RESULTS[de8e9d4b7950f4da5976b90639faf6a2d36631ff]: ring_init.ml
Such parameters can be retrieved in algorithms using the
Algo.get_graph_attribute : string -> string
function. For example,
if you know the graph diameter, you can define it as a graph
attribute (a Algo.diameter: unit -> int
function is provided, but
it can be expensive to use for large graphs).
Some tools are provided in the sasa
distributions to generate such
kinds of dot
graphs:
https://verimag.gricad-pages.univ-grenoble-alpes.fr/vtt/articles/sasa-gg/
Algorithms
<<Algorithms>>
The following has been generated from algo.mli
Examples
Batch mode
Running batch simulations with Built-in daemons
To launch batch simulations, one can use the sasa
Command Line Interface.
For instance, in order to simulate an algorithm defined in the
ring.dot
(cf test/coloring), you can launch the following
command (the resulting produced outputs follows in green):