Skip to content
Snippets Groups Projects
Commit 79257d6d authored by Jean-Luc Parouty's avatar Jean-Luc Parouty
Browse files

Update README.md

parent b563012b
No related branches found
No related tags found
No related merge requests found
...@@ -63,12 +63,16 @@ Some other useful informations are also available in the [wiki](https://gricad-g ...@@ -63,12 +63,16 @@ Some other useful informations are also available in the [wiki](https://gricad-g
      Episode 4 : Improving the results with data augmentation       Episode 4 : Improving the results with data augmentation
[[GTS5] - CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb) [[GTS5] - CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb)
      Episode 5 : A lot of models, a lot of datasets and a lot of results.       Episode 5 : A lot of models, a lot of datasets and a lot of results.
[[GTS6] - CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Full-convolutions-batch.ipynb) [[GTS6] - CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Notebook-as-a-batch.ipynb)
      Episode 6 : Run Full convolution notebook as a batch       Episode 6 : Run Full convolution notebook as a batch
[[GTS7] - Full convolutions Report](GTSRB/07-Full-convolutions-reports.ipynb) [[GTS7] - CNN with GTSRB dataset - Show reports](GTSRB/07-Show-report.ipynb)
      Episode 7 : Displaying the reports of the different jobs       Episode 7 : Displaying the reports of the different jobs
[[TSB1] - Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb) [[TSB1] - Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb)
      4 ways to use Tensorboard from the Jupyter environment       4 ways to use Tensorboard from the Jupyter environment
[[BASH1] - OAR batch script](GTSRB/batch_oar.sh)
      Bash script for OAR batch submission of GTSRB notebook
[[BASH2] - SLURM batch script](GTSRB/batch_slurm.sh)
      Bash script for SLURM batch submission of GTSRB notebooks
[[IMDB1] - Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb) [[IMDB1] - Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb)
      A very classical example of word embedding for text classification (sentiment analysis)       A very classical example of word embedding for text classification (sentiment analysis)
[[IMDB2] - Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb) [[IMDB2] - Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb)
...@@ -83,11 +87,13 @@ Some other useful informations are also available in the [wiki](https://gricad-g ...@@ -83,11 +87,13 @@ Some other useful informations are also available in the [wiki](https://gricad-g
      Episode 3: Attempt to predict in the longer term       Episode 3: Attempt to predict in the longer term
[[VAE1] - Variational AutoEncoder (VAE) with MNIST](VAE/01-VAE-with-MNIST.ipynb) [[VAE1] - Variational AutoEncoder (VAE) with MNIST](VAE/01-VAE-with-MNIST.ipynb)
      Episode 1 : Model construction and Training       Episode 1 : Model construction and Training
[[VAE1] - Variational AutoEncoder (VAE) with MNIST](VAE/01-VAE-with-MNIST.nbconvert.ipynb)
      Episode 1 : Model construction and Training
[[VAE2] - Variational AutoEncoder (VAE) with MNIST - Analysis](VAE/02-VAE-with-MNIST-post.ipynb) [[VAE2] - Variational AutoEncoder (VAE) with MNIST - Analysis](VAE/02-VAE-with-MNIST-post.ipynb)
      Episode 2 : Exploring our latent space       Episode 2 : Exploring our latent space
[[VAE3] - About the CelebA dataset](VAE/03-About-CelebA.ipynb) [[VAE3] - About the CelebA dataset](VAE/03-About-CelebA.ipynb)
      Episode 3 : About the CelebA dataset, a more fun dataset !       Episode 3 : About the CelebA dataset, a more fun dataset !
[[VAE4] - Preparation of the CelebA dataset](VAE/04-Prepare-CelebA-batch.ipynb) [[VAE4] - Preparation of the CelebA dataset](VAE/04-Prepare-CelebA-datasets.ipynb)
      Episode 4 : Preparation of a clustered dataset, batchable       Episode 4 : Preparation of a clustered dataset, batchable
[[VAE5] - Checking the clustered CelebA dataset](VAE/05-Check-CelebA.ipynb) [[VAE5] - Checking the clustered CelebA dataset](VAE/05-Check-CelebA.ipynb)
      Episode 5 :\tChecking the clustered dataset       Episode 5 :\tChecking the clustered dataset
...@@ -97,10 +103,10 @@ Some other useful informations are also available in the [wiki](https://gricad-g ...@@ -97,10 +103,10 @@ Some other useful informations are also available in the [wiki](https://gricad-g
      Episode 7 : Variational AutoEncoder (VAE) with CelebA (medium res.)       Episode 7 : Variational AutoEncoder (VAE) with CelebA (medium res.)
[[VAE8] - Variational AutoEncoder (VAE) with CelebA - Analysis](VAE/08-VAE-withCelebA-post.ipynb) [[VAE8] - Variational AutoEncoder (VAE) with CelebA - Analysis](VAE/08-VAE-withCelebA-post.ipynb)
      Episode 8 : Exploring latent space of our trained models       Episode 8 : Exploring latent space of our trained models
[[BASH1] - OAR batch script](VAE/batch-oar.sh) [[BASH1] - OAR batch script](VAE/batch_oar.sh)
      Bash script for OAR batch submission of a notebook       Bash script for OAR batch submission of VAE notebook
[[BASH2] - SLURM batch script](VAE/batch-slurm.sh) [[BASH2] - SLURM batch script](VAE/batch_slurm.sh)
      Bash script for SLURM batch submission of a notebook       Bash script for SLURM batch submission of VAE notebooks
[[ACTF1] - Activation functions](Misc/Activation-Functions.ipynb) [[ACTF1] - Activation functions](Misc/Activation-Functions.ipynb)
      Some activation functions, with their derivatives.       Some activation functions, with their derivatives.
[[NP1] - A short introduction to Numpy](Misc/Numpy.ipynb) [[NP1] - A short introduction to Numpy](Misc/Numpy.ipynb)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment