"Current Version : <!-- VERSION_BEGIN -->3.0.9<!-- VERSION_END -->\n",
"Current Version : <!-- VERSION_BEGIN -->3.0.10<!-- VERSION_END -->\n",
"\n",
"\n",
"## Course materials\n",
"\n",
"| | | | |\n",
"| Courses | Notebooks | Datasets | Videos |\n",
"|:--:|:--:|:--:|:--:|\n",
"| **[<img width=\"50px\" src=\"fidle/img/00-Fidle-pdf.svg\"></img><br>Course slides](https://fidle.cnrs.fr/supports)**<br>The course in pdf format<br>| **[<img width=\"50px\" src=\"fidle/img/00-Notebooks.svg\"></img><br>Notebooks](https://fidle.cnrs.fr/notebooks)**<br> Get a Zip or clone this repository <br>| **[<img width=\"50px\" src=\"fidle/img/00-Datasets-tar.svg\"></img><br>Datasets](https://fidle.cnrs.fr/datasets-fidle.tar)**<br>All the needed datasets<br>|**[<img width=\"50px\" src=\"fidle/img/00-Videos.svg\"></img><br>Videos](https://fidle.cnrs.fr/youtube)**<br> Our Youtube channel |\n",
"| [<img width=\"50px\" src=\"fidle/img/00-Fidle-pdf.svg\"></img><br>**Course slides**](https://fidle.cnrs.fr/supports)<br>The course in pdf format<br>| [<img width=\"50px\" src=\"fidle/img/00-Notebooks.svg\"></img><br>**Notebooks**](https://fidle.cnrs.fr/notebooks)<br> Get a Zip or clone this repository <br>| [<img width=\"50px\" src=\"fidle/img/00-Datasets-tar.svg\"></img><br>**Datasets**](https://fidle.cnrs.fr/datasets-fidle.tar)<br>All the needed datasets<br>|[<img width=\"50px\" src=\"fidle/img/00-Videos.svg\"></img><br>**Videos**](https://fidle.cnrs.fr/youtube)<br> Our Youtube channel |\n",
"\n",
"Have a look about **[How to get and install](https://fidle.cnrs.fr/installation)** these notebooks and datasets.\n",
"\n",
...
...
@@ -68,7 +68,7 @@
"## Jupyter notebooks\n",
"\n",
"<!-- TOC_BEGIN -->\n",
"<!-- Automatically generated on : 03/03/24 20:38:37 -->\n",
"<!-- Automatically generated on : 20/03/24 21:58:23 -->\n",
"\n",
"### Linear and logistic regression\n",
"- **[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb) \n",
...
...
@@ -207,6 +207,8 @@
"4 ways to use Tensorboard from the Jupyter environment\n",
Current Version : <!-- VERSION_BEGIN -->3.0.9<!-- VERSION_END -->
Current Version : <!-- VERSION_BEGIN -->3.0.10<!-- VERSION_END -->
## Course materials
| | | | |
| Courses | Notebooks | Datasets | Videos |
|:--:|:--:|:--:|:--:|
| **[<img width="50px" src="fidle/img/00-Fidle-pdf.svg"></img><br>Course slides](https://fidle.cnrs.fr/supports)**<br>The course in pdf format<br>| **[<img width="50px" src="fidle/img/00-Notebooks.svg"></img><br>Notebooks](https://fidle.cnrs.fr/notebooks)**<br> Get a Zip or clone this repository <br>| **[<img width="50px" src="fidle/img/00-Datasets-tar.svg"></img><br>Datasets](https://fidle.cnrs.fr/datasets-fidle.tar)**<br>All the needed datasets<br>|**[<img width="50px" src="fidle/img/00-Videos.svg"></img><br>Videos](https://fidle.cnrs.fr/youtube)**<br> Our Youtube channel |
| [<img width="50px" src="fidle/img/00-Fidle-pdf.svg"></img><br>**Course slides**](https://fidle.cnrs.fr/supports)<br>The course in pdf format<br>| [<img width="50px" src="fidle/img/00-Notebooks.svg"></img><br>**Notebooks**](https://fidle.cnrs.fr/notebooks)<br> Get a Zip or clone this repository <br>| [<img width="50px" src="fidle/img/00-Datasets-tar.svg"></img><br>**Datasets**](https://fidle.cnrs.fr/datasets-fidle.tar)<br>All the needed datasets<br>|[<img width="50px" src="fidle/img/00-Videos.svg"></img><br>**Videos**](https://fidle.cnrs.fr/youtube)<br> Our Youtube channel |
Have a look about **[How to get and install](https://fidle.cnrs.fr/installation)** these notebooks and datasets.
## Jupyter notebooks
<!-- TOC_BEGIN -->
<!-- Automatically generated on : 03/03/24 20:38:37 -->
<!-- Automatically generated on : 20/03/24 21:58:23 -->
### Linear and logistic regression
- **[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)
Low-level implementation, using numpy, of a direct resolution for a linear regression
- **[GRAD1](LinearReg/02-Gradient-descent.ipynb)** - [Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb)
Low level implementation of a solution by gradient descent. Basic and stochastic approach.
Retrieving embedded vectors from our trained model, using Keras 3 and PyTorch
- **[K3IMDB5](Embedding.Keras3/05-LSTM-Keras.ipynb)** - [Sentiment analysis with a RNN network](Embedding.Keras3/05-LSTM-Keras.ipynb)
Still the same problem, but with a network combining embedding and RNN, using Keras 3 and PyTorch
### Time series with Recurrent Neural Network (RNN), using Keras3/PyTorch
- **[K3LADYB1](RNN.Keras3/01-Ladybug.ipynb)** - [Prediction of a 2D trajectory via RNN](RNN.Keras3/01-Ladybug.ipynb)
Artificial dataset generation and prediction attempt via a recurrent network, using Keras 3 and PyTorch
### Sentiment analysis with transformer, using PyTorch
- **[TRANS1](Transformers.PyTorch/01-Distilbert.ipynb)** - [IMDB, Sentiment analysis with Transformers ](Transformers.PyTorch/01-Distilbert.ipynb)
Using a Tranformer to perform a sentiment analysis (IMDB) - Jean Zay version
- **[TRANS2](Transformers.PyTorch/02-distilbert_colab.ipynb)** - [IMDB, Sentiment analysis with Transformers ](Transformers.PyTorch/02-distilbert_colab.ipynb)
Using a Tranformer to perform a sentiment analysis (IMDB) - Colab version
### Unsupervised learning with an autoencoder neural network (AE), using Keras3
- **[K3AE1](AE.Keras3/01-Prepare-MNIST-dataset.ipynb)** - [Prepare a noisy MNIST dataset](AE.Keras3/01-Prepare-MNIST-dataset.ipynb)
Episode 1: Preparation of a noisy MNIST dataset
- **[K3AE2](AE.Keras3/02-AE-with-MNIST.ipynb)** - [Building and training an AE denoiser model](AE.Keras3/02-AE-with-MNIST.ipynb)
Episode 1 : Construction of a denoising autoencoder and training of it with a noisy MNIST dataset.
- **[K3AE3](AE.Keras3/03-AE-with-MNIST-post.ipynb)** - [Playing with our denoiser model](AE.Keras3/03-AE-with-MNIST-post.ipynb)
Episode 2 : Using the previously trained autoencoder to denoise data
- **[K3AE4](AE.Keras3/04-ExtAE-with-MNIST.ipynb)** - [Denoiser and classifier model](AE.Keras3/04-ExtAE-with-MNIST.ipynb)
Episode 4 : Construction of a denoiser and classifier model
- **[K3AE5](AE.Keras3/05-ExtAE-with-MNIST.ipynb)** - [Advanced denoiser and classifier model](AE.Keras3/05-ExtAE-with-MNIST.ipynb)
Episode 5 : Construction of an advanced denoiser and classifier model
### Generative network with Variational Autoencoder (VAE), using Keras3
- **[K3VAE1](VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb)** - [First VAE, using functional API (MNIST dataset)](VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb)
Construction and training of a VAE, using functional APPI, with a latent space of small dimension.
- **[K3VAE2](VAE.Keras3/02-VAE-with-MNIST.ipynb)** - [VAE, using a custom model class (MNIST dataset)](VAE.Keras3/02-VAE-with-MNIST.ipynb)
Construction and training of a VAE, using model subclass, with a latent space of small dimension.
- **[K3VAE3](VAE.Keras3/03-VAE-with-MNIST-post.ipynb)** - [Analysis of the VAE's latent space of MNIST dataset](VAE.Keras3/03-VAE-with-MNIST-post.ipynb)
Visualization and analysis of the VAE's latent space of the dataset MNIST
### Generative Adversarial Networks (GANs), using Lightning
- **[PLSHEEP3](DCGAN.Lightning/01-DCGAN-PL.ipynb)** - [A DCGAN to Draw a Sheep, using Pytorch Lightning](DCGAN.Lightning/01-DCGAN-PL.ipynb)
"Draw me a sheep", revisited with a DCGAN, using Pytorch Lightning
### Diffusion Model (DDPM) using PyTorch
- **[DDPM1](DDPM.PyTorch/01-ddpm.ipynb)** - [Fashion MNIST Generation with DDPM](DDPM.PyTorch/01-ddpm.ipynb)
Diffusion Model example, to generate Fashion MNIST images.
Current Version : <!-- VERSION_BEGIN -->3.0.9<!-- VERSION_END -->
Current Version : <!-- VERSION_BEGIN -->3.0.10<!-- VERSION_END -->
## Course materials
| | | | |
| Courses | Notebooks | Datasets | Videos |
|:--:|:--:|:--:|:--:|
| **[<img width="50px" src="fidle/img/00-Fidle-pdf.svg"></img><br>Course slides](https://fidle.cnrs.fr/supports)**<br>The course in pdf format<br>| **[<img width="50px" src="fidle/img/00-Notebooks.svg"></img><br>Notebooks](https://fidle.cnrs.fr/notebooks)**<br> Get a Zip or clone this repository <br>| **[<img width="50px" src="fidle/img/00-Datasets-tar.svg"></img><br>Datasets](https://fidle.cnrs.fr/datasets-fidle.tar)**<br>All the needed datasets<br>|**[<img width="50px" src="fidle/img/00-Videos.svg"></img><br>Videos](https://fidle.cnrs.fr/youtube)**<br> Our Youtube channel |
| [<img width="50px" src="fidle/img/00-Fidle-pdf.svg"></img><br>**Course slides**](https://fidle.cnrs.fr/supports)<br>The course in pdf format<br>| [<img width="50px" src="fidle/img/00-Notebooks.svg"></img><br>**Notebooks**](https://fidle.cnrs.fr/notebooks)<br> Get a Zip or clone this repository <br>| [<img width="50px" src="fidle/img/00-Datasets-tar.svg"></img><br>**Datasets**](https://fidle.cnrs.fr/datasets-fidle.tar)<br>All the needed datasets<br>|[<img width="50px" src="fidle/img/00-Videos.svg"></img><br>**Videos**](https://fidle.cnrs.fr/youtube)<br> Our Youtube channel |
Have a look about **[How to get and install](https://fidle.cnrs.fr/installation)** these notebooks and datasets.
...
...
@@ -47,7 +47,7 @@ Have a look about **[How to get and install](https://fidle.cnrs.fr/installation)
## Jupyter notebooks
<!-- TOC_BEGIN -->
<!-- Automatically generated on : 03/03/24 20:38:37 -->
<!-- Automatically generated on : 20/03/24 21:58:23 -->
### Linear and logistic regression
-**[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)
...
...
@@ -186,6 +186,8 @@ PyTorch est l'un des principaux framework utilisé dans le Deep Learning
4 ways to use Tensorboard from the Jupyter environment