Skip to content
Snippets Groups Projects
Commit 4c04af5c authored by Jean-Luc Parouty's avatar Jean-Luc Parouty
Browse files

GTSRB update

Former-commit-id: bb636b27
parent 05a48c54
No related branches found
No related tags found
No related merge requests found
This diff is collapsed.
%% Cell type:markdown id: tags:
German Traffic Sign Recognition Benchmark (GTSRB)
=================================================
---
Introduction au Deep Learning (IDLE)
S. Aria, E. Maldonado, JL. Parouty
CNRS/SARI/DEVLOG - 2020
Objectives of this practical work
---------------------------------
Traffic sign classification with **CNN**, using Tensorflow and **Keras**
Prerequisite
------------
Environment, with the following packages :
- Python 3.6
- numpy
- Matplotlib
- Tensorflow 2.0
- scikit-image
You can create it from the `environment.yml` file :
```
# conda env create -f environment.yml
```
About the dataset
-----------------
Name : [German Traffic Sign Recognition Benchmark (GTSRB)](http://benchmark.ini.rub.de/?section=gtsrb)
Available [here](https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/published-archive.html)
or on **[kaggle](https://www.kaggle.com/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign)**
A nice example from : [Alex Staravoitau](https://navoshta.com/traffic-signs-classification/)
In few words :
- Images : Variable dimensions, rgb
- Train set : 39209 images
- Test set : 12630 images
- Classes : 0 to 42
Episodes
--------
**[01 - Preparation of data](01-Preparation-of-data.ipynb)**
- Understanding the dataset
- Preparing and formatting data
- Organize and backup data
**[02 - First convolutions](02-First-convolutions.ipynb)**
- Read dataset
- Build a model
- Train the model
- Model evaluation
%% Cell type:code id: tags:
``` python
```
German Traffic Sign Recognition Benchmark (GTSRB)
=================================================
---
pjluc 2019 - CNRS/DEVLOG - Formation Deep Learning
1/ Objectives
----------
Traffic sign classification with **CNN**, using Tensorflow and **Keras**
2/ About the dataset
-----------------
Name : [German Traffic Sign Recognition Benchmark (GTSRB)](http://benchmark.ini.rub.de/?section=gtsrb)
Available [here](https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/published-archive.html)
or on **[kaggle](https://www.kaggle.com/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign)**
A nice example from : [Alex Staravoitau](https://navoshta.com/traffic-signs-classification/)
In few words :
- Images : Variable dimensions, rgb
- Train set : 39209 images
- Test set : 12630 images
- Classes : 0 to 42
3/ Episodes
--------
01 - Dataset preparation
- Undestand the data
02 - First convolutions
\ No newline at end of file
File moved
......@@ -25,25 +25,25 @@ from tensorflow import keras
import matplotlib
import matplotlib.pyplot as plt
VERSION='0.1.0'
VERSION='0.1.1'
# -------------------------------------------------------------
# init_all
# -------------------------------------------------------------
#
def init(mplstyle='deepmods/talk.mplstyle'):
def init(mplstyle='idle/talk.mplstyle'):
global VERSION
# ---- matplotlib
matplotlib.style.use(mplstyle)
# ---- Hello world
now = datetime.datetime.now()
print('\nDeepmod/pwk by pjluc 2019')
print('IDLE 2020 - Practical Work Module')
print(' Version :', VERSION)
print(' Run time : {}'.format(now.strftime("%A %-d %B %Y, %H:%M:%S")))
print(' Matplotlib style :', mplstyle)
print(' TensorFlow version : ',tf.__version__)
print(' Keras version : ',tf.keras.__version__)
print(' TensorFlow version :',tf.__version__)
print(' Keras version :',tf.keras.__version__)
# -------------------------------------------------------------
# init_folder
......@@ -52,12 +52,25 @@ def init(mplstyle='deepmods/talk.mplstyle'):
def init_folder(path):
os.makedirs(path, mode=0o750, exist_ok=True)
def get_directory_size(path):
"""
Return the directory size, but only 1 level
args:
path : directory path
return:
size in Mo
"""
size=0
for f in os.listdir(path):
if os.path.isfile(path+'/'+f):
size+=os.path.getsize(path+'/'+f)
return size/(1024*1024)
# -------------------------------------------------------------
# shuffle_dataset
# -------------------------------------------------------------
#
def shuffle_dataset(x, y):
def shuffle_np_dataset(x, y):
assert (len(x) == len(y)), "x and y must have same size"
p = np.random.permutation(len(x))
return x[p], y[p]
......@@ -70,7 +83,7 @@ def update_progress(what,i,imax):
progress = float(i/imax)
block = int(round(bar_length * progress))
endofline = '\r' if progress<1 else '\n'
text = "{:16s} [{}] {:.1f}%".format( what, "#"*block+"-"*(bar_length-block), progress*100)
text = "{:16s} [{}] {:>5.1f}% of {}".format( what, "#"*block+"-"*(bar_length-block), progress*100, imax)
print(text, end=endofline)
......
File moved
name: deeplearning2
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _tflow_select=2.3.0=mkl
- absl-py=0.8.1=py36_0
- astor=0.8.0=py36_0
- attrs=19.3.0=py_0
- backcall=0.1.0=py36_0
- blas=1.0=mkl
- bleach=3.1.0=py36_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.11.27=0
- certifi=2019.11.28=py36_0
- cloudpickle=1.2.2=py_0
- cycler=0.10.0=py36_0
- cytoolz=0.10.1=py36h7b6447c_0
- dask-core=2.9.0=py_0
- dbus=1.13.12=h746ee38_0
- decorator=4.4.1=py_0
- defusedxml=0.6.0=py_0
- entrypoints=0.3=py36_0
- expat=2.2.6=he6710b0_0
- fontconfig=2.13.0=h9420a91_0
- freetype=2.9.1=h8a8886c_1
- gast=0.2.2=py36_0
- glib=2.63.1=h5a9c865_0
- gmp=6.1.2=h6c8ec71_1
- google-pasta=0.1.8=py_0
- grpcio=1.16.1=py36hf8bcb03_1
- gst-plugins-base=1.14.0=hbbd80ab_1
- gstreamer=1.14.0=hb453b48_1
- h5py=2.9.0=py36h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=h9c2bf20_1
- imageio=2.6.1=py36_0
- importlib_metadata=1.3.0=py36_0
- intel-openmp=2019.4=243
- ipykernel=5.1.3=py36h39e3cac_0
- ipython=7.10.2=py36h39e3cac_0
- ipython_genutils=0.2.0=py36_0
- jedi=0.15.1=py36_0
- jinja2=2.10.3=py_0
- jpeg=9b=h024ee3a_2
- json5=0.8.5=py_0
- jsonschema=3.2.0=py36_0
- jupyter_client=5.3.4=py36_0
- jupyter_core=4.6.1=py36_0
- jupyterlab=1.2.4=pyhf63ae98_0
- jupyterlab_server=1.0.6=py_0
- keras-applications=1.0.8=py_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.1.0=py36he6710b0_0
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libprotobuf=3.11.2=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- libuuid=1.0.3=h1bed415_2
- libxcb=1.13=h1bed415_1
- libxml2=2.9.9=hea5a465_1
- markdown=3.1.1=py36_0
- markupsafe=1.1.1=py36h7b6447c_0
- matplotlib=3.1.1=py36h5429711_0
- mistune=0.8.4=py36h7b6447c_0
- mkl=2019.4=243
- mkl-service=2.3.0=py36he904b0f_0
- mkl_fft=1.0.15=py36ha843d7b_0
- mkl_random=1.1.0=py36hd6b4f25_0
- more-itertools=8.0.2=py_0
- nbconvert=5.6.1=py36_0
- nbformat=4.4.0=py36_0
- ncurses=6.1=he6710b0_1
- networkx=2.4=py_0
- notebook=6.0.2=py36_0
- numpy=1.17.4=py36hc1035e2_0
- numpy-base=1.17.4=py36hde5b4d6_0
- olefile=0.46=py36_0
- openssl=1.1.1d=h7b6447c_3
- opt_einsum=3.1.0=py_0
- pandoc=2.2.3.2=0
- pandocfilters=1.4.2=py36_1
- parso=0.5.2=py_0
- pcre=8.43=he6710b0_0
- pexpect=4.7.0=py36_0
- pickleshare=0.7.5=py36_0
- pillow=6.2.1=py36h34e0f95_0
- pip=19.3.1=py36_0
- prometheus_client=0.7.1=py_0
- prompt_toolkit=3.0.2=py_0
- protobuf=3.11.2=py36he6710b0_0
- ptyprocess=0.6.0=py36_0
- pygments=2.5.2=py_0
- pyparsing=2.4.5=py_0
- pyqt=5.9.2=py36h05f1152_2
- pyrsistent=0.15.6=py36h7b6447c_0
- python=3.6.9=h265db76_0
- python-dateutil=2.8.1=py_0
- pytz=2019.3=py_0
- pywavelets=1.1.1=py36h7b6447c_0
- pyzmq=18.1.0=py36he6710b0_0
- qt=5.9.7=h5867ecd_1
- readline=7.0=h7b6447c_5
- scikit-image=0.15.0=py36he6710b0_0
- scipy=1.3.2=py36h7c811a0_0
- send2trash=1.5.0=py36_0
- setuptools=42.0.2=py36_0
- sip=4.19.8=py36hf484d3e_0
- six=1.13.0=py36_0
- sqlite=3.30.1=h7b6447c_0
- tensorboard=2.0.0=pyhb38c66f_1
- tensorflow=2.0.0=mkl_py36hef7ec59_0
- tensorflow-base=2.0.0=mkl_py36h9204916_0
- tensorflow-estimator=2.0.0=pyh2649769_0
- termcolor=1.1.0=py36_1
- terminado=0.8.3=py36_0
- testpath=0.4.4=py_0
- tk=8.6.8=hbc83047_0
- toolz=0.10.0=py_0
- tornado=6.0.3=py36h7b6447c_0
- traitlets=4.3.3=py36_0
- wcwidth=0.1.7=py36_0
- webencodings=0.5.1=py36_1
- werkzeug=0.16.0=py_0
- wheel=0.33.6=py36_0
- wrapt=1.11.2=py36h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zipp=0.6.0=py_0
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
prefix: /home/pjluc/anaconda3/envs/deeplearning2
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment