Skip to content
Snippets Groups Projects
Commit 466e635c authored by Jean-Luc Parouty's avatar Jean-Luc Parouty
Browse files

Update README to include mail contact link - v0.5.1

parent 89971d60
No related branches found
No related tags found
No related merge requests found
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
from IPython.display import display,Markdown from IPython.display import display,Markdown
display(Markdown(open('README.md', 'r').read())) display(Markdown(open('README.md', 'r').read()))
# #
# This README is visible under Jupiter LAb ! :-) # This README is visible under Jupiter LAb ! :-)
``` ```
%% Output %% Output
[<img width="600px" src="fidle/img/00-Fidle-titre-01.svg"></img>](#) [<img width="600px" src="fidle/img/00-Fidle-titre-01.svg"></img>](#)
<!-- --------------------------------------------------- --> <!-- --------------------------------------------------- -->
<!-- To correctly view this README under Jupyter Lab --> <!-- To correctly view this README under Jupyter Lab -->
<!-- Open the notebook: README.ipynb! --> <!-- Open the notebook: README.ipynb! -->
<!-- --------------------------------------------------- --> <!-- --------------------------------------------------- -->
## A propos ## A propos
This repository contains all the documents and links of the **Fidle Training** . This repository contains all the documents and links of the **Fidle Training** .
Fidle (for Formation Introduction au Deep Learning) is a 2-day training session Fidle (for Formation Introduction au Deep Learning) is a 2-day training session
co-organized by the Formation Permanente CNRS and the SARI and DEVLOG networks. co-organized by the Formation Permanente CNRS and the SARI and DEVLOG networks.
The objectives of this training,, are : The objectives of this training are :
- Understanding the **bases of Deep Learning** neural networks - Understanding the **bases of Deep Learning** neural networks
- Develop a **first experience** through simple and representative examples - Develop a **first experience** through simple and representative examples
- Understanding **Tensorflow/Keras** and **Jupyter lab** technologies - Understanding **Tensorflow/Keras** and **Jupyter lab** technologies
- Apprehend the **academic computing environments** Tier-2 or Tier-1 with powerfull GPU - Apprehend the **academic computing environments** Tier-2 or Tier-1 with powerfull GPU
Current Version : 0.5 For more information, you can contact us at :
[<img width="200px" style="vertical-align:middle" src="fidle/img/00-Mail_contact.svg"></img>](#)
Current Version : 0.5.1
## Course materials ## Course materials
**[<img width="50px" src="fidle/img/00-Fidle-pdf.svg"></img> **[<img width="50px" src="fidle/img/00-Fidle-pdf.svg"></img>
Get the course slides](https://cloud.univ-grenoble-alpes.fr/index.php/s/nx9axb3Yz2Gd7F5)** Get the course slides](https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6)**
[How to get and install](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle) notebooks and datasets [How to get and install](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle) notebooks and datasets
Some other useful informations are also available in the [wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home) Some other useful informations are also available in the [wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home)
## Jupyter notebooks ## Jupyter notebooks
<!-- DO NOT REMOVE THIS TAG !!! --> <!-- DO NOT REMOVE THIS TAG !!! -->
<!-- INDEX --> <!-- INDEX -->
<!-- INDEX_BEGIN --> <!-- INDEX_BEGIN -->
[[LINR1] - Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb) [[LINR1] - Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Direct determination of linear regression &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Direct determination of linear regression
[[GRAD1] - Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb) [[GRAD1] - Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;An example of gradient descent in the simple case of a linear regression. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;An example of gradient descent in the simple case of a linear regression.
[[POLR1] - Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb) [[POLR1] - Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Illustration of the problem of complexity with the polynomial regression &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Illustration of the problem of complexity with the polynomial regression
[[LOGR1] - Logistic regression, in pure Tensorflow](LinearReg/04-Logistic-Regression.ipynb) [[LOGR1] - Logistic regression, in pure Tensorflow](LinearReg/04-Logistic-Regression.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Logistic Regression with Mini-Batch Gradient Descent using pure TensorFlow. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Logistic Regression with Mini-Batch Gradient Descent using pure TensorFlow.
[[PER57] - Perceptron Model 1957](IRIS/01-Simple-Perceptron.ipynb) [[PER57] - Perceptron Model 1957](IRIS/01-Simple-Perceptron.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A simple perceptron, with the IRIS dataset. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A simple perceptron, with the IRIS dataset.
[[BHP1] - Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb) [[BHP1] - Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A Simple regression with a Dense Neural Network (DNN) - BHPD dataset &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A Simple regression with a Dense Neural Network (DNN) - BHPD dataset
[[BHP2] - Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb) [[BHP2] - Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;More advanced example of DNN network code - BHPD dataset &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;More advanced example of DNN network code - BHPD dataset
[[MNIST1] - Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb) [[MNIST1] - Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Example of classification with a fully connected neural network &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Example of classification with a fully connected neural network
[[GTS1] - CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb) [[GTS1] - CNN with GTSRB dataset - Data analysis and preparation](GTSRB/01-Preparation-of-data.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 1 : Data analysis and creation of a usable dataset &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 1 : Data analysis and creation of a usable dataset
[[GTS2] - CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb) [[GTS2] - CNN with GTSRB dataset - First convolutions](GTSRB/02-First-convolutions.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 2 : First convolutions and first results &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 2 : First convolutions and first results
[[GTS3] - CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb) [[GTS3] - CNN with GTSRB dataset - Monitoring ](GTSRB/03-Tracking-and-visualizing.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 3 : Monitoring and analysing training, managing checkpoints &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 3 : Monitoring and analysing training, managing checkpoints
[[GTS4] - CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb) [[GTS4] - CNN with GTSRB dataset - Data augmentation ](GTSRB/04-Data-augmentation.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 4 : Improving the results with data augmentation &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 4 : Improving the results with data augmentation
[[GTS5] - CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb) [[GTS5] - CNN with GTSRB dataset - Full convolutions ](GTSRB/05-Full-convolutions.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 5 : A lot of models, a lot of datasets and a lot of results. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 5 : A lot of models, a lot of datasets and a lot of results.
[[GTS6] - CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Full-convolutions-batch.ipynb) [[GTS6] - CNN with GTSRB dataset - Full convolutions as a batch](GTSRB/06-Full-convolutions-batch.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 6 : Run Full convolution notebook as a batch &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 6 : Run Full convolution notebook as a batch
[[GTS7] - Full convolutions Report](GTSRB/07-Full-convolutions-reports.ipynb) [[GTS7] - Full convolutions Report](GTSRB/07-Full-convolutions-reports.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 7 : Displaying the reports of the different jobs &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 7 : Displaying the reports of the different jobs
[[TSB1] - Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb) [[TSB1] - Tensorboard with/from Jupyter ](GTSRB/99-Scripts-Tensorboard.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;4 ways to use Tensorboard from the Jupyter environment &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;4 ways to use Tensorboard from the Jupyter environment
[[IMDB1] - Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb) [[IMDB1] - Text embedding with IMDB](IMDB/01-Embedding-Keras.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A very classical example of word embedding for text classification (sentiment analysis) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A very classical example of word embedding for text classification (sentiment analysis)
[[IMDB2] - Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb) [[IMDB2] - Text embedding with IMDB - Reloaded](IMDB/02-Prediction.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Example of reusing a previously saved model &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Example of reusing a previously saved model
[[IMDB3] - Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb) [[IMDB3] - Text embedding/LSTM model with IMDB](IMDB/03-LSTM-Keras.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Still the same problem, but with a network combining embedding and LSTM &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Still the same problem, but with a network combining embedding and LSTM
[[SYNOP1] - Time series with RNN - Preparation of data](SYNOP/01-Preparation-of-data.ipynb) [[SYNOP1] - Time series with RNN - Preparation of data](SYNOP/01-Preparation-of-data.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 1 : Data analysis and creation of a usable dataset &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 1 : Data analysis and creation of a usable dataset
[[SYNOP2] - Time series with RNN - Try a prediction](SYNOP/02-First-predictions.ipynb) [[SYNOP2] - Time series with RNN - Try a prediction](SYNOP/02-First-predictions.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 2 : Training session and first predictions &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 2 : Training session and first predictions
[[SYNOP3] - Time series with RNN - 12h predictions](SYNOP/03-12h-predictions.ipynb) [[SYNOP3] - Time series with RNN - 12h predictions](SYNOP/03-12h-predictions.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 3: Attempt to predict in the longer term &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 3: Attempt to predict in the longer term
[[VAE1] - Variational AutoEncoder (VAE) with MNIST](VAE/01-VAE-with-MNIST.ipynb) [[VAE1] - Variational AutoEncoder (VAE) with MNIST](VAE/01-VAE-with-MNIST.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 1 : Model construction and Training &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 1 : Model construction and Training
[[VAE2] - Variational AutoEncoder (VAE) with MNIST - Analysis](VAE/02-VAE-with-MNIST-post.ipynb) [[VAE2] - Variational AutoEncoder (VAE) with MNIST - Analysis](VAE/02-VAE-with-MNIST-post.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 2 : Exploring our latent space &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 2 : Exploring our latent space
[[VAE3] - About the CelebA dataset](VAE/03-About-CelebA.ipynb) [[VAE3] - About the CelebA dataset](VAE/03-About-CelebA.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 3 : About the CelebA dataset, a more fun dataset ! &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 3 : About the CelebA dataset, a more fun dataset !
[[VAE4] - Preparation of the CelebA dataset](VAE/04-Prepare-CelebA-batch.ipynb) [[VAE4] - Preparation of the CelebA dataset](VAE/04-Prepare-CelebA-batch.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 4 : Preparation of a clustered dataset, batchable &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 4 : Preparation of a clustered dataset, batchable
[[VAE5] - Checking the clustered CelebA dataset](VAE/05-Check-CelebA.ipynb) [[VAE5] - Checking the clustered CelebA dataset](VAE/05-Check-CelebA.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 5 :\tChecking the clustered dataset &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 5 :\tChecking the clustered dataset
[[VAE6] - Variational AutoEncoder (VAE) with CelebA (small)](VAE/06-VAE-with-CelebA-s.ipynb) [[VAE6] - Variational AutoEncoder (VAE) with CelebA (small)](VAE/06-VAE-with-CelebA-s.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 6 : Variational AutoEncoder (VAE) with CelebA (small res.) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 6 : Variational AutoEncoder (VAE) with CelebA (small res.)
[[VAE7] - Variational AutoEncoder (VAE) with CelebA (medium)](VAE/07-VAE-with-CelebA-m.ipynb) [[VAE7] - Variational AutoEncoder (VAE) with CelebA (medium)](VAE/07-VAE-with-CelebA-m.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 7 : Variational AutoEncoder (VAE) with CelebA (medium res.) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 7 : Variational AutoEncoder (VAE) with CelebA (medium res.)
[[VAE8] - Variational AutoEncoder (VAE) with CelebA - Analysis](VAE/08-VAE-withCelebA-post.ipynb) [[VAE8] - Variational AutoEncoder (VAE) with CelebA - Analysis](VAE/08-VAE-withCelebA-post.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 8 : Exploring latent space of our trained models &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Episode 8 : Exploring latent space of our trained models
[[BASH1] - OAR batch script](VAE/batch-oar.sh) [[BASH1] - OAR batch script](VAE/batch-oar.sh)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Bash script for OAR batch submission of a notebook &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Bash script for OAR batch submission of a notebook
[[BASH2] - SLURM batch script](VAE/batch-slurm.sh) [[BASH2] - SLURM batch script](VAE/batch-slurm.sh)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Bash script for SLURM batch submission of a notebook &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Bash script for SLURM batch submission of a notebook
[[ACTF1] - Activation functions](Misc/Activation-Functions.ipynb) [[ACTF1] - Activation functions](Misc/Activation-Functions.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Some activation functions, with their derivatives. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Some activation functions, with their derivatives.
[[NP1] - A short introduction to Numpy](Misc/Numpy.ipynb) [[NP1] - A short introduction to Numpy](Misc/Numpy.ipynb)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Numpy is an essential tool for the Scientific Python. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Numpy is an essential tool for the Scientific Python.
<!-- INDEX_END --> <!-- INDEX_END -->
## Installation ## Installation
A procedure for **configuring** and **starting Jupyter** is available in the **[Wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle)**. A procedure for **configuring** and **starting Jupyter** is available in the **[Wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle)**.
## Licence ## Licence
[<img width="100px" src="fidle/img/00-fidle-CC BY-NC-SA.svg"></img>](https://creativecommons.org/licenses/by-nc-sa/4.0/) [<img width="100px" src="fidle/img/00-fidle-CC BY-NC-SA.svg"></img>](https://creativecommons.org/licenses/by-nc-sa/4.0/)
\[en\] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0) \[en\] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0)
\[Fr\] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International \[Fr\] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International
See [License](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). See [License](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
See [Disclaimer](https://creativecommons.org/licenses/by-nc-sa/4.0/#). See [Disclaimer](https://creativecommons.org/licenses/by-nc-sa/4.0/#).
---- ----
[<img width="80px" src="fidle/img/00-Fidle-logo-01.svg"></img>](#) [<img width="80px" src="fidle/img/00-Fidle-logo-01.svg"></img>](#)
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
``` ```
......
...@@ -11,18 +11,20 @@ This repository contains all the documents and links of the **Fidle Training** . ...@@ -11,18 +11,20 @@ This repository contains all the documents and links of the **Fidle Training** .
Fidle (for Formation Introduction au Deep Learning) is a 2-day training session Fidle (for Formation Introduction au Deep Learning) is a 2-day training session
co-organized by the Formation Permanente CNRS and the SARI and DEVLOG networks. co-organized by the Formation Permanente CNRS and the SARI and DEVLOG networks.
The objectives of this training,, are : The objectives of this training are :
- Understanding the **bases of Deep Learning** neural networks - Understanding the **bases of Deep Learning** neural networks
- Develop a **first experience** through simple and representative examples - Develop a **first experience** through simple and representative examples
- Understanding **Tensorflow/Keras** and **Jupyter lab** technologies - Understanding **Tensorflow/Keras** and **Jupyter lab** technologies
- Apprehend the **academic computing environments** Tier-2 or Tier-1 with powerfull GPU - Apprehend the **academic computing environments** Tier-2 or Tier-1 with powerfull GPU
Current Version : 0.5 For more information, you can contact us at :
[<img width="200px" style="vertical-align:middle" src="fidle/img/00-Mail_contact.svg"></img>](#)
Current Version : 0.5.1
## Course materials ## Course materials
**[<img width="50px" src="fidle/img/00-Fidle-pdf.svg"></img> **[<img width="50px" src="fidle/img/00-Fidle-pdf.svg"></img>
Get the course slides](https://cloud.univ-grenoble-alpes.fr/index.php/s/nx9axb3Yz2Gd7F5)** Get the course slides](https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6)**
[How to get and install](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle) notebooks and datasets [How to get and install](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Install-Fidle) notebooks and datasets
Some other useful informations are also available in the [wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home) Some other useful informations are also available in the [wiki](https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home)
......
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 151.5327 11.1543"><title>00-Mail_contact</title><path d="M.9116,1.96H5.2651v.8755h-3.31V5.5225H5.0132v.8632H1.9551v3.6582H.9116Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M7.583,2.6079a.6536.6536,0,0,1-1.3071,0,.6433.6433,0,0,1,.66-.66A.6266.6266,0,0,1,7.583,2.6079Zm-1.1753,7.436V4.2393H7.4634v5.8046Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M14.2285,1.5288V8.5449c0,.5156.0122,1.103.0479,1.499h-.9473l-.0478-1.0073h-.024a2.1481,2.1481,0,0,1-1.979,1.1392c-1.4033,0-2.4829-1.187-2.4829-2.95-.0117-1.9312,1.1875-3.1182,2.6025-3.1182a1.9417,1.9417,0,0,1,1.7515.8872h.0239V1.5288ZM13.1733,6.6021a1.8552,1.8552,0,0,0-.0483-.4439,1.5518,1.5518,0,0,0-1.5229-1.2236c-1.0914,0-1.7393.9594-1.7393,2.2431,0,1.1753.5757,2.1465,1.7153,2.1465A1.5865,1.5865,0,0,0,13.125,8.0649a1.8257,1.8257,0,0,0,.0483-.4555Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M15.9834,1.5288h1.0557v8.5151H15.9834Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M19.4033,7.3335A1.8594,1.8594,0,0,0,21.394,9.3481a3.8142,3.8142,0,0,0,1.607-.3l.18.7559a4.7012,4.7012,0,0,1-1.9312.36,2.6957,2.6957,0,0,1-2.8545-2.9268c0-1.751,1.0317-3.13,2.7227-3.13a2.4594,2.4594,0,0,1,2.3989,2.7344,4.0351,4.0351,0,0,1-.0361.4917Zm3.0943-.7559a1.5029,1.5029,0,0,0-1.4634-1.7148A1.7492,1.7492,0,0,0,19.415,6.5776Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M24.4316,9.42a.7093.7093,0,0,1,.72-.7558.7.7,0,0,1,.7075.7558.7148.7148,0,1,1-1.4273,0Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M32.8525,9.78a5.1785,5.1785,0,0,1-2.1347.3838,3.7781,3.7781,0,0,1-3.9942-4.09,4.0228,4.0228,0,0,1,4.2217-4.2456,4.3292,4.3292,0,0,1,1.919.36l-.252.8511a3.8056,3.8056,0,0,0-1.6309-.3355,3.0057,3.0057,0,0,0-3.1543,3.334,2.9385,2.9385,0,0,0,3.1065,3.2505,4.18,4.18,0,0,0,1.7031-.336Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M39.248,7.0938a2.8367,2.8367,0,0,1-2.89,3.082A2.76,2.76,0,0,1,33.5752,7.19a2.8344,2.8344,0,0,1,2.8784-3.0821A2.7484,2.7484,0,0,1,39.248,7.0938Zm-4.6054.0595c0,1.2715.7319,2.231,1.7632,2.231,1.0073,0,1.7631-.9473,1.7631-2.2549,0-.9834-.4917-2.23-1.7392-2.23S34.6426,6.05,34.6426,7.1533Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M40.583,5.81c0-.6-.0117-1.0913-.0478-1.5708h.9355l.06.9594h.0244a2.1343,2.1343,0,0,1,1.9189-1.0913c.8033,0,2.0508.4795,2.0508,2.47v3.4663H44.4688V6.6978c0-.9356-.3477-1.7149-1.3433-1.7149A1.5,1.5,0,0,0,41.71,6.062a1.5228,1.5228,0,0,0-.0717.4917v3.49H40.583Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M48.4668,2.5723v1.667H49.978v.8032H48.4668v3.13c0,.72.2036,1.1274.7915,1.1274a2.3648,2.3648,0,0,0,.6118-.0718l.0479.7915a2.5838,2.5838,0,0,1-.9356.1441,1.4641,1.4641,0,0,1-1.14-.4439,2.1511,2.1511,0,0,1-.4077-1.5112V5.0425h-.8995V4.2393h.8995V2.8481Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M54.3813,10.0439l-.0839-.7314h-.0362a2.1617,2.1617,0,0,1-1.7749.8633,1.6538,1.6538,0,0,1-1.7749-1.667c0-1.4033,1.2471-2.1709,3.49-2.1587V6.23a1.1968,1.1968,0,0,0-1.3194-1.3433,2.8923,2.8923,0,0,0-1.5107.4317l-.24-.6954a3.6026,3.6026,0,0,1,1.9072-.5156c1.7749,0,2.2065,1.211,2.2065,2.3745V8.6528a8.1487,8.1487,0,0,0,.0962,1.3911Zm-.1557-2.9624c-1.1514-.0239-2.459.18-2.459,1.3072a.9345.9345,0,0,0,.9956,1.0078,1.4447,1.4447,0,0,0,1.4033-.9717,1.1109,1.1109,0,0,0,.06-.3359Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M61.0889,9.8281a3.8849,3.8849,0,0,1-1.667.336,2.7581,2.7581,0,0,1-2.8906-2.9624A2.95,2.95,0,0,1,59.65,4.1191a3.5249,3.5249,0,0,1,1.4629.3l-.24.8155A2.45,2.45,0,0,0,59.65,4.9585a2.009,2.009,0,0,0-2.0513,2.1948,1.9905,1.9905,0,0,0,2.0152,2.1709,3,3,0,0,0,1.2954-.2876Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M63.7544,2.5723v1.667h1.5112v.8032H63.7544v3.13c0,.72.2036,1.1274.7915,1.1274a2.3572,2.3572,0,0,0,.6113-.0718l.0484.7915a2.5838,2.5838,0,0,1-.9356.1441A1.4641,1.4641,0,0,1,63.13,9.72a2.1511,2.1511,0,0,1-.4077-1.5112V5.0425h-.9V4.2393h.9V2.8481Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M71.8638,10.8115a4.3726,4.3726,0,0,1-2.1348.48,3.57,3.57,0,0,1-3.6343-3.7422,4.3866,4.3866,0,0,1,4.378-4.6055,3.3311,3.3311,0,0,1,3.49,3.4664c0,1.7988-1.0073,2.854-2.1348,2.854A.8878.8878,0,0,1,70.94,8.209h-.0478a1.8835,1.8835,0,0,1-1.6909,1.0552,1.36,1.36,0,0,1-1.2954-1.5108A2.8323,2.8323,0,0,1,70.748,4.9106a3.1616,3.1616,0,0,1,1.2837.252L71.624,7.3335c-.18.9116-.0361,1.3311.3594,1.3433.6118.0117,1.2954-.8038,1.2954-2.1949a2.7482,2.7482,0,0,0-2.9023-2.9863,3.6818,3.6818,0,0,0-3.5982,3.9819,2.9958,2.9958,0,0,0,3.0825,3.2378,3.7408,3.7408,0,0,0,1.8111-.4194Zm-.66-5.1811a1.9508,1.9508,0,0,0-2.5068,2.0747c0,.5278.2641.9116.7915.9116.6958,0,1.3315-.8877,1.4633-1.6309Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M80.3,4.2393c-.0239.4194-.0483.8872-.0483,1.5952v3.37a3.339,3.339,0,0,1-.8272,2.65,3.0776,3.0776,0,0,1-2.1108.6958,3.7456,3.7456,0,0,1-1.9312-.48l.2637-.8037a3.27,3.27,0,0,0,1.7031.456c1.08,0,1.8711-.5639,1.8711-2.0268v-.648h-.0239A2.072,2.072,0,0,1,77.35,10.02a2.5951,2.5951,0,0,1-2.4707-2.83,2.7864,2.7864,0,0,1,2.6148-3.0821,1.9307,1.9307,0,0,1,1.811,1.0073h.0239l.0479-.8754ZM79.2085,6.53a1.5032,1.5032,0,0,0-.06-.4795,1.5209,1.5209,0,0,0-1.4756-1.1157c-1.0073,0-1.727.8515-1.727,2.1948,0,1.14.5757,2.0869,1.7153,2.0869A1.5434,1.5434,0,0,0,79.125,8.1372a1.8487,1.8487,0,0,0,.0835-.564Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M81.9346,6.05c0-.6836-.0117-1.2715-.0479-1.811H82.81l.0361,1.1391h.0478a1.7415,1.7415,0,0,1,1.607-1.271,1.1391,1.1391,0,0,1,.3.0357v.9956a1.5818,1.5818,0,0,0-.3594-.0362A1.4811,1.4811,0,0,0,83.0259,6.458a2.9788,2.9788,0,0,0-.0479.4917v3.0942H81.9346Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M86.3267,7.3335a1.8591,1.8591,0,0,0,1.9907,2.0146,3.8137,3.8137,0,0,0,1.6069-.3l.18.7559a4.7008,4.7008,0,0,1-1.9312.36,2.6957,2.6957,0,0,1-2.8545-2.9268c0-1.751,1.0318-3.13,2.7227-3.13A2.4594,2.4594,0,0,1,90.44,6.8418a4.0351,4.0351,0,0,1-.0361.4917Zm3.0942-.7559a1.5029,1.5029,0,0,0-1.4634-1.7148,1.7491,1.7491,0,0,0-1.6191,1.7148Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M91.7505,5.81c0-.6-.0122-1.0913-.0479-1.5708h.9356l.06.9594h.024a2.1341,2.1341,0,0,1,1.9189-1.0913c.8032,0,2.0508.4795,2.0508,2.47v3.4663H95.6362V6.6978c0-.9356-.3476-1.7149-1.3432-1.7149A1.5,1.5,0,0,0,92.8779,6.062a1.5228,1.5228,0,0,0-.0717.4917v3.49H91.7505Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M103.6636,7.0938a2.8367,2.8367,0,0,1-2.89,3.082A2.76,2.76,0,0,1,97.9907,7.19a2.8344,2.8344,0,0,1,2.8784-3.0821A2.7485,2.7485,0,0,1,103.6636,7.0938Zm-4.6055.0595c0,1.2715.7319,2.231,1.7632,2.231,1.0073,0,1.7632-.9473,1.7632-2.2549,0-.9834-.4917-2.23-1.7393-2.23S99.0581,6.05,99.0581,7.1533Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M104.9507,10.0439c.0239-.396.0478-.9834.0478-1.499V1.5288h1.0435v3.646h.0239a2.1621,2.1621,0,0,1,1.979-1.0674c1.439,0,2.4585,1.1992,2.4468,2.9624,0,2.0747-1.3076,3.106-2.6025,3.106a2.0672,2.0672,0,0,1-1.9429-1.0913H105.91l-.0479.9594Zm1.0913-2.3266a1.9858,1.9858,0,0,0,.0478.3838,1.6289,1.6289,0,0,0,1.5831,1.2353c1.1035,0,1.7631-.8994,1.7631-2.2309,0-1.1631-.6-2.1587-1.727-2.1587a1.6822,1.6822,0,0,0-1.6069,1.2954,2.0735,2.0735,0,0,0-.06.4316Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M111.8262,1.5288h1.0556v8.5151h-1.0556Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M115.2461,7.3335a1.8593,1.8593,0,0,0,1.9907,2.0146,3.8146,3.8146,0,0,0,1.607-.3l.18.7559a4.7,4.7,0,0,1-1.9311.36,2.6957,2.6957,0,0,1-2.8545-2.9268c0-1.751,1.0317-3.13,2.7226-3.13a2.4594,2.4594,0,0,1,2.399,2.7344,4.0308,4.0308,0,0,1-.0362.4917Zm3.0942-.7559a1.5027,1.5027,0,0,0-1.4633-1.7148,1.7492,1.7492,0,0,0-1.6192,1.7148Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M120.2739,9.42a.7093.7093,0,0,1,.72-.7558.7.7,0,0,1,.7075.7558.7148.7148,0,1,1-1.4273,0Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M127.1475,9.8281a3.8849,3.8849,0,0,1-1.667.336A2.7582,2.7582,0,0,1,122.59,7.2017a2.95,2.95,0,0,1,3.1187-3.0826,3.5249,3.5249,0,0,1,1.4629.3l-.24.8155a2.45,2.45,0,0,0-1.2231-.2759,2.009,2.009,0,0,0-2.0513,2.1948,1.9905,1.9905,0,0,0,2.0152,2.1709,3,3,0,0,0,1.2954-.2876Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M128.3857,5.81c0-.6-.0117-1.0913-.0478-1.5708h.9355l.06.9594h.0244a2.1343,2.1343,0,0,1,1.919-1.0913c.8032,0,2.0507.4795,2.0507,2.47v3.4663h-1.0556V6.6978c0-.9356-.3477-1.7149-1.3433-1.7149a1.4994,1.4994,0,0,0-1.415,1.0791,1.52,1.52,0,0,0-.0718.4917v3.49h-1.0557Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M135.0459,6.05c0-.6836-.0117-1.2715-.0479-1.811h.9234l.0361,1.1391h.0479a1.7413,1.7413,0,0,1,1.6069-1.271,1.1391,1.1391,0,0,1,.3.0357v.9956a1.5818,1.5818,0,0,0-.3594-.0362,1.4812,1.4812,0,0,0-1.4155,1.3555,2.9794,2.9794,0,0,0-.0478.4917v3.0942h-1.0435Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M138.8257,8.9644a2.7656,2.7656,0,0,0,1.3916.42c.7676,0,1.1269-.3838,1.1269-.8633,0-.5039-.3-.78-1.0791-1.0674-1.0434-.3721-1.5351-.9477-1.5351-1.6435a1.79,1.79,0,0,1,2.0029-1.7027,2.9,2.9,0,0,1,1.4273.3594l-.2642.7676a2.26,2.26,0,0,0-1.187-.3355c-.624,0-.9717.36-.9717.7915,0,.4795.3477.6953,1.1035.9834,1.0073.3838,1.523.8877,1.523,1.751,0,1.02-.7915,1.7393-2.1709,1.7393a3.3121,3.3121,0,0,1-1.6309-.396Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M143.3379,9.42a.7093.7093,0,0,1,.72-.7558.7.7,0,0,1,.7075.7558.7148.7148,0,1,1-1.4272,0Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M146.1816,10.0439V5.0425h-.8154V4.2393h.8154V3.9634a2.737,2.737,0,0,1,.6719-2.0269,2.0191,2.0191,0,0,1,1.4151-.54,2.4456,2.4456,0,0,1,.8994.168l-.1441.8159a1.5682,1.5682,0,0,0-.6714-.1324c-.8994,0-1.1274.7916-1.1274,1.6792v.3121h1.4033v.8032h-1.4033v5.0014Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/><path d="M149.5776,6.05c0-.6836-.0122-1.2715-.0478-1.811h.9233l.0362,1.1391h.0478a1.7414,1.7414,0,0,1,1.6069-1.271,1.1452,1.1452,0,0,1,.3.0357v.9956a1.5892,1.5892,0,0,0-.36-.0362,1.4812,1.4812,0,0,0-1.4156,1.3555,2.9794,2.9794,0,0,0-.0478.4917v3.0942h-1.0435Z" transform="translate(-0.9116 -1.3965)" style="fill:#0054aa"/></svg>
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment