Current Version : <!-- VERSION_BEGIN -->3.0.14<!-- VERSION_END -->
Current Version : <!-- VERSION_BEGIN -->3.0.15<!-- VERSION_END -->
## Course materials
| Courses | Notebooks | Datasets | Videos |
|:--:|:--:|:--:|:--:|
| [<img width="50px" src="fidle/img/00-Fidle-pdf.svg"></img><br>**Course slides**](https://fidle.cnrs.fr/supports)<br>The course in pdf format<br>| [<img width="50px" src="fidle/img/00-Notebooks.svg"></img><br>**Notebooks**](https://fidle.cnrs.fr/notebooks)<br> Get a Zip or clone this repository <br>| [<img width="50px" src="fidle/img/00-Datasets-tar.svg"></img><br>**Datasets**](https://fidle.cnrs.fr/datasets-fidle.tar)<br>All the needed datasets<br>|[<img width="50px" src="fidle/img/00-Videos.svg"></img><br>**Videos**](https://fidle.cnrs.fr/youtube)<br> Our Youtube channel |
Have a look about **[How to get and install](https://fidle.cnrs.fr/installation)** these notebooks and datasets.
## Jupyter notebooks
<!-- TOC_BEGIN -->
<!-- Automatically generated on : 06/01/25 16:33:05 -->
<!-- Automatically generated on : 06/01/25 16:42:30 -->
### Linear and logistic regression
- **[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)
Low-level implementation, using numpy, of a direct resolution for a linear regression
- **[GRAD1](LinearReg/02-Gradient-descent.ipynb)** - [Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb)
Low level implementation of a solution by gradient descent. Basic and stochastic approach.
Retrieving embedded vectors from our trained model, using Keras 3 and PyTorch
- **[K3IMDB5](Embedding.Keras3/05-LSTM-Keras.ipynb)** - [Sentiment analysis with a RNN network](Embedding.Keras3/05-LSTM-Keras.ipynb)
Still the same problem, but with a network combining embedding and RNN, using Keras 3 and PyTorch
### Time series with Recurrent Neural Network (RNN), using Keras3/PyTorch
- **[K3LADYB1](RNN.Keras3/01-Ladybug.ipynb)** - [Prediction of a 2D trajectory via RNN](RNN.Keras3/01-Ladybug.ipynb)
Artificial dataset generation and prediction attempt via a recurrent network, using Keras 3 and PyTorch
### Graph Neural Networks
### Unsupervised learning with an autoencoder neural network (AE), using Keras3
- **[K3AE1](AE.Keras3/01-Prepare-MNIST-dataset.ipynb)** - [Prepare a noisy MNIST dataset](AE.Keras3/01-Prepare-MNIST-dataset.ipynb)
Episode 1: Preparation of a noisy MNIST dataset
- **[K3AE2](AE.Keras3/02-AE-with-MNIST.ipynb)** - [Building and training an AE denoiser model](AE.Keras3/02-AE-with-MNIST.ipynb)
Episode 1 : Construction of a denoising autoencoder and training of it with a noisy MNIST dataset.
- **[K3AE3](AE.Keras3/03-AE-with-MNIST-post.ipynb)** - [Playing with our denoiser model](AE.Keras3/03-AE-with-MNIST-post.ipynb)
Episode 2 : Using the previously trained autoencoder to denoise data
- **[K3AE4](AE.Keras3/04-ExtAE-with-MNIST.ipynb)** - [Denoiser and classifier model](AE.Keras3/04-ExtAE-with-MNIST.ipynb)
Episode 4 : Construction of a denoiser and classifier model
- **[K3AE5](AE.Keras3/05-ExtAE-with-MNIST.ipynb)** - [Advanced denoiser and classifier model](AE.Keras3/05-ExtAE-with-MNIST.ipynb)
Episode 5 : Construction of an advanced denoiser and classifier model
### Generative network with Variational Autoencoder (VAE), using Keras3
- **[K3VAE1](VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb)** - [First VAE, using functional API (MNIST dataset)](VAE.Keras3/01-VAE-with-MNIST-LossLayer.ipynb)
Construction and training of a VAE, using functional APPI, with a latent space of small dimension.
- **[K3VAE2](VAE.Keras3/02-VAE-with-MNIST.ipynb)** - [VAE, using a custom model class (MNIST dataset)](VAE.Keras3/02-VAE-with-MNIST.ipynb)
Construction and training of a VAE, using model subclass, with a latent space of small dimension.
- **[K3VAE3](VAE.Keras3/03-VAE-with-MNIST-post.ipynb)** - [Analysis of the VAE's latent space of MNIST dataset](VAE.Keras3/03-VAE-with-MNIST-post.ipynb)
Visualization and analysis of the VAE's latent space of the dataset MNIST
### Generative Adversarial Networks (GANs), using Lightning
- **[PLSHEEP3](DCGAN.Lightning/01-DCGAN-PL.ipynb)** - [A DCGAN to Draw a Sheep, using Pytorch Lightning](DCGAN.Lightning/01-DCGAN-PL.ipynb)
"Draw me a sheep", revisited with a DCGAN, using Pytorch Lightning
### Diffusion Model (DDPM) using PyTorch
- **[DDPM1](DDPM.PyTorch/01-ddpm.ipynb)** - [Fashion MNIST Generation with DDPM](DDPM.PyTorch/01-ddpm.ipynb)
Diffusion Model example, to generate Fashion MNIST images.