Skip to content
Snippets Groups Projects
Commit 0459a3f1 authored by Jean-Luc Parouty's avatar Jean-Luc Parouty
Browse files

Update to 2.0.34

parent a42ab7ca
No related branches found
No related tags found
No related merge requests found
%% Cell type:code id:3f8b217d tags: %% Cell type:code id:7f8c4a8a tags:
``` python ``` python
from IPython.display import display,Markdown from IPython.display import display,Markdown
display(Markdown(open('README.md', 'r').read())) display(Markdown(open('README.md', 'r').read()))
# #
# This README is visible under Jupiter LAb ! :-) # This README is visible under Jupiter LAb ! :-)
``` ```
%% Output %% Output
<a name="top"></a> <a name="top"></a>
[<img width="600px" src="fidle/img/00-Fidle-titre-01.svg"></img>](#top) [<img width="600px" src="fidle/img/00-Fidle-titre-01.svg"></img>](#top)
<!-- --------------------------------------------------- --> <!-- --------------------------------------------------- -->
<!-- To correctly view this README under Jupyter Lab --> <!-- To correctly view this README under Jupyter Lab -->
<!-- Open the notebook: README.ipynb! --> <!-- Open the notebook: README.ipynb! -->
<!-- --------------------------------------------------- --> <!-- --------------------------------------------------- -->
## About Fidle ## About Fidle
This repository contains all the documents and links of the **Fidle Training** . This repository contains all the documents and links of the **Fidle Training** .
Fidle (for Formation Introduction au Deep Learning) is a 2-day training session Fidle (for Formation Introduction au Deep Learning) is a 2-day training session
co-organized by the Formation Permanente CNRS and the Resinfo/SARI and DevLOG CNRS networks. co-organized by the Formation Permanente CNRS and the Resinfo/SARI and DevLOG CNRS networks.
The objectives of this training are : The objectives of this training are :
- Understanding the **bases of Deep Learning** neural networks - Understanding the **bases of Deep Learning** neural networks
- Develop a **first experience** through simple and representative examples - Develop a **first experience** through simple and representative examples
- Understanding **Tensorflow/Keras** and **Jupyter lab** technologies - Understanding **Tensorflow/Keras** and **Jupyter lab** technologies
- Apprehend the **academic computing environments** Tier-2 or Tier-1 with powerfull GPU - Apprehend the **academic computing environments** Tier-2 or Tier-1 with powerfull GPU
For more information, see **https://fidle.cnrs.fr** : For more information, see **https://fidle.cnrs.fr** :
- **[Fidle site](https://fidle.cnrs.fr)** - **[Fidle site](https://fidle.cnrs.fr)**
- **[Presentation of the training](https://fidle.cnrs.fr/presentation)** - **[Presentation of the training](https://fidle.cnrs.fr/presentation)**
- **[Program 2021/2022](https://fidle.cnrs.fr/programme)** - **[Program 2021/2022](https://fidle.cnrs.fr/programme)**
- [Subscribe to the list](https://fidle.cnrs.fr/listeinfo), to stay informed ! - [Subscribe to the list](https://fidle.cnrs.fr/listeinfo), to stay informed !
- [Find us on youtube](https://fidle.cnrs.fr/youtube) - [Find us on youtube](https://fidle.cnrs.fr/youtube)
- [Corrected notebooks](https://fidle.cnrs.fr/done) - [Corrected notebooks](https://fidle.cnrs.fr/done)
For more information, you can contact us at : For more information, you can contact us at :
[<img width="200px" style="vertical-align:middle" src="fidle/img/00-Mail_contact.svg"></img>](#top) [<img width="200px" style="vertical-align:middle" src="fidle/img/00-Mail_contact.svg"></img>](#top)
Current Version : <!-- VERSION_BEGIN --> Current Version : <!-- VERSION_BEGIN -->
**2.0.33** **2.0.34**
<!-- VERSION_END --> <!-- VERSION_END -->
## Course materials ## Course materials
| | | | | | | | | |
|:--:|:--:|:--:|:--:| |:--:|:--:|:--:|:--:|
| **[<img width="50px" src="fidle/img/00-Fidle-pdf.svg"></img><br>Course slides](https://fidle.cnrs.fr/supports)**<br>The course in pdf format<br>(12 Mo)| **[<img width="50px" src="fidle/img/00-Notebooks.svg"></img><br>Notebooks](https://fidle.cnrs.fr/notebooks)**<br> &nbsp;&nbsp;&nbsp;&nbsp;Get a Zip or clone this repository &nbsp;&nbsp;&nbsp;&nbsp;<br>(40 Mo)| **[<img width="50px" src="fidle/img/00-Datasets-tar.svg"></img><br>Datasets](https://fidle.cnrs.fr/fidle-datasets.tar)**<br>All the needed datasets<br>(1.2 Go)|**[<img width="50px" src="fidle/img/00-Videos.svg"></img><br>Videos](https://fidle.cnrs.fr/youtube)**<br>&nbsp;&nbsp;&nbsp;&nbsp;Our Youtube channel&nbsp;&nbsp;&nbsp;&nbsp;<br>&nbsp;| | **[<img width="50px" src="fidle/img/00-Fidle-pdf.svg"></img><br>Course slides](https://fidle.cnrs.fr/supports)**<br>The course in pdf format<br>(12 Mo)| **[<img width="50px" src="fidle/img/00-Notebooks.svg"></img><br>Notebooks](https://fidle.cnrs.fr/notebooks)**<br> &nbsp;&nbsp;&nbsp;&nbsp;Get a Zip or clone this repository &nbsp;&nbsp;&nbsp;&nbsp;<br>(40 Mo)| **[<img width="50px" src="fidle/img/00-Datasets-tar.svg"></img><br>Datasets](https://fidle.cnrs.fr/fidle-datasets.tar)**<br>All the needed datasets<br>(1.2 Go)|**[<img width="50px" src="fidle/img/00-Videos.svg"></img><br>Videos](https://fidle.cnrs.fr/youtube)**<br>&nbsp;&nbsp;&nbsp;&nbsp;Our Youtube channel&nbsp;&nbsp;&nbsp;&nbsp;<br>&nbsp;|
Have a look about **[How to get and install](https://fidle.cnrs.fr/installation)** these notebooks and datasets. Have a look about **[How to get and install](https://fidle.cnrs.fr/installation)** these notebooks and datasets.
## Jupyter notebooks ## Jupyter notebooks
<!-- INDEX_BEGIN --> <!-- INDEX_BEGIN -->
### Linear and logistic regression ### Linear and logistic regression
- **[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb) - **[LINR1](LinearReg/01-Linear-Regression.ipynb)** - [Linear regression with direct resolution](LinearReg/01-Linear-Regression.ipynb)
Low-level implementation, using numpy, of a direct resolution for a linear regression Low-level implementation, using numpy, of a direct resolution for a linear regression
- **[GRAD1](LinearReg/02-Gradient-descent.ipynb)** - [Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb) - **[GRAD1](LinearReg/02-Gradient-descent.ipynb)** - [Linear regression with gradient descent](LinearReg/02-Gradient-descent.ipynb)
Low level implementation of a solution by gradient descent. Basic and stochastic approach. Low level implementation of a solution by gradient descent. Basic and stochastic approach.
- **[POLR1](LinearReg/03-Polynomial-Regression.ipynb)** - [Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb) - **[POLR1](LinearReg/03-Polynomial-Regression.ipynb)** - [Complexity Syndrome](LinearReg/03-Polynomial-Regression.ipynb)
Illustration of the problem of complexity with the polynomial regression Illustration of the problem of complexity with the polynomial regression
- **[LOGR1](LinearReg/04-Logistic-Regression.ipynb)** - [Logistic regression](LinearReg/04-Logistic-Regression.ipynb) - **[LOGR1](LinearReg/04-Logistic-Regression.ipynb)** - [Logistic regression](LinearReg/04-Logistic-Regression.ipynb)
Simple example of logistic regression with a sklearn solution Simple example of logistic regression with a sklearn solution
### Perceptron Model 1957 ### Perceptron Model 1957
- **[PER57](IRIS/01-Simple-Perceptron.ipynb)** - [Perceptron Model 1957](IRIS/01-Simple-Perceptron.ipynb) - **[PER57](IRIS/01-Simple-Perceptron.ipynb)** - [Perceptron Model 1957](IRIS/01-Simple-Perceptron.ipynb)
Example of use of a Perceptron, with sklearn and IRIS dataset of 1936 ! Example of use of a Perceptron, with sklearn and IRIS dataset of 1936 !
### Basic regression using DNN ### Basic regression using DNN
- **[BHPD1](BHPD/01-DNN-Regression.ipynb)** - [Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb) - **[BHPD1](BHPD/01-DNN-Regression.ipynb)** - [Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb)
Simple example of a regression with the dataset Boston Housing Prices Dataset (BHPD) Simple example of a regression with the dataset Boston Housing Prices Dataset (BHPD)
- **[BHPD2](BHPD/02-DNN-Regression-Premium.ipynb)** - [Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb) - **[BHPD2](BHPD/02-DNN-Regression-Premium.ipynb)** - [Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb)
A more advanced implementation of the precedent example A more advanced implementation of the precedent example
### Basic classification using a DNN ### Basic classification using a DNN
- **[MNIST1](MNIST/01-DNN-MNIST.ipynb)** - [Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb) - **[MNIST1](MNIST/01-DNN-MNIST.ipynb)** - [Simple classification with DNN](MNIST/01-DNN-MNIST.ipynb)
An example of classification using a dense neural network for the famous MNIST dataset An example of classification using a dense neural network for the famous MNIST dataset
- **[MNIST2](MNIST/02-CNN-MNIST.ipynb)** - [Simple classification with CNN](MNIST/02-CNN-MNIST.ipynb) - **[MNIST2](MNIST/02-CNN-MNIST.ipynb)** - [Simple classification with CNN](MNIST/02-CNN-MNIST.ipynb)
An example of classification using a convolutional neural network for the famous MNIST dataset An example of classification using a convolutional neural network for the famous MNIST dataset
### Images classification with Convolutional Neural Networks (CNN) ### Images classification with Convolutional Neural Networks (CNN)
- **[GTSRB1](GTSRB/01-Preparation-of-data.ipynb)** - [Dataset analysis and preparation](GTSRB/01-Preparation-of-data.ipynb) - **[GTSRB1](GTSRB/01-Preparation-of-data.ipynb)** - [Dataset analysis and preparation](GTSRB/01-Preparation-of-data.ipynb)
Episode 1 : Analysis of the GTSRB dataset and creation of an enhanced dataset Episode 1 : Analysis of the GTSRB dataset and creation of an enhanced dataset
- **[GTSRB2](GTSRB/02-First-convolutions.ipynb)** - [First convolutions](GTSRB/02-First-convolutions.ipynb) - **[GTSRB2](GTSRB/02-First-convolutions.ipynb)** - [First convolutions](GTSRB/02-First-convolutions.ipynb)
Episode 2 : First convolutions and first classification of our traffic signs Episode 2 : First convolutions and first classification of our traffic signs
- **[GTSRB3](GTSRB/03-Tracking-and-visualizing.ipynb)** - [Training monitoring](GTSRB/03-Tracking-and-visualizing.ipynb) - **[GTSRB3](GTSRB/03-Tracking-and-visualizing.ipynb)** - [Training monitoring](GTSRB/03-Tracking-and-visualizing.ipynb)
Episode 3 : Monitoring, analysis and check points during a training session Episode 3 : Monitoring, analysis and check points during a training session
- **[GTSRB4](GTSRB/04-Data-augmentation.ipynb)** - [Data augmentation ](GTSRB/04-Data-augmentation.ipynb) - **[GTSRB4](GTSRB/04-Data-augmentation.ipynb)** - [Data augmentation ](GTSRB/04-Data-augmentation.ipynb)
Episode 4 : Adding data by data augmentation when we lack it, to improve our results Episode 4 : Adding data by data augmentation when we lack it, to improve our results
- **[GTSRB5](GTSRB/05-Full-convolutions.ipynb)** - [Full convolutions](GTSRB/05-Full-convolutions.ipynb) - **[GTSRB5](GTSRB/05-Full-convolutions.ipynb)** - [Full convolutions](GTSRB/05-Full-convolutions.ipynb)
Episode 5 : A lot of models, a lot of datasets and a lot of results. Episode 5 : A lot of models, a lot of datasets and a lot of results.
- **[GTSRB6](GTSRB/06-Notebook-as-a-batch.ipynb)** - [Full convolutions as a batch](GTSRB/06-Notebook-as-a-batch.ipynb) - **[GTSRB6](GTSRB/06-Notebook-as-a-batch.ipynb)** - [Full convolutions as a batch](GTSRB/06-Notebook-as-a-batch.ipynb)
Episode 6 : To compute bigger, use your notebook in batch mode Episode 6 : To compute bigger, use your notebook in batch mode
- **[GTSRB7](GTSRB/07-Show-report.ipynb)** - [Batch reports](GTSRB/07-Show-report.ipynb) - **[GTSRB7](GTSRB/07-Show-report.ipynb)** - [Batch reports](GTSRB/07-Show-report.ipynb)
Episode 7 : Displaying our jobs report, and the winner is... Episode 7 : Displaying our jobs report, and the winner is...
- **[GTSRB10](GTSRB/batch_oar.sh)** - [OAR batch script submission](GTSRB/batch_oar.sh) - **[GTSRB10](GTSRB/batch_oar.sh)** - [OAR batch script submission](GTSRB/batch_oar.sh)
Bash script for an OAR batch submission of an ipython code Bash script for an OAR batch submission of an ipython code
- **[GTSRB11](GTSRB/batch_slurm.sh)** - [SLURM batch script](GTSRB/batch_slurm.sh) - **[GTSRB11](GTSRB/batch_slurm.sh)** - [SLURM batch script](GTSRB/batch_slurm.sh)
Bash script for a Slurm batch submission of an ipython code Bash script for a Slurm batch submission of an ipython code
### Sentiment analysis with word embedding ### Sentiment analysis with word embedding
- **[IMDB1](IMDB/01-One-hot-encoding.ipynb)** - [Sentiment analysis with hot-one encoding](IMDB/01-One-hot-encoding.ipynb) - **[IMDB1](IMDB/01-One-hot-encoding.ipynb)** - [Sentiment analysis with hot-one encoding](IMDB/01-One-hot-encoding.ipynb)
A basic example of sentiment analysis with sparse encoding, using a dataset from Internet Movie Database (IMDB) A basic example of sentiment analysis with sparse encoding, using a dataset from Internet Movie Database (IMDB)
- **[IMDB2](IMDB/02-Keras-embedding.ipynb)** - [Sentiment analysis with text embedding](IMDB/02-Keras-embedding.ipynb) - **[IMDB2](IMDB/02-Keras-embedding.ipynb)** - [Sentiment analysis with text embedding](IMDB/02-Keras-embedding.ipynb)
A very classical example of word embedding with a dataset from Internet Movie Database (IMDB) A very classical example of word embedding with a dataset from Internet Movie Database (IMDB)
- **[IMDB3](IMDB/03-Prediction.ipynb)** - [Reload and reuse a saved model](IMDB/03-Prediction.ipynb) - **[IMDB3](IMDB/03-Prediction.ipynb)** - [Reload and reuse a saved model](IMDB/03-Prediction.ipynb)
Retrieving a saved model to perform a sentiment analysis (movie review) Retrieving a saved model to perform a sentiment analysis (movie review)
- **[IMDB4](IMDB/04-Show-vectors.ipynb)** - [Reload embedded vectors](IMDB/04-Show-vectors.ipynb) - **[IMDB4](IMDB/04-Show-vectors.ipynb)** - [Reload embedded vectors](IMDB/04-Show-vectors.ipynb)
Retrieving embedded vectors from our trained model Retrieving embedded vectors from our trained model
- **[IMDB5](IMDB/05-LSTM-Keras.ipynb)** - [Sentiment analysis with a RNN network](IMDB/05-LSTM-Keras.ipynb) - **[IMDB5](IMDB/05-LSTM-Keras.ipynb)** - [Sentiment analysis with a RNN network](IMDB/05-LSTM-Keras.ipynb)
Still the same problem, but with a network combining embedding and RNN Still the same problem, but with a network combining embedding and RNN
### Time series with Recurrent Neural Network (RNN) ### Time series with Recurrent Neural Network (RNN)
- **[LADYB1](SYNOP/LADYB1-Ladybug.ipynb)** - [Prediction of a 2D trajectory via RNN](SYNOP/LADYB1-Ladybug.ipynb) - **[LADYB1](SYNOP/LADYB1-Ladybug.ipynb)** - [Prediction of a 2D trajectory via RNN](SYNOP/LADYB1-Ladybug.ipynb)
Artificial dataset generation and prediction attempt via a recurrent network Artificial dataset generation and prediction attempt via a recurrent network
- **[SYNOP1](SYNOP/SYNOP1-Preparation-of-data.ipynb)** - [Preparation of data](SYNOP/SYNOP1-Preparation-of-data.ipynb) - **[SYNOP1](SYNOP/SYNOP1-Preparation-of-data.ipynb)** - [Preparation of data](SYNOP/SYNOP1-Preparation-of-data.ipynb)
Episode 1 : Data analysis and preparation of a usuable meteorological dataset (SYNOP) Episode 1 : Data analysis and preparation of a usuable meteorological dataset (SYNOP)
- **[SYNOP2](SYNOP/SYNOP2-First-predictions.ipynb)** - [First predictions at 3h](SYNOP/SYNOP2-First-predictions.ipynb) - **[SYNOP2](SYNOP/SYNOP2-First-predictions.ipynb)** - [First predictions at 3h](SYNOP/SYNOP2-First-predictions.ipynb)
Episode 2 : RNN training session for weather prediction attempt at 3h Episode 2 : RNN training session for weather prediction attempt at 3h
- **[SYNOP3](SYNOP/SYNOP3-12h-predictions.ipynb)** - [12h predictions](SYNOP/SYNOP3-12h-predictions.ipynb) - **[SYNOP3](SYNOP/SYNOP3-12h-predictions.ipynb)** - [12h predictions](SYNOP/SYNOP3-12h-predictions.ipynb)
Episode 3: Attempt to predict in a more longer term Episode 3: Attempt to predict in a more longer term
### Sentiment analysis with transformers ### Sentiment analysis with transformers
- **[TRANS1](Transformers/01-Distilbert.ipynb)** - [IMDB, Sentiment analysis with Transformers ](Transformers/01-Distilbert.ipynb) - **[TRANS1](Transformers/01-Distilbert.ipynb)** - [IMDB, Sentiment analysis with Transformers ](Transformers/01-Distilbert.ipynb)
Using a Tranformer to perform a sentiment analysis (IMDB) - Jean Zay version Using a Tranformer to perform a sentiment analysis (IMDB) - Jean Zay version
- **[TRANS2](Transformers/02-distilbert_colab.ipynb)** - [IMDB, Sentiment analysis with Transformers ](Transformers/02-distilbert_colab.ipynb) - **[TRANS2](Transformers/02-distilbert_colab.ipynb)** - [IMDB, Sentiment analysis with Transformers ](Transformers/02-distilbert_colab.ipynb)
Using a Tranformer to perform a sentiment analysis (IMDB) - Colab version Using a Tranformer to perform a sentiment analysis (IMDB) - Colab version
### Unsupervised learning with an autoencoder neural network (AE) ### Unsupervised learning with an autoencoder neural network (AE)
- **[AE1](AE/01-Prepare-MNIST-dataset.ipynb)** - [Prepare a noisy MNIST dataset](AE/01-Prepare-MNIST-dataset.ipynb) - **[AE1](AE/01-Prepare-MNIST-dataset.ipynb)** - [Prepare a noisy MNIST dataset](AE/01-Prepare-MNIST-dataset.ipynb)
Episode 1: Preparation of a noisy MNIST dataset Episode 1: Preparation of a noisy MNIST dataset
- **[AE2](AE/02-AE-with-MNIST.ipynb)** - [Building and training an AE denoiser model](AE/02-AE-with-MNIST.ipynb) - **[AE2](AE/02-AE-with-MNIST.ipynb)** - [Building and training an AE denoiser model](AE/02-AE-with-MNIST.ipynb)
Episode 1 : Construction of a denoising autoencoder and training of it with a noisy MNIST dataset. Episode 1 : Construction of a denoising autoencoder and training of it with a noisy MNIST dataset.
- **[AE3](AE/03-AE-with-MNIST-post.ipynb)** - [Playing with our denoiser model](AE/03-AE-with-MNIST-post.ipynb) - **[AE3](AE/03-AE-with-MNIST-post.ipynb)** - [Playing with our denoiser model](AE/03-AE-with-MNIST-post.ipynb)
Episode 2 : Using the previously trained autoencoder to denoise data Episode 2 : Using the previously trained autoencoder to denoise data
- **[AE4](AE/04-ExtAE-with-MNIST.ipynb)** - [Denoiser and classifier model](AE/04-ExtAE-with-MNIST.ipynb) - **[AE4](AE/04-ExtAE-with-MNIST.ipynb)** - [Denoiser and classifier model](AE/04-ExtAE-with-MNIST.ipynb)
Episode 4 : Construction of a denoiser and classifier model Episode 4 : Construction of a denoiser and classifier model
- **[AE5](AE/05-ExtAE-with-MNIST.ipynb)** - [Advanced denoiser and classifier model](AE/05-ExtAE-with-MNIST.ipynb) - **[AE5](AE/05-ExtAE-with-MNIST.ipynb)** - [Advanced denoiser and classifier model](AE/05-ExtAE-with-MNIST.ipynb)
Episode 5 : Construction of an advanced denoiser and classifier model Episode 5 : Construction of an advanced denoiser and classifier model
### Generative network with Variational Autoencoder (VAE) ### Generative network with Variational Autoencoder (VAE)
- **[VAE1](VAE/01-VAE-with-MNIST.ipynb)** - [First VAE, using functional API (MNIST dataset)](VAE/01-VAE-with-MNIST.ipynb) - **[VAE1](VAE/01-VAE-with-MNIST.ipynb)** - [First VAE, using functional API (MNIST dataset)](VAE/01-VAE-with-MNIST.ipynb)
Construction and training of a VAE, using functional APPI, with a latent space of small dimension. Construction and training of a VAE, using functional APPI, with a latent space of small dimension.
- **[VAE2](VAE/02-VAE-with-MNIST.ipynb)** - [VAE, using a custom model class (MNIST dataset)](VAE/02-VAE-with-MNIST.ipynb) - **[VAE2](VAE/02-VAE-with-MNIST.ipynb)** - [VAE, using a custom model class (MNIST dataset)](VAE/02-VAE-with-MNIST.ipynb)
Construction and training of a VAE, using model subclass, with a latent space of small dimension. Construction and training of a VAE, using model subclass, with a latent space of small dimension.
- **[VAE3](VAE/03-VAE-with-MNIST-post.ipynb)** - [Analysis of the VAE's latent space of MNIST dataset](VAE/03-VAE-with-MNIST-post.ipynb) - **[VAE3](VAE/03-VAE-with-MNIST-post.ipynb)** - [Analysis of the VAE's latent space of MNIST dataset](VAE/03-VAE-with-MNIST-post.ipynb)
Visualization and analysis of the VAE's latent space of the dataset MNIST Visualization and analysis of the VAE's latent space of the dataset MNIST
- **[VAE5](VAE/05-About-CelebA.ipynb)** - [Another game play : About the CelebA dataset](VAE/05-About-CelebA.ipynb) - **[VAE5](VAE/05-About-CelebA.ipynb)** - [Another game play : About the CelebA dataset](VAE/05-About-CelebA.ipynb)
Episode 1 : Presentation of the CelebA dataset and problems related to its size Episode 1 : Presentation of the CelebA dataset and problems related to its size
- **[VAE6](VAE/06-Prepare-CelebA-datasets.ipynb)** - [Generation of a clustered dataset](VAE/06-Prepare-CelebA-datasets.ipynb) - **[VAE6](VAE/06-Prepare-CelebA-datasets.ipynb)** - [Generation of a clustered dataset](VAE/06-Prepare-CelebA-datasets.ipynb)
Episode 2 : Analysis of the CelebA dataset and creation of an clustered and usable dataset Episode 2 : Analysis of the CelebA dataset and creation of an clustered and usable dataset
- **[VAE7](VAE/07-Check-CelebA.ipynb)** - [Checking the clustered dataset](VAE/07-Check-CelebA.ipynb) - **[VAE7](VAE/07-Check-CelebA.ipynb)** - [Checking the clustered dataset](VAE/07-Check-CelebA.ipynb)
Episode : 3 Clustered dataset verification and testing of our datagenerator Episode : 3 Clustered dataset verification and testing of our datagenerator
- **[VAE8](VAE/08-VAE-with-CelebA.ipynb)** - [Training session for our VAE](VAE/08-VAE-with-CelebA.ipynb) - **[VAE8](VAE/08-VAE-with-CelebA.ipynb)** - [Training session for our VAE](VAE/08-VAE-with-CelebA.ipynb)
Episode 4 : Training with our clustered datasets in notebook or batch mode Episode 4 : Training with our clustered datasets in notebook or batch mode
- **[VAE9](VAE/10-VAE-with-CelebA-post.ipynb)** - [Data generation from latent space](VAE/10-VAE-with-CelebA-post.ipynb) - **[VAE9](VAE/10-VAE-with-CelebA-post.ipynb)** - [Data generation from latent space](VAE/10-VAE-with-CelebA-post.ipynb)
Episode 5 : Exploring latent space to generate new data Episode 5 : Exploring latent space to generate new data
- **[VAE10](VAE/batch_slurm.sh)** - [SLURM batch script](VAE/batch_slurm.sh) - **[VAE10](VAE/batch_slurm.sh)** - [SLURM batch script](VAE/batch_slurm.sh)
Bash script for SLURM batch submission of VAE8 notebooks Bash script for SLURM batch submission of VAE8 notebooks
### Generative Adversarial Networks (GANs) ### Generative Adversarial Networks (GANs)
- **[SHEEP1](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb)** - [A first DCGAN to Draw a Sheep](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb) - **[SHEEP1](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb)** - [A first DCGAN to Draw a Sheep](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb)
Episode 1 : Draw me a sheep, revisited with a DCGAN Episode 1 : Draw me a sheep, revisited with a DCGAN
- **[SHEEP2](DCGAN/02-WGANGP-Draw-me-a-sheep.ipynb)** - [A WGAN-GP to Draw a Sheep](DCGAN/02-WGANGP-Draw-me-a-sheep.ipynb)
Episode 2 : Draw me a sheep, revisited with a WGAN-GP
### Miscellaneous ### Miscellaneous
- **[ACTF1](Misc/Activation-Functions.ipynb)** - [Activation functions](Misc/Activation-Functions.ipynb) - **[ACTF1](Misc/Activation-Functions.ipynb)** - [Activation functions](Misc/Activation-Functions.ipynb)
Some activation functions, with their derivatives. Some activation functions, with their derivatives.
- **[NP1](Misc/Numpy.ipynb)** - [A short introduction to Numpy](Misc/Numpy.ipynb) - **[NP1](Misc/Numpy.ipynb)** - [A short introduction to Numpy](Misc/Numpy.ipynb)
Numpy is an essential tool for the Scientific Python. Numpy is an essential tool for the Scientific Python.
- **[SCRATCH1](Misc/Scratchbook.ipynb)** - [Scratchbook](Misc/Scratchbook.ipynb) - **[SCRATCH1](Misc/Scratchbook.ipynb)** - [Scratchbook](Misc/Scratchbook.ipynb)
A scratchbook for small examples A scratchbook for small examples
- **[TSB1](Misc/Using-Tensorboard.ipynb)** - [Tensorboard with/from Jupyter ](Misc/Using-Tensorboard.ipynb) - **[TSB1](Misc/Using-Tensorboard.ipynb)** - [Tensorboard with/from Jupyter ](Misc/Using-Tensorboard.ipynb)
4 ways to use Tensorboard from the Jupyter environment 4 ways to use Tensorboard from the Jupyter environment
<!-- INDEX_END --> <!-- INDEX_END -->
## Installation ## Installation
Have a look about **[How to get and install](https://fidle.cnrs.fr/installation)** these notebooks and datasets. Have a look about **[How to get and install](https://fidle.cnrs.fr/installation)** these notebooks and datasets.
## Licence ## Licence
[<img width="100px" src="fidle/img/00-fidle-CC BY-NC-SA.svg"></img>](https://creativecommons.org/licenses/by-nc-sa/4.0/) [<img width="100px" src="fidle/img/00-fidle-CC BY-NC-SA.svg"></img>](https://creativecommons.org/licenses/by-nc-sa/4.0/)
\[en\] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0) \[en\] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0)
\[Fr\] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International \[Fr\] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International
See [License](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). See [License](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
See [Disclaimer](https://creativecommons.org/licenses/by-nc-sa/4.0/#). See [Disclaimer](https://creativecommons.org/licenses/by-nc-sa/4.0/#).
---- ----
[<img width="80px" src="fidle/img/00-Fidle-logo-01.svg"></img>](#top) [<img width="80px" src="fidle/img/00-Fidle-logo-01.svg"></img>](#top)
......
...@@ -31,7 +31,7 @@ For more information, you can contact us at : ...@@ -31,7 +31,7 @@ For more information, you can contact us at :
[<img width="200px" style="vertical-align:middle" src="fidle/img/00-Mail_contact.svg"></img>](#top) [<img width="200px" style="vertical-align:middle" src="fidle/img/00-Mail_contact.svg"></img>](#top)
Current Version : <!-- VERSION_BEGIN --> Current Version : <!-- VERSION_BEGIN -->
**2.0.33** **2.0.34**
<!-- VERSION_END --> <!-- VERSION_END -->
...@@ -157,6 +157,8 @@ Bash script for SLURM batch submission of VAE8 notebooks ...@@ -157,6 +157,8 @@ Bash script for SLURM batch submission of VAE8 notebooks
### Generative Adversarial Networks (GANs) ### Generative Adversarial Networks (GANs)
- **[SHEEP1](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb)** - [A first DCGAN to Draw a Sheep](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb) - **[SHEEP1](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb)** - [A first DCGAN to Draw a Sheep](DCGAN/01-DCGAN-Draw-me-a-sheep.ipynb)
Episode 1 : Draw me a sheep, revisited with a DCGAN Episode 1 : Draw me a sheep, revisited with a DCGAN
- **[SHEEP2](DCGAN/02-WGANGP-Draw-me-a-sheep.ipynb)** - [A WGAN-GP to Draw a Sheep](DCGAN/02-WGANGP-Draw-me-a-sheep.ipynb)
Episode 2 : Draw me a sheep, revisited with a WGAN-GP
### Miscellaneous ### Miscellaneous
- **[ACTF1](Misc/Activation-Functions.ipynb)** - [Activation functions](Misc/Activation-Functions.ipynb) - **[ACTF1](Misc/Activation-Functions.ipynb)** - [Activation functions](Misc/Activation-Functions.ipynb)
......
...@@ -437,6 +437,19 @@ Nb_SHEEP1: ...@@ -437,6 +437,19 @@ Nb_SHEEP1:
batch_size: default batch_size: default
num_img: default num_img: default
fit_verbosity: default fit_verbosity: default
Nb_SHEEP2:
notebook_id: SHEEP2
notebook_dir: DCGAN
notebook_src: 02-WGANGP-Draw-me-a-sheep.ipynb
notebook_tag: default
overrides:
run_dir: default
scale: default
latent_dim: default
epochs: default
batch_size: default
num_img: default
fit_verbosity: default
Nb_ACTF1: Nb_ACTF1:
notebook_id: ACTF1 notebook_id: ACTF1
notebook_dir: Misc notebook_dir: Misc
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
# ---- Version ----------------------------------------------------- # ---- Version -----------------------------------------------------
# #
VERSION = '2.0.33' VERSION = '2.0.34'
# ---- Default notebook name --------------------------------------- # ---- Default notebook name ---------------------------------------
# #
......
...@@ -565,6 +565,23 @@ ...@@ -565,6 +565,23 @@
"run_dir" "run_dir"
] ]
}, },
"SHEEP2": {
"id": "SHEEP2",
"dirname": "DCGAN",
"basename": "02-WGANGP-Draw-me-a-sheep.ipynb",
"title": "A WGAN-GP to Draw a Sheep",
"description": "Episode 2 : Draw me a sheep, revisited with a WGAN-GP",
"overrides": [
"run_dir",
"scale",
"latent_dim",
"epochs",
"batch_size",
"num_img",
"fit_verbosity",
"run_dir"
]
},
"ACTF1": { "ACTF1": {
"id": "ACTF1", "id": "ACTF1",
"dirname": "Misc", "dirname": "Misc",
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment