Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Deep Neural Network (DNN) - BHPD dataset\n",
"========================================\n",
"---\n",
"Introduction au Deep Learning (IDLE) - S. Arias, E. Maldonado, JL. Parouty - CNRS/SARI/DEVLOG - 2020 \n",
"\n",
"## A very simple example of **regression** :\n",
"\n",
"Objective is to predicts **housing prices** from a set of house features. \n",
"\n",
"The **[Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html)** consists of price of houses in various places in Boston. \n",
"Alongside with price, the dataset also provide information such as Crime, areas of non-retail business in the town, \n",
"age of people who own the house and many other attributes...\n",
"\n",
"What we're going to do:\n",
"\n",
" - Retrieve data\n",
" - Preparing the data\n",
" - Build a model\n",
" - Train the model\n",
" - Evaluate the result\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1/ Init python stuff"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"IDLE 2020 - Practical Work Module\n",
" Version : 0.2\n",
" Matplotlib style : fidle/talk.mplstyle\n",
" TensorFlow version : 2.0.0\n",
" Keras version : 2.2.4-tf\n"
]
}
],
"source": [
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"\n",
"from IPython.display import display, Markdown\n",
"import fidle.pwk as ooo\n",
"from importlib import reload\n",
"\n",
"ooo.init()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2/ Retrieve data\n",
"\n",
"**From Keras :**\n",
"Boston housing is a famous historic dataset, so we can get it directly from [Keras datasets](https://www.tensorflow.org/api_docs/python/tf/keras/datasets) "
]
},
{
"metadata": {},
"source": [
"(x_train, y_train), (x_test, y_test) = keras.datasets.boston_housing.load_data(test_split=0.2, seed=113)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**From a csv file :** \n",
"More fun !"
]
},
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/html": [
"<style type=\"text/css\" >\n",
"</style><table id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9\" ><thead> <tr> <th class=\"blank level0\" ></th> <th class=\"col_heading level0 col0\" >crim</th> <th class=\"col_heading level0 col1\" >zn</th> <th class=\"col_heading level0 col2\" >indus</th> <th class=\"col_heading level0 col3\" >chas</th> <th class=\"col_heading level0 col4\" >nox</th> <th class=\"col_heading level0 col5\" >rm</th> <th class=\"col_heading level0 col6\" >age</th> <th class=\"col_heading level0 col7\" >dis</th> <th class=\"col_heading level0 col8\" >rad</th> <th class=\"col_heading level0 col9\" >tax</th> <th class=\"col_heading level0 col10\" >ptratio</th> <th class=\"col_heading level0 col11\" >b</th> <th class=\"col_heading level0 col12\" >lstat</th> <th class=\"col_heading level0 col13\" >medv</th> </tr></thead><tbody>\n",
" <th id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9level0_row0\" class=\"row_heading level0 row0\" >0</th>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row0_col0\" class=\"data row0 col0\" >0.01</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row0_col1\" class=\"data row0 col1\" >18.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row0_col2\" class=\"data row0 col2\" >2.31</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row0_col3\" class=\"data row0 col3\" >0.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row0_col4\" class=\"data row0 col4\" >0.54</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row0_col5\" class=\"data row0 col5\" >6.58</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row0_col6\" class=\"data row0 col6\" >65.20</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row0_col7\" class=\"data row0 col7\" >4.09</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row0_col8\" class=\"data row0 col8\" >1.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row0_col9\" class=\"data row0 col9\" >296.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row0_col10\" class=\"data row0 col10\" >15.30</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row0_col11\" class=\"data row0 col11\" >396.90</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row0_col12\" class=\"data row0 col12\" >4.98</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row0_col13\" class=\"data row0 col13\" >24.00</td>\n",
" <th id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9level0_row1\" class=\"row_heading level0 row1\" >1</th>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row1_col0\" class=\"data row1 col0\" >0.03</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row1_col1\" class=\"data row1 col1\" >0.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row1_col2\" class=\"data row1 col2\" >7.07</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row1_col3\" class=\"data row1 col3\" >0.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row1_col4\" class=\"data row1 col4\" >0.47</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row1_col5\" class=\"data row1 col5\" >6.42</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row1_col6\" class=\"data row1 col6\" >78.90</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row1_col7\" class=\"data row1 col7\" >4.97</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row1_col8\" class=\"data row1 col8\" >2.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row1_col9\" class=\"data row1 col9\" >242.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row1_col10\" class=\"data row1 col10\" >17.80</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row1_col11\" class=\"data row1 col11\" >396.90</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row1_col12\" class=\"data row1 col12\" >9.14</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row1_col13\" class=\"data row1 col13\" >21.60</td>\n",
" <th id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9level0_row2\" class=\"row_heading level0 row2\" >2</th>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row2_col0\" class=\"data row2 col0\" >0.03</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row2_col1\" class=\"data row2 col1\" >0.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row2_col2\" class=\"data row2 col2\" >7.07</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row2_col3\" class=\"data row2 col3\" >0.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row2_col4\" class=\"data row2 col4\" >0.47</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row2_col5\" class=\"data row2 col5\" >7.18</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row2_col6\" class=\"data row2 col6\" >61.10</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row2_col7\" class=\"data row2 col7\" >4.97</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row2_col8\" class=\"data row2 col8\" >2.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row2_col9\" class=\"data row2 col9\" >242.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row2_col10\" class=\"data row2 col10\" >17.80</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row2_col11\" class=\"data row2 col11\" >392.83</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row2_col12\" class=\"data row2 col12\" >4.03</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row2_col13\" class=\"data row2 col13\" >34.70</td>\n",
" <th id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9level0_row3\" class=\"row_heading level0 row3\" >3</th>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row3_col0\" class=\"data row3 col0\" >0.03</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row3_col1\" class=\"data row3 col1\" >0.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row3_col2\" class=\"data row3 col2\" >2.18</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row3_col3\" class=\"data row3 col3\" >0.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row3_col4\" class=\"data row3 col4\" >0.46</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row3_col5\" class=\"data row3 col5\" >7.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row3_col6\" class=\"data row3 col6\" >45.80</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row3_col7\" class=\"data row3 col7\" >6.06</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row3_col8\" class=\"data row3 col8\" >3.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row3_col9\" class=\"data row3 col9\" >222.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row3_col10\" class=\"data row3 col10\" >18.70</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row3_col11\" class=\"data row3 col11\" >394.63</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row3_col12\" class=\"data row3 col12\" >2.94</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row3_col13\" class=\"data row3 col13\" >33.40</td>\n",
" <th id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9level0_row4\" class=\"row_heading level0 row4\" >4</th>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row4_col0\" class=\"data row4 col0\" >0.07</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row4_col1\" class=\"data row4 col1\" >0.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row4_col2\" class=\"data row4 col2\" >2.18</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row4_col3\" class=\"data row4 col3\" >0.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row4_col4\" class=\"data row4 col4\" >0.46</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row4_col5\" class=\"data row4 col5\" >7.15</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row4_col6\" class=\"data row4 col6\" >54.20</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row4_col7\" class=\"data row4 col7\" >6.06</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row4_col8\" class=\"data row4 col8\" >3.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row4_col9\" class=\"data row4 col9\" >222.00</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row4_col10\" class=\"data row4 col10\" >18.70</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row4_col11\" class=\"data row4 col11\" >396.90</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row4_col12\" class=\"data row4 col12\" >5.33</td>\n",
" <td id=\"T_a297dd9a_410c_11ea_9598_bf6724e350b9row4_col13\" class=\"data row4 col13\" >36.20</td>\n",
" </tr>\n",
" </tbody></table>"
],
"text/plain": [
"<pandas.io.formats.style.Styler at 0x7f51d48099d0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Données manquantes : 0 Shape is : (506, 14)\n"
]
}
],
"source": [
"data = pd.read_csv('./data/BostonHousing.csv', header=0)\n",
"\n",
"display(data.head(5).style.format(\"{0:.2f}\"))\n",
"print('Données manquantes : ',data.isna().sum().sum(), ' Shape is : ', data.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3/ Preparing the data\n",
"### 3.1/ Split data\n",
"We will use 70% of the data for training and 30% for validation. \n",
"x will be input data and y the expected output"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Original data shape was : (506, 14)\n",
"x_train : (354, 13) y_train : (354,)\n",
"x_test : (152, 13) y_test : (152,)\n"
]
}
],
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
"source": [
"# ---- Split => train, test\n",
"#\n",
"data_train = data.sample(frac=0.7, axis=0)\n",
"data_test = data.drop(data_train.index)\n",
"\n",
"# ---- Split => x,y (medv is price)\n",
"#\n",
"x_train = data_train.drop('medv', axis=1)\n",
"y_train = data_train['medv']\n",
"x_test = data_test.drop('medv', axis=1)\n",
"y_test = data_test['medv']\n",
"\n",
"print('Original data shape was : ',data.shape)\n",
"print('x_train : ',x_train.shape, 'y_train : ',y_train.shape)\n",
"print('x_test : ',x_test.shape, 'y_test : ',y_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.2/ Data normalization\n",
"**Note :** \n",
" - All input data must be normalized, train and test. \n",
" - To do this we will subtract the mean and divide by the standard deviation. \n",
" - But test data should not be used in any way, even for normalization. \n",
" - The mean and the standard deviation will therefore only be calculated with the train data."
]
},
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/html": [
"<style type=\"text/css\" >\n",
"</style><table id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9\" ><caption>Before normalization :</caption><thead> <tr> <th class=\"blank level0\" ></th> <th class=\"col_heading level0 col0\" >crim</th> <th class=\"col_heading level0 col1\" >zn</th> <th class=\"col_heading level0 col2\" >indus</th> <th class=\"col_heading level0 col3\" >chas</th> <th class=\"col_heading level0 col4\" >nox</th> <th class=\"col_heading level0 col5\" >rm</th> <th class=\"col_heading level0 col6\" >age</th> <th class=\"col_heading level0 col7\" >dis</th> <th class=\"col_heading level0 col8\" >rad</th> <th class=\"col_heading level0 col9\" >tax</th> <th class=\"col_heading level0 col10\" >ptratio</th> <th class=\"col_heading level0 col11\" >b</th> <th class=\"col_heading level0 col12\" >lstat</th> </tr></thead><tbody>\n",
" <th id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9level0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row0_col0\" class=\"data row0 col0\" >354.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row0_col1\" class=\"data row0 col1\" >354.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row0_col2\" class=\"data row0 col2\" >354.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row0_col3\" class=\"data row0 col3\" >354.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row0_col4\" class=\"data row0 col4\" >354.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row0_col5\" class=\"data row0 col5\" >354.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row0_col6\" class=\"data row0 col6\" >354.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row0_col7\" class=\"data row0 col7\" >354.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row0_col8\" class=\"data row0 col8\" >354.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row0_col9\" class=\"data row0 col9\" >354.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row0_col10\" class=\"data row0 col10\" >354.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row0_col11\" class=\"data row0 col11\" >354.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row0_col12\" class=\"data row0 col12\" >354.00</td>\n",
" <th id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9level0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row1_col0\" class=\"data row1 col0\" >3.67</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row1_col1\" class=\"data row1 col1\" >11.34</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row1_col2\" class=\"data row1 col2\" >11.13</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row1_col3\" class=\"data row1 col3\" >0.06</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row1_col4\" class=\"data row1 col4\" >0.55</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row1_col5\" class=\"data row1 col5\" >6.30</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row1_col6\" class=\"data row1 col6\" >69.39</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row1_col7\" class=\"data row1 col7\" >3.82</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row1_col8\" class=\"data row1 col8\" >9.46</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row1_col9\" class=\"data row1 col9\" >405.71</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row1_col10\" class=\"data row1 col10\" >18.44</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row1_col11\" class=\"data row1 col11\" >357.31</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row1_col12\" class=\"data row1 col12\" >12.47</td>\n",
" <th id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9level0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row2_col0\" class=\"data row2 col0\" >8.87</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row2_col1\" class=\"data row2 col1\" >23.30</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row2_col2\" class=\"data row2 col2\" >6.87</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row2_col3\" class=\"data row2 col3\" >0.25</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row2_col4\" class=\"data row2 col4\" >0.12</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row2_col5\" class=\"data row2 col5\" >0.72</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row2_col6\" class=\"data row2 col6\" >27.58</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row2_col7\" class=\"data row2 col7\" >2.11</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row2_col8\" class=\"data row2 col8\" >8.61</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row2_col9\" class=\"data row2 col9\" >168.03</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row2_col10\" class=\"data row2 col10\" >2.27</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row2_col11\" class=\"data row2 col11\" >90.18</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row2_col12\" class=\"data row2 col12\" >6.94</td>\n",
" <th id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9level0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row3_col0\" class=\"data row3 col0\" >0.01</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row3_col1\" class=\"data row3 col1\" >0.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row3_col2\" class=\"data row3 col2\" >0.46</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row3_col3\" class=\"data row3 col3\" >0.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row3_col4\" class=\"data row3 col4\" >0.39</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row3_col5\" class=\"data row3 col5\" >3.86</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row3_col6\" class=\"data row3 col6\" >2.90</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row3_col7\" class=\"data row3 col7\" >1.13</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row3_col8\" class=\"data row3 col8\" >1.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row3_col9\" class=\"data row3 col9\" >187.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row3_col10\" class=\"data row3 col10\" >12.60</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row3_col11\" class=\"data row3 col11\" >2.52</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row3_col12\" class=\"data row3 col12\" >1.73</td>\n",
" <th id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9level0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row4_col0\" class=\"data row4 col0\" >0.08</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row4_col1\" class=\"data row4 col1\" >0.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row4_col2\" class=\"data row4 col2\" >5.15</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row4_col3\" class=\"data row4 col3\" >0.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row4_col4\" class=\"data row4 col4\" >0.45</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row4_col5\" class=\"data row4 col5\" >5.89</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row4_col6\" class=\"data row4 col6\" >45.73</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row4_col7\" class=\"data row4 col7\" >2.08</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row4_col8\" class=\"data row4 col8\" >4.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row4_col9\" class=\"data row4 col9\" >279.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row4_col10\" class=\"data row4 col10\" >16.92</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row4_col11\" class=\"data row4 col11\" >374.83</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row4_col12\" class=\"data row4 col12\" >7.18</td>\n",
" <th id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9level0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row5_col0\" class=\"data row5 col0\" >0.29</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row5_col1\" class=\"data row5 col1\" >0.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row5_col2\" class=\"data row5 col2\" >9.12</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row5_col3\" class=\"data row5 col3\" >0.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row5_col4\" class=\"data row5 col4\" >0.54</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row5_col5\" class=\"data row5 col5\" >6.21</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row5_col6\" class=\"data row5 col6\" >79.05</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row5_col7\" class=\"data row5 col7\" >3.29</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row5_col8\" class=\"data row5 col8\" >5.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row5_col9\" class=\"data row5 col9\" >330.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row5_col10\" class=\"data row5 col10\" >19.10</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row5_col11\" class=\"data row5 col11\" >391.34</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row5_col12\" class=\"data row5 col12\" >11.30</td>\n",
" <th id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9level0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row6_col0\" class=\"data row6 col0\" >3.40</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row6_col1\" class=\"data row6 col1\" >16.25</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row6_col2\" class=\"data row6 col2\" >18.10</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row6_col3\" class=\"data row6 col3\" >0.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row6_col4\" class=\"data row6 col4\" >0.62</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row6_col5\" class=\"data row6 col5\" >6.65</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row6_col6\" class=\"data row6 col6\" >94.10</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row6_col7\" class=\"data row6 col7\" >5.29</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row6_col8\" class=\"data row6 col8\" >24.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row6_col9\" class=\"data row6 col9\" >666.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row6_col10\" class=\"data row6 col10\" >20.20</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row6_col11\" class=\"data row6 col11\" >395.98</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row6_col12\" class=\"data row6 col12\" >16.50</td>\n",
" <th id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9level0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row7_col0\" class=\"data row7 col0\" >88.98</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row7_col1\" class=\"data row7 col1\" >100.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row7_col2\" class=\"data row7 col2\" >27.74</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row7_col3\" class=\"data row7 col3\" >1.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row7_col4\" class=\"data row7 col4\" >0.87</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row7_col5\" class=\"data row7 col5\" >8.78</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row7_col6\" class=\"data row7 col6\" >100.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row7_col7\" class=\"data row7 col7\" >12.13</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row7_col8\" class=\"data row7 col8\" >24.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row7_col9\" class=\"data row7 col9\" >711.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row7_col10\" class=\"data row7 col10\" >22.00</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row7_col11\" class=\"data row7 col11\" >396.90</td>\n",
" <td id=\"T_e374dea2_410d_11ea_9598_bf6724e350b9row7_col12\" class=\"data row7 col12\" >37.97</td>\n",
" </tr>\n",
" </tbody></table>"
],
"text/plain": [
"<pandas.io.formats.style.Styler at 0x7f51d5ee6390>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style type=\"text/css\" >\n",
"</style><table id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9\" ><caption>After normalization :</caption><thead> <tr> <th class=\"blank level0\" ></th> <th class=\"col_heading level0 col0\" >crim</th> <th class=\"col_heading level0 col1\" >zn</th> <th class=\"col_heading level0 col2\" >indus</th> <th class=\"col_heading level0 col3\" >chas</th> <th class=\"col_heading level0 col4\" >nox</th> <th class=\"col_heading level0 col5\" >rm</th> <th class=\"col_heading level0 col6\" >age</th> <th class=\"col_heading level0 col7\" >dis</th> <th class=\"col_heading level0 col8\" >rad</th> <th class=\"col_heading level0 col9\" >tax</th> <th class=\"col_heading level0 col10\" >ptratio</th> <th class=\"col_heading level0 col11\" >b</th> <th class=\"col_heading level0 col12\" >lstat</th> </tr></thead><tbody>\n",
" <th id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9level0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row0_col0\" class=\"data row0 col0\" >354.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row0_col1\" class=\"data row0 col1\" >354.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row0_col2\" class=\"data row0 col2\" >354.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row0_col3\" class=\"data row0 col3\" >354.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row0_col4\" class=\"data row0 col4\" >354.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row0_col5\" class=\"data row0 col5\" >354.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row0_col6\" class=\"data row0 col6\" >354.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row0_col7\" class=\"data row0 col7\" >354.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row0_col8\" class=\"data row0 col8\" >354.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row0_col9\" class=\"data row0 col9\" >354.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row0_col10\" class=\"data row0 col10\" >354.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row0_col11\" class=\"data row0 col11\" >354.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row0_col12\" class=\"data row0 col12\" >354.00</td>\n",
" <th id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9level0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row1_col0\" class=\"data row1 col0\" >-0.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row1_col1\" class=\"data row1 col1\" >0.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row1_col2\" class=\"data row1 col2\" >0.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row1_col3\" class=\"data row1 col3\" >0.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row1_col4\" class=\"data row1 col4\" >-0.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row1_col5\" class=\"data row1 col5\" >0.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row1_col6\" class=\"data row1 col6\" >-0.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row1_col7\" class=\"data row1 col7\" >0.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row1_col8\" class=\"data row1 col8\" >0.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row1_col9\" class=\"data row1 col9\" >0.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row1_col10\" class=\"data row1 col10\" >0.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row1_col11\" class=\"data row1 col11\" >0.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row1_col12\" class=\"data row1 col12\" >0.00</td>\n",
" <th id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9level0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row2_col0\" class=\"data row2 col0\" >1.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row2_col1\" class=\"data row2 col1\" >1.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row2_col2\" class=\"data row2 col2\" >1.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row2_col3\" class=\"data row2 col3\" >1.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row2_col4\" class=\"data row2 col4\" >1.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row2_col5\" class=\"data row2 col5\" >1.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row2_col6\" class=\"data row2 col6\" >1.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row2_col7\" class=\"data row2 col7\" >1.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row2_col8\" class=\"data row2 col8\" >1.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row2_col9\" class=\"data row2 col9\" >1.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row2_col10\" class=\"data row2 col10\" >1.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row2_col11\" class=\"data row2 col11\" >1.00</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row2_col12\" class=\"data row2 col12\" >1.00</td>\n",
" <th id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9level0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row3_col0\" class=\"data row3 col0\" >-0.41</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row3_col1\" class=\"data row3 col1\" >-0.49</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row3_col2\" class=\"data row3 col2\" >-1.55</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row3_col3\" class=\"data row3 col3\" >-0.26</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row3_col4\" class=\"data row3 col4\" >-1.48</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row3_col5\" class=\"data row3 col5\" >-3.39</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row3_col6\" class=\"data row3 col6\" >-2.41</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row3_col7\" class=\"data row3 col7\" >-1.27</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row3_col8\" class=\"data row3 col8\" >-0.98</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row3_col9\" class=\"data row3 col9\" >-1.30</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row3_col10\" class=\"data row3 col10\" >-2.58</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row3_col11\" class=\"data row3 col11\" >-3.93</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row3_col12\" class=\"data row3 col12\" >-1.55</td>\n",
" <th id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9level0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row4_col0\" class=\"data row4 col0\" >-0.40</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row4_col1\" class=\"data row4 col1\" >-0.49</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row4_col2\" class=\"data row4 col2\" >-0.87</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row4_col3\" class=\"data row4 col3\" >-0.26</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row4_col4\" class=\"data row4 col4\" >-0.88</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row4_col5\" class=\"data row4 col5\" >-0.58</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row4_col6\" class=\"data row4 col6\" >-0.86</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row4_col7\" class=\"data row4 col7\" >-0.82</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row4_col8\" class=\"data row4 col8\" >-0.63</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row4_col9\" class=\"data row4 col9\" >-0.75</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row4_col10\" class=\"data row4 col10\" >-0.67</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row4_col11\" class=\"data row4 col11\" >0.19</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row4_col12\" class=\"data row4 col12\" >-0.76</td>\n",
" <th id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9level0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row5_col0\" class=\"data row5 col0\" >-0.38</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row5_col1\" class=\"data row5 col1\" >-0.49</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row5_col2\" class=\"data row5 col2\" >-0.29</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row5_col3\" class=\"data row5 col3\" >-0.26</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row5_col4\" class=\"data row5 col4\" >-0.15</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row5_col5\" class=\"data row5 col5\" >-0.13</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row5_col6\" class=\"data row5 col6\" >0.35</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row5_col7\" class=\"data row5 col7\" >-0.25</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row5_col8\" class=\"data row5 col8\" >-0.52</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row5_col9\" class=\"data row5 col9\" >-0.45</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row5_col10\" class=\"data row5 col10\" >0.29</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row5_col11\" class=\"data row5 col11\" >0.38</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row5_col12\" class=\"data row5 col12\" >-0.17</td>\n",
" <th id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9level0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row6_col0\" class=\"data row6 col0\" >-0.03</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row6_col1\" class=\"data row6 col1\" >0.21</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row6_col2\" class=\"data row6 col2\" >1.01</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row6_col3\" class=\"data row6 col3\" >-0.26</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row6_col4\" class=\"data row6 col4\" >0.60</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row6_col5\" class=\"data row6 col5\" >0.49</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row6_col6\" class=\"data row6 col6\" >0.90</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row6_col7\" class=\"data row6 col7\" >0.69</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row6_col8\" class=\"data row6 col8\" >1.69</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row6_col9\" class=\"data row6 col9\" >1.55</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row6_col10\" class=\"data row6 col10\" >0.78</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row6_col11\" class=\"data row6 col11\" >0.43</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row6_col12\" class=\"data row6 col12\" >0.58</td>\n",
" <th id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9level0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row7_col0\" class=\"data row7 col0\" >9.62</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row7_col1\" class=\"data row7 col1\" >3.80</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row7_col2\" class=\"data row7 col2\" >2.42</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row7_col3\" class=\"data row7 col3\" >3.79</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row7_col4\" class=\"data row7 col4\" >2.74</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row7_col5\" class=\"data row7 col5\" >3.44</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row7_col6\" class=\"data row7 col6\" >1.11</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row7_col7\" class=\"data row7 col7\" >3.93</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row7_col8\" class=\"data row7 col8\" >1.69</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row7_col9\" class=\"data row7 col9\" >1.82</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row7_col10\" class=\"data row7 col10\" >1.57</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row7_col11\" class=\"data row7 col11\" >0.44</td>\n",
" <td id=\"T_e3945b88_410d_11ea_9598_bf6724e350b9row7_col12\" class=\"data row7 col12\" >3.68</td>\n",
" </tr>\n",
" </tbody></table>"
],
"text/plain": [
"<pandas.io.formats.style.Styler at 0x7f51d4821d10>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
"source": [
"display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n",
"\n",
"mean = x_train.mean()\n",
"std = x_train.std()\n",
"x_train = (x_train - mean) / std\n",
"x_test = (x_test - mean) / std\n",
"\n",
"display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"After normalization :\"))\n",
"\n",
"x_train, y_train = np.array(x_train), np.array(y_train)\n",
"x_test, y_test = np.array(x_test), np.array(y_test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4/ Build a model\n",
"About informations about : \n",
" - [Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)\n",
" - [Activation](https://www.tensorflow.org/api_docs/python/tf/keras/activations)\n",
" - [Loss](https://www.tensorflow.org/api_docs/python/tf/keras/losses)\n",
" - [Metrics](https://www.tensorflow.org/api_docs/python/tf/keras/metrics)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
" def get_model_v1(shape):\n",
" \n",
" model = keras.models.Sequential()\n",
" model.add(keras.layers.Dense(64, activation='relu', input_shape=shape))\n",
" model.add(keras.layers.Dense(64, activation='relu'))\n",
" model.add(keras.layers.Dense(1))\n",
" \n",
" model.compile(optimizer = 'rmsprop',\n",
" loss = 'mse',\n",
" metrics = ['mae', 'mse'] )\n",
" return model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5/ Train the model"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"_________________________________________________________________\n",
"_________________________________________________________________\n",
"=================================================================\n",
"Total params: 5,121\n",
"Trainable params: 5,121\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"model=get_model_v1( (13,) )\n",
"\n",
"model.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Let's go :**"
]
},
{
"cell_type": "code",
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train on 354 samples, validate on 152 samples\n",
"Epoch 1/100\n",
"354/354 [==============================] - 1s 2ms/sample - loss: 487.0888 - mae: 19.9032 - mse: 487.0888 - val_loss: 308.1071 - val_mae: 15.7207 - val_mse: 308.1070\n",
"Epoch 2/100\n",
"354/354 [==============================] - 0s 194us/sample - loss: 247.0264 - mae: 13.2414 - mse: 247.0264 - val_loss: 97.8105 - val_mae: 8.1237 - val_mse: 97.8105\n",
"Epoch 3/100\n",
"354/354 [==============================] - 0s 193us/sample - loss: 86.8949 - mae: 6.9520 - mse: 86.8949 - val_loss: 42.4257 - val_mae: 5.0994 - val_mse: 42.4257\n",
"Epoch 4/100\n",
"354/354 [==============================] - 0s 200us/sample - loss: 45.7664 - mae: 4.7469 - mse: 45.7664 - val_loss: 29.7263 - val_mae: 4.1665 - val_mse: 29.7263\n",
"Epoch 5/100\n",
"354/354 [==============================] - 0s 199us/sample - loss: 33.3429 - mae: 4.0681 - mse: 33.3429 - val_loss: 21.7644 - val_mae: 3.6424 - val_mse: 21.7644\n",
"Epoch 6/100\n",
"354/354 [==============================] - 0s 191us/sample - loss: 27.5133 - mae: 3.6070 - mse: 27.5133 - val_loss: 19.8807 - val_mae: 3.5024 - val_mse: 19.8807\n",
"Epoch 7/100\n",
"354/354 [==============================] - 0s 186us/sample - loss: 24.1182 - mae: 3.3727 - mse: 24.1182 - val_loss: 17.9948 - val_mae: 3.2151 - val_mse: 17.9948\n",
"Epoch 8/100\n",
"354/354 [==============================] - 0s 182us/sample - loss: 21.8060 - mae: 3.1366 - mse: 21.8060 - val_loss: 16.4886 - val_mae: 3.0627 - val_mse: 16.4886\n",
"Epoch 9/100\n",
"354/354 [==============================] - 0s 185us/sample - loss: 20.1659 - mae: 3.0417 - mse: 20.1659 - val_loss: 16.3110 - val_mae: 3.1179 - val_mse: 16.3110\n",
"Epoch 10/100\n",
"354/354 [==============================] - 0s 178us/sample - loss: 18.6065 - mae: 2.9420 - mse: 18.6065 - val_loss: 15.5141 - val_mae: 3.0108 - val_mse: 15.5141\n",
"Epoch 11/100\n",
"354/354 [==============================] - 0s 193us/sample - loss: 17.8489 - mae: 2.8333 - mse: 17.8489 - val_loss: 14.7017 - val_mae: 2.8789 - val_mse: 14.7017\n",
"Epoch 12/100\n",
"354/354 [==============================] - 0s 194us/sample - loss: 16.5612 - mae: 2.7414 - mse: 16.5612 - val_loss: 13.9433 - val_mae: 2.7222 - val_mse: 13.9433\n",
"Epoch 13/100\n",
"354/354 [==============================] - 0s 201us/sample - loss: 15.6009 - mae: 2.6732 - mse: 15.6009 - val_loss: 13.3117 - val_mae: 2.6386 - val_mse: 13.3117\n",
"Epoch 14/100\n",
"354/354 [==============================] - 0s 207us/sample - loss: 15.0688 - mae: 2.6302 - mse: 15.0688 - val_loss: 13.5431 - val_mae: 2.6898 - val_mse: 13.5431\n",
"Epoch 15/100\n",
"354/354 [==============================] - 0s 206us/sample - loss: 14.4971 - mae: 2.5893 - mse: 14.4971 - val_loss: 13.5570 - val_mae: 2.7085 - val_mse: 13.5570\n",
"Epoch 16/100\n",
"354/354 [==============================] - 0s 180us/sample - loss: 13.8436 - mae: 2.5135 - mse: 13.8436 - val_loss: 12.8769 - val_mae: 2.5970 - val_mse: 12.8769\n",
"Epoch 17/100\n",
"354/354 [==============================] - 0s 194us/sample - loss: 13.2484 - mae: 2.4756 - mse: 13.2484 - val_loss: 13.8003 - val_mae: 2.8335 - val_mse: 13.8003\n",
"Epoch 18/100\n",
"354/354 [==============================] - 0s 205us/sample - loss: 13.1481 - mae: 2.4546 - mse: 13.1481 - val_loss: 13.0239 - val_mae: 2.6989 - val_mse: 13.0239\n",
"Epoch 19/100\n",
"354/354 [==============================] - 0s 200us/sample - loss: 12.5412 - mae: 2.4286 - mse: 12.5412 - val_loss: 12.4162 - val_mae: 2.5496 - val_mse: 12.4162\n",
"Epoch 20/100\n",
"354/354 [==============================] - 0s 210us/sample - loss: 12.4616 - mae: 2.4215 - mse: 12.4616 - val_loss: 12.1216 - val_mae: 2.5368 - val_mse: 12.1216\n",
"Epoch 21/100\n",
"354/354 [==============================] - 0s 219us/sample - loss: 12.0377 - mae: 2.3799 - mse: 12.0377 - val_loss: 12.4182 - val_mae: 2.6287 - val_mse: 12.4182\n",
"Epoch 22/100\n",
"354/354 [==============================] - 0s 201us/sample - loss: 11.5818 - mae: 2.3088 - mse: 11.5818 - val_loss: 11.7357 - val_mae: 2.4065 - val_mse: 11.7357\n",
"Epoch 23/100\n",
"354/354 [==============================] - 0s 198us/sample - loss: 11.6820 - mae: 2.2713 - mse: 11.6820 - val_loss: 12.2529 - val_mae: 2.5771 - val_mse: 12.2529\n",
"Epoch 24/100\n",
"354/354 [==============================] - 0s 191us/sample - loss: 11.2786 - mae: 2.2865 - mse: 11.2786 - val_loss: 12.6007 - val_mae: 2.6822 - val_mse: 12.6007\n",
"Epoch 25/100\n",
"354/354 [==============================] - 0s 188us/sample - loss: 10.7723 - mae: 2.2619 - mse: 10.7723 - val_loss: 12.6062 - val_mae: 2.5114 - val_mse: 12.6062\n",
"Epoch 26/100\n",
"354/354 [==============================] - 0s 198us/sample - loss: 10.9011 - mae: 2.2711 - mse: 10.9011 - val_loss: 11.4349 - val_mae: 2.4340 - val_mse: 11.4349\n",
"Epoch 27/100\n",
"354/354 [==============================] - 0s 191us/sample - loss: 10.6218 - mae: 2.2447 - mse: 10.6218 - val_loss: 12.2449 - val_mae: 2.5705 - val_mse: 12.2449\n",
"Epoch 28/100\n",
"354/354 [==============================] - 0s 195us/sample - loss: 10.5279 - mae: 2.2312 - mse: 10.5279 - val_loss: 11.5037 - val_mae: 2.4417 - val_mse: 11.5037\n",
"Epoch 29/100\n",
"354/354 [==============================] - 0s 206us/sample - loss: 10.1019 - mae: 2.1807 - mse: 10.1019 - val_loss: 11.2753 - val_mae: 2.4330 - val_mse: 11.2753\n",
"Epoch 30/100\n",
"354/354 [==============================] - 0s 205us/sample - loss: 9.7553 - mae: 2.1740 - mse: 9.7553 - val_loss: 11.1414 - val_mae: 2.4706 - val_mse: 11.1414\n",
"Epoch 31/100\n",
"354/354 [==============================] - 0s 199us/sample - loss: 9.8119 - mae: 2.1677 - mse: 9.8119 - val_loss: 11.2484 - val_mae: 2.4870 - val_mse: 11.2484\n",
"Epoch 32/100\n",
"354/354 [==============================] - 0s 199us/sample - loss: 9.6109 - mae: 2.1458 - mse: 9.6109 - val_loss: 11.6936 - val_mae: 2.5334 - val_mse: 11.6936\n",
"Epoch 33/100\n",
"354/354 [==============================] - 0s 185us/sample - loss: 9.6240 - mae: 2.1389 - mse: 9.6240 - val_loss: 11.9366 - val_mae: 2.5851 - val_mse: 11.9366\n",
"Epoch 34/100\n",
"354/354 [==============================] - 0s 194us/sample - loss: 9.0395 - mae: 2.0717 - mse: 9.0395 - val_loss: 11.4917 - val_mae: 2.5152 - val_mse: 11.4917\n",
"Epoch 35/100\n",
"354/354 [==============================] - 0s 184us/sample - loss: 9.0385 - mae: 2.1342 - mse: 9.0385 - val_loss: 11.1387 - val_mae: 2.4661 - val_mse: 11.1387\n",
"Epoch 36/100\n",
"354/354 [==============================] - 0s 189us/sample - loss: 9.1489 - mae: 2.1074 - mse: 9.1489 - val_loss: 11.3799 - val_mae: 2.4694 - val_mse: 11.3799\n",
"Epoch 37/100\n",
"354/354 [==============================] - 0s 183us/sample - loss: 8.8084 - mae: 2.0669 - mse: 8.8084 - val_loss: 11.3758 - val_mae: 2.4844 - val_mse: 11.3758\n",
"Epoch 38/100\n",
"354/354 [==============================] - 0s 194us/sample - loss: 8.4417 - mae: 2.0440 - mse: 8.4417 - val_loss: 11.9173 - val_mae: 2.6668 - val_mse: 11.9173\n",
"Epoch 39/100\n",
"354/354 [==============================] - 0s 187us/sample - loss: 8.5509 - mae: 2.0358 - mse: 8.5509 - val_loss: 10.9374 - val_mae: 2.4372 - val_mse: 10.9374\n",
"Epoch 40/100\n",
"354/354 [==============================] - 0s 195us/sample - loss: 8.1358 - mae: 2.0316 - mse: 8.1358 - val_loss: 10.9421 - val_mae: 2.4311 - val_mse: 10.9421\n",
"Epoch 41/100\n",
"354/354 [==============================] - 0s 185us/sample - loss: 8.0176 - mae: 1.9935 - mse: 8.0176 - val_loss: 11.4450 - val_mae: 2.5430 - val_mse: 11.4450\n",
"Epoch 42/100\n",
"354/354 [==============================] - 0s 191us/sample - loss: 8.1927 - mae: 2.0241 - mse: 8.1927 - val_loss: 11.6573 - val_mae: 2.5369 - val_mse: 11.6573\n",
"Epoch 43/100\n",
"354/354 [==============================] - 0s 191us/sample - loss: 7.8327 - mae: 1.9730 - mse: 7.8327 - val_loss: 12.8139 - val_mae: 2.7067 - val_mse: 12.8139\n",
"Epoch 44/100\n",
"354/354 [==============================] - 0s 203us/sample - loss: 7.6695 - mae: 1.9709 - mse: 7.6695 - val_loss: 11.4870 - val_mae: 2.5244 - val_mse: 11.4870\n",
"Epoch 45/100\n",
"354/354 [==============================] - 0s 198us/sample - loss: 7.5597 - mae: 1.9331 - mse: 7.5597 - val_loss: 11.3806 - val_mae: 2.4968 - val_mse: 11.3806\n",
"Epoch 46/100\n",
"354/354 [==============================] - 0s 204us/sample - loss: 7.7065 - mae: 1.9642 - mse: 7.7065 - val_loss: 12.6317 - val_mae: 2.6573 - val_mse: 12.6317\n",
"Epoch 47/100\n",
"354/354 [==============================] - 0s 206us/sample - loss: 7.3382 - mae: 1.9147 - mse: 7.3382 - val_loss: 12.5079 - val_mae: 2.6235 - val_mse: 12.5080\n",
"Epoch 48/100\n",
"354/354 [==============================] - 0s 203us/sample - loss: 7.3958 - mae: 1.9476 - mse: 7.3958 - val_loss: 13.0458 - val_mae: 2.6728 - val_mse: 13.0458\n",
"Epoch 49/100\n",
"354/354 [==============================] - 0s 207us/sample - loss: 7.1153 - mae: 1.9121 - mse: 7.1153 - val_loss: 12.0881 - val_mae: 2.6703 - val_mse: 12.0881\n",
"Epoch 50/100\n",
"354/354 [==============================] - 0s 211us/sample - loss: 7.0243 - mae: 1.8684 - mse: 7.0243 - val_loss: 12.6583 - val_mae: 2.5839 - val_mse: 12.6583\n",
"Epoch 51/100\n",
"354/354 [==============================] - 0s 196us/sample - loss: 7.0586 - mae: 1.9037 - mse: 7.0586 - val_loss: 11.6811 - val_mae: 2.5166 - val_mse: 11.6811\n",
"Epoch 52/100\n",
"354/354 [==============================] - 0s 193us/sample - loss: 6.9316 - mae: 1.8744 - mse: 6.9316 - val_loss: 11.6157 - val_mae: 2.5379 - val_mse: 11.6157\n",
"Epoch 53/100\n",
"354/354 [==============================] - 0s 197us/sample - loss: 6.6836 - mae: 1.8344 - mse: 6.6836 - val_loss: 11.9705 - val_mae: 2.4756 - val_mse: 11.9705\n",
"Epoch 54/100\n",
"354/354 [==============================] - 0s 195us/sample - loss: 6.8097 - mae: 1.8709 - mse: 6.8097 - val_loss: 11.9780 - val_mae: 2.5914 - val_mse: 11.9780\n",
"Epoch 55/100\n",
"354/354 [==============================] - 0s 184us/sample - loss: 6.5109 - mae: 1.8337 - mse: 6.5109 - val_loss: 11.4136 - val_mae: 2.4470 - val_mse: 11.4136\n",
"Epoch 56/100\n",
"354/354 [==============================] - 0s 194us/sample - loss: 6.2732 - mae: 1.7802 - mse: 6.2732 - val_loss: 12.0206 - val_mae: 2.5746 - val_mse: 12.0206\n",
"Epoch 57/100\n",
"354/354 [==============================] - 0s 195us/sample - loss: 6.5366 - mae: 1.8209 - mse: 6.5366 - val_loss: 12.6829 - val_mae: 2.5894 - val_mse: 12.6829\n",
"Epoch 58/100\n",
"354/354 [==============================] - 0s 201us/sample - loss: 6.3653 - mae: 1.8091 - mse: 6.3653 - val_loss: 12.2595 - val_mae: 2.5639 - val_mse: 12.2595\n",
"Epoch 59/100\n",
"354/354 [==============================] - 0s 203us/sample - loss: 6.2574 - mae: 1.7916 - mse: 6.2574 - val_loss: 12.1620 - val_mae: 2.6142 - val_mse: 12.1620\n",
"Epoch 60/100\n",
"354/354 [==============================] - 0s 205us/sample - loss: 6.1418 - mae: 1.7777 - mse: 6.1418 - val_loss: 11.1183 - val_mae: 2.4707 - val_mse: 11.1183\n",
"Epoch 61/100\n",
"354/354 [==============================] - 0s 184us/sample - loss: 5.9966 - mae: 1.7573 - mse: 5.9966 - val_loss: 12.8536 - val_mae: 2.6316 - val_mse: 12.8536\n",
"Epoch 62/100\n",
"354/354 [==============================] - 0s 177us/sample - loss: 6.0276 - mae: 1.7560 - mse: 6.0276 - val_loss: 12.3637 - val_mae: 2.5437 - val_mse: 12.3637\n",
"Epoch 63/100\n",
"354/354 [==============================] - 0s 170us/sample - loss: 5.7683 - mae: 1.7580 - mse: 5.7683 - val_loss: 12.9217 - val_mae: 2.6327 - val_mse: 12.9217\n",
"Epoch 64/100\n",
"354/354 [==============================] - 0s 166us/sample - loss: 5.9041 - mae: 1.7513 - mse: 5.9041 - val_loss: 12.3764 - val_mae: 2.5927 - val_mse: 12.3764\n",
"Epoch 65/100\n",
"354/354 [==============================] - 0s 191us/sample - loss: 5.7884 - mae: 1.7469 - mse: 5.7884 - val_loss: 11.6560 - val_mae: 2.4941 - val_mse: 11.6560\n",
"Epoch 66/100\n",
"354/354 [==============================] - 0s 177us/sample - loss: 5.6512 - mae: 1.7268 - mse: 5.6512 - val_loss: 11.5758 - val_mae: 2.4672 - val_mse: 11.5758\n",
"Epoch 67/100\n",
"354/354 [==============================] - 0s 185us/sample - loss: 5.7579 - mae: 1.7162 - mse: 5.7579 - val_loss: 11.2974 - val_mae: 2.4503 - val_mse: 11.2974\n",
"Epoch 68/100\n",
"354/354 [==============================] - 0s 174us/sample - loss: 5.5736 - mae: 1.6954 - mse: 5.5736 - val_loss: 11.2716 - val_mae: 2.4342 - val_mse: 11.2716\n",
"Epoch 69/100\n",
"354/354 [==============================] - 0s 166us/sample - loss: 5.5444 - mae: 1.7170 - mse: 5.5444 - val_loss: 11.8384 - val_mae: 2.5068 - val_mse: 11.8384\n",
"Epoch 70/100\n",
"354/354 [==============================] - 0s 179us/sample - loss: 5.5349 - mae: 1.6860 - mse: 5.5349 - val_loss: 12.7368 - val_mae: 2.6333 - val_mse: 12.7368\n",
"Epoch 71/100\n",
"354/354 [==============================] - 0s 174us/sample - loss: 5.2756 - mae: 1.6923 - mse: 5.2756 - val_loss: 11.3542 - val_mae: 2.4393 - val_mse: 11.3542\n",
"Epoch 72/100\n",
"354/354 [==============================] - 0s 201us/sample - loss: 5.4573 - mae: 1.6965 - mse: 5.4573 - val_loss: 12.2775 - val_mae: 2.5390 - val_mse: 12.2775\n",
"Epoch 73/100\n",
"354/354 [==============================] - 0s 191us/sample - loss: 5.2504 - mae: 1.6379 - mse: 5.2504 - val_loss: 14.2026 - val_mae: 2.8445 - val_mse: 14.2026\n",
"Epoch 74/100\n",
"354/354 [==============================] - 0s 193us/sample - loss: 5.1999 - mae: 1.6461 - mse: 5.1999 - val_loss: 12.8913 - val_mae: 2.5668 - val_mse: 12.8913\n",
"Epoch 75/100\n",
"354/354 [==============================] - 0s 197us/sample - loss: 5.2465 - mae: 1.6492 - mse: 5.2465 - val_loss: 13.1523 - val_mae: 2.6433 - val_mse: 13.1523\n",
"Epoch 76/100\n",
"354/354 [==============================] - 0s 192us/sample - loss: 4.7688 - mae: 1.6293 - mse: 4.7688 - val_loss: 11.4894 - val_mae: 2.4949 - val_mse: 11.4894\n",
"Epoch 77/100\n",
"354/354 [==============================] - 0s 180us/sample - loss: 4.8269 - mae: 1.5878 - mse: 4.8269 - val_loss: 12.2086 - val_mae: 2.4659 - val_mse: 12.2086\n",
"Epoch 78/100\n",
"354/354 [==============================] - 0s 198us/sample - loss: 5.1623 - mae: 1.6396 - mse: 5.1623 - val_loss: 12.0159 - val_mae: 2.5066 - val_mse: 12.0159\n",
"Epoch 79/100\n",
"354/354 [==============================] - 0s 180us/sample - loss: 4.7876 - mae: 1.5834 - mse: 4.7876 - val_loss: 12.2993 - val_mae: 2.4944 - val_mse: 12.2993\n",
"Epoch 80/100\n",
"354/354 [==============================] - 0s 201us/sample - loss: 4.7760 - mae: 1.6227 - mse: 4.7760 - val_loss: 12.7998 - val_mae: 2.5831 - val_mse: 12.7998\n",
"Epoch 81/100\n",
"354/354 [==============================] - 0s 200us/sample - loss: 4.7677 - mae: 1.6271 - mse: 4.7677 - val_loss: 14.0602 - val_mae: 2.7332 - val_mse: 14.0602\n",
"Epoch 82/100\n",
"354/354 [==============================] - 0s 200us/sample - loss: 4.6595 - mae: 1.5751 - mse: 4.6595 - val_loss: 13.3032 - val_mae: 2.6053 - val_mse: 13.3032\n",
"Epoch 83/100\n",
"354/354 [==============================] - 0s 177us/sample - loss: 4.6215 - mae: 1.5647 - mse: 4.6215 - val_loss: 11.8613 - val_mae: 2.4638 - val_mse: 11.8613\n",
"Epoch 84/100\n",
"354/354 [==============================] - 0s 198us/sample - loss: 4.6157 - mae: 1.5557 - mse: 4.6157 - val_loss: 12.8239 - val_mae: 2.5180 - val_mse: 12.8238\n",
"Epoch 85/100\n",
"354/354 [==============================] - 0s 237us/sample - loss: 4.5351 - mae: 1.5573 - mse: 4.5351 - val_loss: 13.5689 - val_mae: 2.8086 - val_mse: 13.5689\n",
"Epoch 86/100\n",
"354/354 [==============================] - 0s 193us/sample - loss: 4.5319 - mae: 1.5225 - mse: 4.5319 - val_loss: 13.0932 - val_mae: 2.5791 - val_mse: 13.0932\n",
"Epoch 87/100\n",
"354/354 [==============================] - 0s 206us/sample - loss: 4.4577 - mae: 1.5536 - mse: 4.4577 - val_loss: 12.6290 - val_mae: 2.5426 - val_mse: 12.6290\n",
"Epoch 88/100\n",
"354/354 [==============================] - 0s 203us/sample - loss: 4.3580 - mae: 1.4978 - mse: 4.3580 - val_loss: 14.6875 - val_mae: 2.7585 - val_mse: 14.6875\n",
"Epoch 89/100\n",
"354/354 [==============================] - 0s 188us/sample - loss: 4.3651 - mae: 1.5227 - mse: 4.3651 - val_loss: 12.4273 - val_mae: 2.5638 - val_mse: 12.4273\n",
"Epoch 90/100\n",
"354/354 [==============================] - 0s 200us/sample - loss: 4.2446 - mae: 1.4888 - mse: 4.2446 - val_loss: 12.3269 - val_mae: 2.5284 - val_mse: 12.3269\n",
"Epoch 91/100\n",
"354/354 [==============================] - 0s 193us/sample - loss: 4.3251 - mae: 1.5277 - mse: 4.3251 - val_loss: 12.7420 - val_mae: 2.6027 - val_mse: 12.7420\n",
"Epoch 92/100\n",
"354/354 [==============================] - 0s 192us/sample - loss: 4.1757 - mae: 1.4551 - mse: 4.1757 - val_loss: 12.1442 - val_mae: 2.4757 - val_mse: 12.1442\n",
"Epoch 93/100\n",
"354/354 [==============================] - 0s 190us/sample - loss: 4.0847 - mae: 1.4603 - mse: 4.0847 - val_loss: 11.6362 - val_mae: 2.4419 - val_mse: 11.6362\n",
"Epoch 94/100\n",
"354/354 [==============================] - 0s 187us/sample - loss: 4.2191 - mae: 1.4756 - mse: 4.2191 - val_loss: 13.8848 - val_mae: 2.7260 - val_mse: 13.8848\n",
"Epoch 95/100\n",
"354/354 [==============================] - 0s 184us/sample - loss: 4.0348 - mae: 1.4452 - mse: 4.0348 - val_loss: 14.4677 - val_mae: 2.7378 - val_mse: 14.4677\n",
"Epoch 96/100\n",
"354/354 [==============================] - 0s 188us/sample - loss: 4.0928 - mae: 1.4585 - mse: 4.0928 - val_loss: 13.5557 - val_mae: 2.7637 - val_mse: 13.5557\n",
"Epoch 97/100\n",
"354/354 [==============================] - 0s 188us/sample - loss: 4.0744 - mae: 1.4829 - mse: 4.0744 - val_loss: 13.5958 - val_mae: 2.7007 - val_mse: 13.5958\n",
"Epoch 98/100\n",
"354/354 [==============================] - 0s 191us/sample - loss: 3.9560 - mae: 1.4143 - mse: 3.9560 - val_loss: 11.9201 - val_mae: 2.5081 - val_mse: 11.9201\n",
"Epoch 99/100\n",
"354/354 [==============================] - 0s 169us/sample - loss: 3.9206 - mae: 1.4251 - mse: 3.9206 - val_loss: 12.2918 - val_mae: 2.5079 - val_mse: 12.2918\n",
"Epoch 100/100\n",
"354/354 [==============================] - 0s 197us/sample - loss: 3.9572 - mae: 1.4454 - mse: 3.9572 - val_loss: 12.0796 - val_mae: 2.4845 - val_mse: 12.0796\n"
]
}
],
"source": [
"history = model.fit(x_train,\n",
" y_train,\n",
" epochs = 100,\n",
" batch_size = 10,\n",
" validation_data = (x_test, y_test))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6/ Evaluate\n",
"### 6.1/ Model evaluation\n",
"MAE = Mean Absolute Error (between the labels and predictions) \n",
"A mae equal to 3 represents an average error in prediction of $3k."
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"x_test / loss : 12.0796\n",
"x_test / mae : 2.4845\n",
"x_test / mse : 12.0796\n"
"source": [
"score = model.evaluate(x_test, y_test, verbose=0)\n",
"\n",
"print('x_test / loss : {:5.4f}'.format(score[0]))\n",
"print('x_test / mae : {:5.4f}'.format(score[1]))\n",
"print('x_test / mse : {:5.4f}'.format(score[2]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6.2/ Training history\n",
"What was the best result during our training ?"
]
},
{
"cell_type": "code",
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>loss</th>\n",
" <th>mae</th>\n",
" <th>mse</th>\n",
" <th>val_loss</th>\n",
" <th>val_mae</th>\n",
" <th>val_mse</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>100.000000</td>\n",
" <td>100.000000</td>\n",
" <td>100.000000</td>\n",
" <td>100.000000</td>\n",
" <td>100.000000</td>\n",
" <td>100.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>16.923365</td>\n",
" <td>2.358762</td>\n",
" <td>16.923366</td>\n",
" <td>16.978941</td>\n",
" <td>2.841583</td>\n",
" <td>16.978941</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>54.036160</td>\n",
" <td>2.224360</td>\n",
" <td>54.036166</td>\n",
" <td>30.835249</td>\n",
" <td>1.454863</td>\n",
" <td>30.835245</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>3.920552</td>\n",
" <td>1.414271</td>\n",
" <td>3.920552</td>\n",
" <td>10.937433</td>\n",
" <td>2.406456</td>\n",
" <td>10.937432</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>5.190493</td>\n",
" <td>1.639175</td>\n",
" <td>5.190493</td>\n",
" <td>11.675147</td>\n",
" <td>2.494811</td>\n",
" <td>11.675148</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>7.041478</td>\n",
" <td>1.889034</td>\n",
" <td>7.041478</td>\n",
" <td>12.345290</td>\n",
" <td>2.572589</td>\n",
" <td>12.345290</td>\n",