Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
"\n",
"# <!-- TITLE --> [IMDB4] - Reload embedded vectors\n",
"<!-- DESC --> Retrieving embedded vectors from our trained model\n",
"<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
"\n",
"## Objectives :\n",
" - The objective is to retrieve and visualize our embedded vectors\n",
" - For this, we will use our **previously saved model**.\n",
"\n",
"## What we're going to do :\n",
"\n",
" - Retrieve our saved model\n",
" - Extract our vectors\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 1 - Init python stuff"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"import tensorflow as tf\n",
"import tensorflow.keras as keras\n",
"import tensorflow.keras.datasets.imdb as imdb\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib\n",
"import pandas as pd\n",
"\n",
"import os,sys,h5py,json,re\n",
"\n",
"from importlib import reload\n",
"\n",
"sys.path.append('..')\n",
"import fidle.pwk as pwk\n",
"\n",
"run_dir = './run/IMDB2'\n",
"datasets_dir = pwk.init('IMDB4')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.2 - Parameters\n",
"The words in the vocabulary are classified from the most frequent to the rarest. \n",
"`vocab_size` is the number of words we will remember in our vocabulary (the other words will be considered as unknown). \n",
"`review_len` is the review length \n",
"`dictionaries_dir` is where we will go to save our dictionaries. (./data is a good choice)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vocab_size = 10000\n",
"review_len = 256\n",
"\n",
"dictionaries_dir = './data'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Override parameters (batch mode) - Just forget this cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pwk.override('vocab_size', 'review_len', 'dictionaries_dir')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2 - Get the embedding vectors !"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.1 - Load model and dictionaries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = keras.models.load_model(f'{run_dir}/models/best_model.h5')\n",
"print('Model loaded.')\n",
"\n",
"with open(f'{dictionaries_dir}/index_word.json', 'r') as fp:\n",
" index_word = json.load(fp)\n",
" index_word = { int(i):w for i,w in index_word.items() }\n",
" word_index = { w:int(i) for i,w in index_word.items() }\n",
" print('Dictionary loaded.')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.2 - Retrieve embeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeddings = model.layers[0].get_weights()[0]\n",
"print('Shape of embeddings : ',embeddings.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.3 - Build a nice dictionary"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"word_embedding = { index_word[i]:embeddings[i] for i in range(vocab_size) }"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 3 - Have a look !"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"word_embedding['nice']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def l2w(w1,w2):\n",
" v1=word_embedding[w1]\n",
" v2=word_embedding[w2]\n",
" return np.linalg.norm(v2-v1)\n",
"\n",
"def show_l2(w1,w2):\n",
" print(f'\\nL2 between [{w1}] and [{w2}] : ',l2w(w1,w2))\n",
" \n",
"def neighbors(w1):\n",
" v1=word_embedding[w1]\n",
" dd={}\n",
" for i in range(4, 1000):\n",
" w2=index_word[i]\n",
" dd[w2]=l2w(w1,w2)\n",
" dd= {k: v for k, v in sorted(dd.items(), key=lambda item: item[1])}\n",
" print(f'\\nNeighbors of [{w1}] : ', list(dd.keys())[1:15])\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"show_l2('nice', 'pleasant')\n",
"show_l2('nice', 'horrible')\n",
"\n",
"neighbors('horrible')\n",
"neighbors('great')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pwk.end()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}