Skip to content
Snippets Groups Projects
05-Full-convolutions.ipynb 11.6 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "German Traffic Sign Recognition Benchmark (GTSRB)\n",
    "=================================================\n",
    "---\n",
    "Introduction au Deep Learning  (IDLE) - S. Arias, E. Maldonado, JL. Parouty - CNRS/SARI/DEVLOG - 2020  \n",
    "\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "## Episode 5 : Full Convolutions\n",
    "\n",
    "Our main steps:\n",
    " - Try n models with n datasets\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    " - Save a Pandas/h5 report\n",
    " - Write to be run in batch mode\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "## 1/ Import"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {},
   "outputs": [],
   "source": [
    "import tensorflow as tf\n",
    "from tensorflow import keras\n",
    "\n",
    "import numpy as np\n",
    "import h5py\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "\n",
    "from IPython.display import display\n",
    "\n",
    "VERSION='1.2'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2/ Init and start"
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "print('\\nFull Convolutions Notebook')\n",
    "print('  Version            : {}'.format(VERSION))\n",
    "print('  Run time           : {}'.format(time.strftime(\"%A %-d %B %Y, %H:%M:%S\")))\n",
    "print('  TensorFlow version :',tf.__version__)\n",
    "print('  Keras version      :',tf.keras.__version__)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "## 3/ Dataset loading"
   "metadata": {},
   "outputs": [],
   "source": [
    "def read_dataset(name):\n",
    "    '''Reads h5 dataset from ./data\n",
    "\n",
    "    Arguments:  dataset name, without .h5\n",
    "    Returns:    x_train,y_train,x_test,y_test data'''\n",
    "    # ---- Read dataset\n",
    "    filename='./data/'+name+'.h5'\n",
    "    with  h5py.File(filename) as f:\n",
    "        x_train = f['x_train'][:]\n",
    "        y_train = f['y_train'][:]\n",
    "        x_test  = f['x_test'][:]\n",
    "        y_test  = f['y_test'][:]\n",
    "\n",
    "    return x_train,y_train,x_test,y_test"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "## 4/ Models collection"
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "# A basic model\n",
    "#\n",
    "def get_model_v1(lx,ly,lz):\n",
    "    \n",
    "    model = keras.models.Sequential()\n",
    "    \n",
    "    model.add( keras.layers.Conv2D(96, (3,3), activation='relu', input_shape=(lx,ly,lz)))\n",
    "    model.add( keras.layers.MaxPooling2D((2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.2))\n",
    "\n",
    "    model.add( keras.layers.Conv2D(192, (3, 3), activation='relu'))\n",
    "    model.add( keras.layers.MaxPooling2D((2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.2))\n",
    "\n",
    "    model.add( keras.layers.Flatten()) \n",
    "    model.add( keras.layers.Dense(1500, activation='relu'))\n",
    "    model.add( keras.layers.Dropout(0.5))\n",
    "\n",
    "    model.add( keras.layers.Dense(43, activation='softmax'))\n",
    "    return model\n",
    "    \n",
    "# A more sophisticated model\n",
    "#\n",
    "def get_model_v2(lx,ly,lz):\n",
    "    model = keras.models.Sequential()\n",
    "\n",
    "    model.add( keras.layers.Conv2D(64, (3, 3), padding='same', input_shape=(lx,ly,lz), activation='relu'))\n",
    "    model.add( keras.layers.Conv2D(64, (3, 3), activation='relu'))\n",
    "    model.add( keras.layers.MaxPooling2D(pool_size=(2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.2))\n",
    "\n",
    "    model.add( keras.layers.Conv2D(128, (3, 3), padding='same', activation='relu'))\n",
    "    model.add( keras.layers.Conv2D(128, (3, 3), activation='relu'))\n",
    "    model.add( keras.layers.MaxPooling2D(pool_size=(2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.2))\n",
    "\n",
    "    model.add( keras.layers.Conv2D(256, (3, 3), padding='same',activation='relu'))\n",
    "    model.add( keras.layers.Conv2D(256, (3, 3), activation='relu'))\n",
    "    model.add( keras.layers.MaxPooling2D(pool_size=(2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.2))\n",
    "\n",
    "    model.add( keras.layers.Flatten())\n",
    "    model.add( keras.layers.Dense(512, activation='relu'))\n",
    "    model.add( keras.layers.Dropout(0.5))\n",
    "    model.add( keras.layers.Dense(43, activation='softmax'))\n",
    "    return model\n",
    "\n",
    "# My sphisticated model, but small and fast\n",
    "#\n",
    "def get_model_v3(lx,ly,lz):\n",
    "    model = keras.models.Sequential()\n",
    "    model.add( keras.layers.Conv2D(32, (3,3),   activation='relu', input_shape=(lx,ly,lz)))\n",
    "    model.add( keras.layers.MaxPooling2D((2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.5))\n",
    "\n",
    "    model.add( keras.layers.Conv2D(64, (3, 3), activation='relu'))\n",
    "    model.add( keras.layers.MaxPooling2D((2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.5))\n",
    "\n",
    "    model.add( keras.layers.Conv2D(128, (3, 3), activation='relu'))\n",
    "    model.add( keras.layers.MaxPooling2D((2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.5))\n",
    "\n",
    "    model.add( keras.layers.Conv2D(256, (3, 3), activation='relu'))\n",
    "    model.add( keras.layers.MaxPooling2D((2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.5))\n",
    "\n",
    "    model.add( keras.layers.Flatten()) \n",
    "    model.add( keras.layers.Dense(1152, activation='relu'))\n",
    "    model.add( keras.layers.Dropout(0.5))\n",
    "\n",
    "    model.add( keras.layers.Dense(43, activation='softmax'))\n",
    "    return model\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "## 5/ Multiple datasets, multiple models ;-)"
   "metadata": {},
   "outputs": [],
   "source": [
    "def multi_run(datasets, models, batch_size=64, epochs=16):\n",
    "\n",
    "    # ---- Columns of report\n",
    "    #\n",
    "    report={}\n",
    "    report['Dataset']=[]\n",
    "    report['Size']   =[]\n",
    "    for m in models:\n",
    "        report[m+' Accuracy'] = []\n",
    "        report[m+' Duration'] = []\n",
    "\n",
    "    # ---- Let's go\n",
    "    #\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "    for d_name in datasets:\n",
    "        print(\"\\nDataset : \",d_name)\n",
    "\n",
    "        # ---- Read dataset\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "        x_train,y_train,x_test,y_test = read_dataset(d_name)\n",
    "        d_size=os.path.getsize('./data/'+d_name+'.h5')/(1024*1024)\n",
    "        report['Dataset'].append(d_name)\n",
    "        report['Size'].append(d_size)\n",
    "        \n",
    "        # ---- Get the shape\n",
    "        (n,lx,ly,lz) = x_train.shape\n",
    "\n",
    "        # ---- For each model\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "        for m_name,m_function in models.items():\n",
    "            print(\"    Run model {}  : \".format(m_name), end='')\n",
    "            # ---- get model\n",
    "            try:\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "                model=m_function(lx,ly,lz)\n",
    "                # ---- Compile it\n",
    "                model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "                # ---- Callbacks tensorboard\n",
    "                log_dir = \"./run/logs/tb_{}_{}\".format(d_name,m_name)\n",
    "                tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)\n",
    "                # ---- Callbacks bestmodel\n",
    "                save_dir = \"./run/models/model_{}_{}.h5\".format(d_name,m_name)\n",
    "                bestmodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, monitor='accuracy', save_best_only=True)\n",
    "                # ---- Train\n",
    "                start_time = time.time()\n",
    "                history = model.fit(  x_train, y_train,\n",
    "                                    batch_size      = batch_size,\n",
    "                                    epochs          = epochs,\n",
    "                                    verbose         = 0,\n",
    "                                    validation_data = (x_test, y_test),\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "                                    callbacks       = [tensorboard_callback, bestmodel_callback])\n",
    "                # ---- Result\n",
    "                end_time = time.time()\n",
    "                duration = end_time-start_time\n",
    "                accuracy = max(history.history[\"val_accuracy\"])*100\n",
    "                #\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "                report[m_name+' Accuracy'].append(accuracy)\n",
    "                report[m_name+' Duration'].append(duration)\n",
    "                print(\"Accuracy={:.2f} and Duration={:.2f})\".format(accuracy,duration))\n",
    "            except:\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "                report[m_name+' Accuracy'].append('-')\n",
    "                report[m_name+' Duration'].append('-')\n",
    "                print('-')\n",
    "    return report"
   ]
  },
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 6/ Run\n",
    "### 6.1/ Clean"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "source": [
    "%%bash\n",
    "\n",
    "/bin/rm -r ./run/logs   2>/dev/null\n",
    "/bin/rm -r ./run/models 2>/dev/null\n",
    "/bin/mkdir -p -m 755 ./run/logs\n",
    "/bin/mkdir -p -m 755 ./run/models\n",
    "echo -e \"\\nReset directories : ./run/logs and ./run/models .\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 6.2/ run and save report"
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "print('\\n---- Run','-'*50)\n",
    "\n",
    "# ---- Datasets and models list\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "# For tests\n",
    "# datasets = ['set-24x24-L', 'set-24x24-RGB']\n",
    "# models   = {'v1':get_model_v1, 'v3':get_model_v3}\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "# The real one\n",
    "datasets = ['set-24x24-L', 'set-24x24-RGB', 'set-48x48-L', 'set-48x48-RGB', 'set-24x24-L-LHE', 'set-24x24-RGB-HE', 'set-48x48-L-LHE', 'set-48x48-RGB-HE']\n",
    "models   = {'v1':get_model_v1, 'v2':get_model_v2, 'v3':get_model_v3}\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "\n",
    "# ---- Report name\n",
    "\n",
    "report_name='./run/report-{}.json'.format(time.strftime(\"%Y-%m-%d_%Hh%Mm%Ss\"))\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "\n",
    "# ---- Run\n",
    "\n",
    "out    = multi_run(datasets, models, batch_size=64, epochs=2)\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "\n",
    "# ---- Save report\n",
    "\n",
    "with open(report_name, 'w') as outfile:\n",
    "    json.dump(out, outfile)\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "\n",
    "print('\\nReport saved as ',report_name)\n",
    "print('-'*59)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "## 7/ That's all folks.."
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "print('\\n{}'.format(time.strftime(\"%A %-d %B %Y, %H:%M:%S\")))\n",
    "print(\"The work is done.\\n\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}