Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n",
"\n",
"\n",
"# <!-- TITLE --> [KBHPD1] - Regression with a Dense Network (DNN)\n",
"<!-- DESC --> Simple example of a regression with the dataset Boston Housing Prices Dataset (BHPD)\n",
"<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
"\n",
"## Objectives :\n",
" - Predicts **housing prices** from a set of house features. \n",
" - Understanding the **principle** and the **architecture** of a regression with a **dense neural network** \n",
"\n",
"\n",
"The **[Boston Housing Prices Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html)** consists of price of houses in various places in Boston. \n",
"Alongside with price, the dataset also provide theses informations : \n",
"\n",
" - CRIM: This is the per capita crime rate by town\n",
" - ZN: This is the proportion of residential land zoned for lots larger than 25,000 sq.ft\n",
" - INDUS: This is the proportion of non-retail business acres per town\n",
" - CHAS: This is the Charles River dummy variable (this is equal to 1 if tract bounds river; 0 otherwise)\n",
" - NOX: This is the nitric oxides concentration (parts per 10 million)\n",
" - RM: This is the average number of rooms per dwelling\n",
" - AGE: This is the proportion of owner-occupied units built prior to 1940\n",
" - DIS: This is the weighted distances to five Boston employment centers\n",
" - RAD: This is the index of accessibility to radial highways\n",
" - TAX: This is the full-value property-tax rate per 10,000 dollars\n",
" - PTRATIO: This is the pupil-teacher ratio by town\n",
" - B: This is calculated as 1000(Bk — 0.63)^2, where Bk is the proportion of people of African American descent by town\n",
" - LSTAT: This is the percentage lower status of the population\n",
" - MEDV: This is the median value of owner-occupied homes in 1000 dollars\n",
" \n",
"## What we're going to do :\n",
"\n",
" - Retrieve data\n",
" - Preparing the data\n",
" - Build a model\n",
" - Train the model\n",
" - Evaluate the result\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"## Step 1 - Import and init\n",
"\n",
"You can also adjust the verbosity by changing the value of TF_CPP_MIN_LOG_LEVEL :\n",
"- 0 = all messages are logged (default)\n",
"- 1 = INFO messages are not printed.\n",
"- 2 = INFO and WARNING messages are not printed.\n",
"- 3 = INFO , WARNING and ERROR messages are not printed."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"os.environ['KERAS_BACKEND'] = 'torch'\n",
"\n",
"import keras\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import os,sys\n",
"\n",
"import fidle\n",
"\n",
"# Init Fidle environment\n",
"run_id, run_dir, datasets_dir = fidle.init('BHPD1')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Verbosity during training : \n",
"- 0 = silent\n",
"- 1 = progress bar\n",
"- 2 = one line per epoch"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fit_verbosity = 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Override parameters (batch mode) - Just forget this cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fidle.override('fit_verbosity')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2 - Retrieve data\n",
"\n",
"### 2.1 - Option 1 : From Keras\n",
"Boston housing is a famous historic dataset, so we can get it directly from [Keras datasets](https://www.tensorflow.org/api_docs/python/tf/keras/datasets) "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# (x_train, y_train), (x_test, y_test) = keras.datasets.boston_housing.load_data(test_split=0.2, seed=113)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.2 - Option 2 : From a csv file\n",
"More fun !"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_csv(f'{datasets_dir}/BHPD/origine/BostonHousing.csv', header=0)\n",
"\n",
"display(data.head(5).style.format(\"{0:.2f}\").set_caption(\"Few lines of the dataset :\"))\n",
"print('Missing Data : ',data.isna().sum().sum(), ' Shape is : ', data.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 3 - Preparing the data\n",
"### 3.1 - Split data\n",
"We will use 70% of the data for training and 30% for validation. \n",
"The dataset is **shuffled** and shared between **learning** and **testing**. \n",
"x will be input data and y the expected output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# ---- Shuffle and Split => train, test\n",
"#\n",
"data = data.sample(frac=1., axis=0)\n",
"data_train = data.sample(frac=0.7, axis=0)\n",
"data_test = data.drop(data_train.index)\n",
"\n",
"# ---- Split => x,y (medv is price)\n",
"#\n",
"x_train = data_train.drop('medv', axis=1)\n",
"y_train = data_train['medv']\n",
"x_test = data_test.drop('medv', axis=1)\n",
"y_test = data_test['medv']\n",
"\n",
"print('Original data shape was : ',data.shape)\n",
"print('x_train : ',x_train.shape, 'y_train : ',y_train.shape)\n",
"print('x_test : ',x_test.shape, 'y_test : ',y_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"### 3.2 - Data normalization\n",
"**Note :** \n",
" - All input data must be normalized, train and test. \n",
" - To do this we will **subtract the mean** and **divide by the standard deviation**. \n",
" - But test data should not be used in any way, even for normalization. \n",
" - The mean and the standard deviation will therefore only be calculated with the train data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n",
"\n",
"mean = x_train.mean()\n",
"std = x_train.std()\n",
"x_train = (x_train - mean) / std\n",
"x_test = (x_test - mean) / std\n",
"\n",
"display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"After normalization :\"))\n",
"display(x_train.head(5).style.format(\"{0:.2f}\").set_caption(\"Few lines of the dataset :\"))\n",
"\n",
"x_train, y_train = np.array(x_train), np.array(y_train)\n",
"x_test, y_test = np.array(x_test), np.array(y_test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 4 - Build a model\n",
"About informations about : \n",
" - [Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)\n",
" - [Activation](https://www.tensorflow.org/api_docs/python/tf/keras/activations)\n",
" - [Loss](https://www.tensorflow.org/api_docs/python/tf/keras/losses)\n",
" - [Metrics](https://www.tensorflow.org/api_docs/python/tf/keras/metrics)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_model_v1(shape):\n",
" \n",
" model = keras.models.Sequential()\n",
" model.add(keras.layers.Input(shape, name=\"InputLayer\"))\n",
" model.add(keras.layers.Dense(32, activation='relu', name='Dense_n1'))\n",
" model.add(keras.layers.Dense(64, activation='relu', name='Dense_n2'))\n",
" model.add(keras.layers.Dense(32, activation='relu', name='Dense_n3'))\n",
" model.add(keras.layers.Dense(1, name='Output'))\n",
" \n",
" model.compile(optimizer = 'adam',\n",
" loss = 'mse',\n",
" metrics = ['mae', 'mse'] )\n",
" return model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 5 - Train the model\n",
"### 5.1 - Get it"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model=get_model_v1( (13,) )\n",
"\n",
"model.summary()\n",
"\n",
"# img=keras.utils.plot_model( model, to_file='./run/model.png', show_shapes=True, show_layer_names=True, dpi=96)\n",
"# display(img)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5.2 - Train it"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"history = model.fit(x_train,\n",
" y_train,\n",
" epochs = 60,\n",
" batch_size = 10,\n",
" verbose = fit_verbosity,\n",
" validation_data = (x_test, y_test))"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"## Step 6 - Evaluate\n",
"### 6.1 - Model evaluation\n",
"MAE = Mean Absolute Error (between the labels and predictions) \n",
"A mae equal to 3 represents an average error in prediction of $3k."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"score = model.evaluate(x_test, y_test, verbose=0)\n",
"\n",
"print('x_test / loss : {:5.4f}'.format(score[0]))\n",
"print('x_test / mae : {:5.4f}'.format(score[1]))\n",
"print('x_test / mse : {:5.4f}'.format(score[2]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6.2 - Training history\n",
"What was the best result during our training ?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df=pd.DataFrame(data=history.history)\n",
"display(df)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"min( val_mae ) : {:.4f}\".format( min(history.history[\"val_mae\"]) ) )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fidle.scrawler.history( history, plot={'MSE' :['mse', 'val_mse'],\n",
" 'MAE' :['mae', 'val_mae'],\n",
" 'LOSS':['loss','val_loss']}, save_as='01-history')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 7 - Make a prediction\n",
"The data must be normalized with the parameters (mean, std) previously used."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"my_data = [ 1.26425925, -0.48522739, 1.0436489 , -0.23112788, 1.37120745,\n",
" -2.14308942, 1.13489104, -1.06802005, 1.71189006, 1.57042287,\n",
" 0.77859951, 0.14769795, 2.7585581 ]\n",
"real_price = 10.4\n",
"\n",
"my_data=np.array(my_data).reshape(1,13)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"predictions = model.predict( my_data )\n",
"print(\"Prediction : {:.2f} K$\".format(predictions[0][0]))\n",
"print(\"Reality : {:.2f} K$\".format(real_price))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fidle.end()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"<img width=\"80px\" src=\"../fidle/img/logo-paysage.svg\"></img>"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.2 ('fidle-env')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
},
"vscode": {
"interpreter": {
"hash": "b3929042cc22c1274d74e3e946c52b845b57cb6d84f2d591ffe0519b38e4896d"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}