Skip to content
Snippets Groups Projects
02-VAE-with-MNIST-post.ipynb 4.53 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Variational AutoEncoder (VAE) with MNIST\n",
    "========================================\n",
    "---\n",
    "Formation Introduction au Deep Learning  (FIDLE) - S. Arias, E. Maldonado, JL. Parouty - CNRS/SARI/DEVLOG - 2020  \n",
    "\n",
    "## Episode 2 - Analyse our trained model\n",
    " - Defining a VAE model\n",
    " - Build the model\n",
    " - Train it\n",
    " - Follow the learning process with Tensorboard\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 1 - Init python stuff"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "FIDLE 2020 - Variational AutoEncoder (VAE)\n",
      "TensorFlow version : 2.0.0\n"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "import tensorflow as tf\n",
    "import tensorflow.keras.datasets.mnist as mnist\n",
    "import sys, importlib\n",
    "\n",
    "import modules.vae\n",
    "importlib.reload(modules.vae)\n",
    "\n",
    "print('FIDLE 2020 - Variational AutoEncoder (VAE)')\n",
    "print('TensorFlow version :',tf.__version__)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 2 - Get data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset loaded.\n",
      "x_train shape : (60000, 28, 28, 1)\n",
      "x_test_shape  : (10000, 28, 28, 1)\n"
     ]
    }
   ],
   "source": [
    "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
    "\n",
    "x_train = x_train.astype('float32') / 255.\n",
    "x_train = np.expand_dims(x_train, axis=3)\n",
    "x_test  = x_test.astype('float32') / 255.\n",
    "x_test  = np.expand_dims(x_test, axis=3)\n",
    "print('Dataset loaded.')\n",
    "print(f'x_train shape : {x_train.shape}\\nx_test_shape  : {x_test.shape}')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 3 - Load best model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "vae\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "end_time  = time.time()\n",
    "dt  = end_time-start_time\n",
    "dth = str(datetime.timedelta(seconds=dt))\n",
    "print(f'\\nTrain duration : {dt:.2f} sec. - {dth:}')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 4 - Compile it"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "learning_rate = 0.0005\n",
    "r_loss_factor = 1000\n",
    "\n",
    "vae.compile(learning_rate, r_loss_factor)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 5 - Train"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "batch_size        = 100\n",
    "epochs            = 200\n",
    "image_periodicity = 1      # for each epoch\n",
    "chkpt_periodicity = 2      # for each epoch\n",
    "initial_epoch     = 0\n",
    "dataset_size      = 1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "vae.train(x_train,\n",
    "          x_test,\n",
    "          batch_size        = batch_size, \n",
    "          epochs            = epochs,\n",
    "          image_periodicity = image_periodicity,\n",
    "          chkpt_periodicity = chkpt_periodicity,\n",
    "          initial_epoch     = initial_epoch,\n",
    "          dataset_size      = dataset_size,\n",
    "          lr_decay          = 1\n",
    "         )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}