Skip to content
Snippets Groups Projects
01-DNN-Regression.ipynb 170 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
    "\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "\n",
    "# <!-- TITLE --> [BHP1] - Regression with a Dense Network (DNN)\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "<!-- DESC --> A Simple regression with a Dense Neural Network (DNN) - BHPD dataset\n",
    "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
    "## Objectives :\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    " - Predicts **housing prices** from a set of house features. \n",
    " - Understanding the **principle** and the **architecture** of a regression with a **dense neural network**  \n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "\n",
    "\n",
    "The **[Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html)** consists of price of houses in various places in Boston.  \n",
    "Alongside with price, the dataset also provide theses informations : \n",
    " - CRIM: This is the per capita crime rate by town\n",
    " - ZN: This is the proportion of residential land zoned for lots larger than 25,000 sq.ft\n",
    " - INDUS: This is the proportion of non-retail business acres per town\n",
    " - CHAS: This is the Charles River dummy variable (this is equal to 1 if tract bounds river; 0 otherwise)\n",
    " - NOX: This is the nitric oxides concentration (parts per 10 million)\n",
    " - RM: This is the average number of rooms per dwelling\n",
    " - AGE: This is the proportion of owner-occupied units built prior to 1940\n",
    " - DIS: This is the weighted distances to five Boston employment centers\n",
    " - RAD: This is the index of accessibility to radial highways\n",
    " - TAX: This is the full-value property-tax rate per 10,000 dollars\n",
    " - PTRATIO: This is the pupil-teacher ratio by town\n",
    " - B: This is calculated as 1000(Bk — 0.63)^2, where Bk is the proportion of people of African American descent by town\n",
    " - LSTAT: This is the percentage lower status of the population\n",
    " - MEDV: This is the median value of owner-occupied homes in 1000 dollars\n",
    "## What we're going to do :\n",
    "\n",
    " - Retrieve data\n",
    " - Preparing the data\n",
    " - Build a model\n",
    " - Train the model\n",
    " - Evaluate the result\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 1 - Import and init"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": 1,
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style>\n",
       "\n",
       "div.warn {    \n",
       "    background-color: #fcf2f2;\n",
       "    border-color: #dFb5b4;\n",
       "    border-left: 5px solid #dfb5b4;\n",
       "    padding: 0.5em;\n",
       "    font-weight: bold;\n",
       "    font-size: 1.1em;;\n",
       "    }\n",
       "\n",
       "\n",
       "\n",
       "div.nota {    \n",
       "    background-color: #DAFFDE;\n",
       "    border-left: 5px solid #92CC99;\n",
       "    padding: 0.5em;\n",
       "    }\n",
       "\n",
       "div.todo:before { content:url();\n",
       "    float:left;\n",
       "    margin-right:20px;\n",
       "    margin-top:-20px;\n",
       "    margin-bottom:20px;\n",
       "}\n",
       "div.todo{\n",
       "    font-weight: bold;\n",
       "    font-size: 1.1em;\n",
       "    margin-top:40px;\n",
       "}\n",
       "div.todo ul{\n",
       "    margin: 0.2em;\n",
       "}\n",
       "div.todo li{\n",
       "    margin-left:60px;\n",
       "    margin-top:0;\n",
       "    margin-bottom:0;\n",
       "}\n",
       "\n",
       "\n",
       "</style>\n",
       "\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "FIDLE 2020 - Practical Work Module\n",
      "Version              : 0.57 DEV\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "Run time             : Friday 11 September 2020, 08:50:07\n",
      "TensorFlow version   : 2.2.0\n",
      "Keras version        : 2.3.0-tf\n",
      "Current place        : Fidle at IDRIS\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "Datasets dir         : /gpfswork/rech/mlh/commun/datasets\n",
      "Update keras cache   : Done\n"
   "source": [
    "import tensorflow as tf\n",
    "from tensorflow import keras\n",
    "\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import pandas as pd\n",
    "import os,sys\n",
    "sys.path.append('..')\n",
    "import fidle.pwk as ooo\n",
    "\n",
    "place, datasets_dir = ooo.init()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 2 - Retrieve data\n",
    "### 2.1 - Option 1  : From Keras\n",
    "Boston housing is a famous historic dataset, so we can get it directly from [Keras datasets](https://www.tensorflow.org/api_docs/python/tf/keras/datasets)  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
    "# (x_train, y_train), (x_test, y_test) = keras.datasets.boston_housing.load_data(test_split=0.2, seed=113)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.2 - Option 2 : From a csv file\n",
    "More fun !"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style  type=\"text/css\" >\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "</style><table id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63b\" ><caption>Few lines of the dataset :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>        <th class=\"col_heading level0 col13\" >medv</th>    </tr></thead><tbody>\n",
       "                <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63blevel0_row0\" class=\"row_heading level0 row0\" >0</th>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow0_col0\" class=\"data row0 col0\" >0.01</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow0_col1\" class=\"data row0 col1\" >18.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow0_col2\" class=\"data row0 col2\" >2.31</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow0_col3\" class=\"data row0 col3\" >0.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow0_col4\" class=\"data row0 col4\" >0.54</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow0_col5\" class=\"data row0 col5\" >6.58</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow0_col6\" class=\"data row0 col6\" >65.20</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow0_col7\" class=\"data row0 col7\" >4.09</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow0_col8\" class=\"data row0 col8\" >1.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow0_col9\" class=\"data row0 col9\" >296.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow0_col10\" class=\"data row0 col10\" >15.30</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow0_col11\" class=\"data row0 col11\" >396.90</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow0_col12\" class=\"data row0 col12\" >4.98</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow0_col13\" class=\"data row0 col13\" >24.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63blevel0_row1\" class=\"row_heading level0 row1\" >1</th>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow1_col0\" class=\"data row1 col0\" >0.03</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow1_col1\" class=\"data row1 col1\" >0.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow1_col2\" class=\"data row1 col2\" >7.07</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow1_col3\" class=\"data row1 col3\" >0.00</td>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow1_col4\" class=\"data row1 col4\" >0.47</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow1_col5\" class=\"data row1 col5\" >6.42</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow1_col6\" class=\"data row1 col6\" >78.90</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow1_col7\" class=\"data row1 col7\" >4.97</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow1_col8\" class=\"data row1 col8\" >2.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow1_col9\" class=\"data row1 col9\" >242.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow1_col10\" class=\"data row1 col10\" >17.80</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow1_col11\" class=\"data row1 col11\" >396.90</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow1_col12\" class=\"data row1 col12\" >9.14</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow1_col13\" class=\"data row1 col13\" >21.60</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63blevel0_row2\" class=\"row_heading level0 row2\" >2</th>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow2_col0\" class=\"data row2 col0\" >0.03</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow2_col1\" class=\"data row2 col1\" >0.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow2_col2\" class=\"data row2 col2\" >7.07</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow2_col3\" class=\"data row2 col3\" >0.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow2_col4\" class=\"data row2 col4\" >0.47</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow2_col5\" class=\"data row2 col5\" >7.18</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow2_col6\" class=\"data row2 col6\" >61.10</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow2_col7\" class=\"data row2 col7\" >4.97</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow2_col8\" class=\"data row2 col8\" >2.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow2_col9\" class=\"data row2 col9\" >242.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow2_col10\" class=\"data row2 col10\" >17.80</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow2_col11\" class=\"data row2 col11\" >392.83</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow2_col12\" class=\"data row2 col12\" >4.03</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow2_col13\" class=\"data row2 col13\" >34.70</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63blevel0_row3\" class=\"row_heading level0 row3\" >3</th>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow3_col0\" class=\"data row3 col0\" >0.03</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow3_col1\" class=\"data row3 col1\" >0.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow3_col2\" class=\"data row3 col2\" >2.18</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow3_col3\" class=\"data row3 col3\" >0.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow3_col4\" class=\"data row3 col4\" >0.46</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow3_col5\" class=\"data row3 col5\" >7.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow3_col6\" class=\"data row3 col6\" >45.80</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow3_col7\" class=\"data row3 col7\" >6.06</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow3_col8\" class=\"data row3 col8\" >3.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow3_col9\" class=\"data row3 col9\" >222.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow3_col10\" class=\"data row3 col10\" >18.70</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow3_col11\" class=\"data row3 col11\" >394.63</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow3_col12\" class=\"data row3 col12\" >2.94</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow3_col13\" class=\"data row3 col13\" >33.40</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63blevel0_row4\" class=\"row_heading level0 row4\" >4</th>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow4_col0\" class=\"data row4 col0\" >0.07</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow4_col1\" class=\"data row4 col1\" >0.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow4_col2\" class=\"data row4 col2\" >2.18</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow4_col3\" class=\"data row4 col3\" >0.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow4_col4\" class=\"data row4 col4\" >0.46</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow4_col5\" class=\"data row4 col5\" >7.15</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow4_col6\" class=\"data row4 col6\" >54.20</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow4_col7\" class=\"data row4 col7\" >6.06</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow4_col8\" class=\"data row4 col8\" >3.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow4_col9\" class=\"data row4 col9\" >222.00</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow4_col10\" class=\"data row4 col10\" >18.70</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow4_col11\" class=\"data row4 col11\" >396.90</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow4_col12\" class=\"data row4 col12\" >5.33</td>\n",
       "                        <td id=\"T_0738d7b2_f3fb_11ea_bd64_0cc47af5c63brow4_col13\" class=\"data row4 col13\" >36.20</td>\n",
       "            </tr>\n",
       "    </tbody></table>"
      ],
      "text/plain": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "<pandas.io.formats.style.Styler at 0x14ae42bf8ed0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Missing Data :  0   Shape is :  (506, 14)\n"
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "data = pd.read_csv(f'{datasets_dir}/BHPD/origine/BostonHousing.csv', header=0)\n",
    "display(data.head(5).style.format(\"{0:.2f}\").set_caption(\"Few lines of the dataset :\"))\n",
    "print('Missing Data : ',data.isna().sum().sum(), '  Shape is : ', data.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 3 - Preparing the data\n",
    "### 3.1 - Split data\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "We will use 70% of the data for training and 30% for validation.  \n",
    "The dataset is **shuffled** and shared between **learning** and **testing**.  \n",
    "x will be input data and y the expected output"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original data shape was :  (506, 14)\n",
      "x_train :  (354, 13) y_train :  (354,)\n",
      "x_test  :  (152, 13) y_test  :  (152,)\n"
     ]
    }
   ],
    "# ---- Suffle and Split => train, test\n",
    "#\n",
    "data_train = data.sample(frac=0.7, axis=0)\n",
    "data_test  = data.drop(data_train.index)\n",
    "\n",
    "# ---- Split => x,y (medv is price)\n",
    "#\n",
    "x_train = data_train.drop('medv',  axis=1)\n",
    "y_train = data_train['medv']\n",
    "x_test  = data_test.drop('medv',   axis=1)\n",
    "y_test  = data_test['medv']\n",
    "\n",
    "print('Original data shape was : ',data.shape)\n",
    "print('x_train : ',x_train.shape, 'y_train : ',y_train.shape)\n",
    "print('x_test  : ',x_test.shape,  'y_test  : ',y_test.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.2 - Data normalization\n",
    "**Note :** \n",
    " - All input data must be normalized, train and test.  \n",
    " - To do this we will **subtract the mean** and **divide by the standard deviation**.  \n",
    " - But test data should not be used in any way, even for normalization.  \n",
    " - The mean and the standard deviation will therefore only be calculated with the train data."
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style  type=\"text/css\" >\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "</style><table id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63b\" ><caption>Before normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
       "                <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63blevel0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow0_col0\" class=\"data row0 col0\" >354.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow0_col1\" class=\"data row0 col1\" >354.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow0_col2\" class=\"data row0 col2\" >354.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow0_col3\" class=\"data row0 col3\" >354.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow0_col4\" class=\"data row0 col4\" >354.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow0_col5\" class=\"data row0 col5\" >354.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow0_col6\" class=\"data row0 col6\" >354.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow0_col7\" class=\"data row0 col7\" >354.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow0_col8\" class=\"data row0 col8\" >354.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow0_col9\" class=\"data row0 col9\" >354.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow0_col10\" class=\"data row0 col10\" >354.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow0_col11\" class=\"data row0 col11\" >354.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow0_col12\" class=\"data row0 col12\" >354.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63blevel0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow1_col0\" class=\"data row1 col0\" >3.46</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow1_col1\" class=\"data row1 col1\" >11.04</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow1_col2\" class=\"data row1 col2\" >11.44</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow1_col3\" class=\"data row1 col3\" >0.08</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow1_col4\" class=\"data row1 col4\" >0.56</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow1_col5\" class=\"data row1 col5\" >6.27</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow1_col6\" class=\"data row1 col6\" >68.25</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow1_col7\" class=\"data row1 col7\" >3.81</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow1_col8\" class=\"data row1 col8\" >9.74</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow1_col9\" class=\"data row1 col9\" >413.56</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow1_col10\" class=\"data row1 col10\" >18.49</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow1_col11\" class=\"data row1 col11\" >358.39</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow1_col12\" class=\"data row1 col12\" >12.71</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63blevel0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow2_col0\" class=\"data row2 col0\" >7.75</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow2_col1\" class=\"data row2 col1\" >22.76</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow2_col2\" class=\"data row2 col2\" >6.87</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow2_col3\" class=\"data row2 col3\" >0.27</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow2_col4\" class=\"data row2 col4\" >0.12</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow2_col5\" class=\"data row2 col5\" >0.68</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow2_col6\" class=\"data row2 col6\" >28.72</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow2_col7\" class=\"data row2 col7\" >2.08</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow2_col8\" class=\"data row2 col8\" >8.75</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow2_col9\" class=\"data row2 col9\" >167.90</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow2_col10\" class=\"data row2 col10\" >2.09</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow2_col11\" class=\"data row2 col11\" >87.89</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow2_col12\" class=\"data row2 col12\" >6.95</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63blevel0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow3_col0\" class=\"data row3 col0\" >0.01</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow3_col1\" class=\"data row3 col1\" >0.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow3_col2\" class=\"data row3 col2\" >0.46</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow3_col3\" class=\"data row3 col3\" >0.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow3_col4\" class=\"data row3 col4\" >0.39</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow3_col5\" class=\"data row3 col5\" >3.56</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow3_col6\" class=\"data row3 col6\" >2.90</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow3_col7\" class=\"data row3 col7\" >1.13</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow3_col8\" class=\"data row3 col8\" >1.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow3_col9\" class=\"data row3 col9\" >187.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow3_col10\" class=\"data row3 col10\" >12.60</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow3_col11\" class=\"data row3 col11\" >0.32</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow3_col12\" class=\"data row3 col12\" >1.73</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63blevel0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow4_col0\" class=\"data row4 col0\" >0.08</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow4_col1\" class=\"data row4 col1\" >0.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow4_col2\" class=\"data row4 col2\" >5.22</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow4_col3\" class=\"data row4 col3\" >0.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow4_col4\" class=\"data row4 col4\" >0.45</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow4_col5\" class=\"data row4 col5\" >5.88</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow4_col6\" class=\"data row4 col6\" >42.23</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow4_col7\" class=\"data row4 col7\" >2.11</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow4_col8\" class=\"data row4 col8\" >4.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow4_col9\" class=\"data row4 col9\" >284.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow4_col10\" class=\"data row4 col10\" >17.07</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow4_col11\" class=\"data row4 col11\" >376.25</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow4_col12\" class=\"data row4 col12\" >7.04</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63blevel0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow5_col0\" class=\"data row5 col0\" >0.25</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow5_col1\" class=\"data row5 col1\" >0.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow5_col2\" class=\"data row5 col2\" >9.90</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow5_col3\" class=\"data row5 col3\" >0.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow5_col4\" class=\"data row5 col4\" >0.54</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow5_col5\" class=\"data row5 col5\" >6.21</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow5_col6\" class=\"data row5 col6\" >77.15</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow5_col7\" class=\"data row5 col7\" >3.21</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow5_col8\" class=\"data row5 col8\" >5.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow5_col9\" class=\"data row5 col9\" >351.50</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow5_col10\" class=\"data row5 col10\" >19.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow5_col11\" class=\"data row5 col11\" >391.06</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow5_col12\" class=\"data row5 col12\" >11.70</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63blevel0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow6_col0\" class=\"data row6 col0\" >3.82</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow6_col1\" class=\"data row6 col1\" >12.50</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow6_col2\" class=\"data row6 col2\" >18.10</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow6_col3\" class=\"data row6 col3\" >0.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow6_col4\" class=\"data row6 col4\" >0.62</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow6_col5\" class=\"data row6 col5\" >6.63</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow6_col6\" class=\"data row6 col6\" >93.97</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow6_col7\" class=\"data row6 col7\" >5.29</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow6_col8\" class=\"data row6 col8\" >24.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow6_col9\" class=\"data row6 col9\" >666.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow6_col10\" class=\"data row6 col10\" >20.20</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow6_col11\" class=\"data row6 col11\" >395.76</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow6_col12\" class=\"data row6 col12\" >17.14</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63blevel0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow7_col0\" class=\"data row7 col0\" >73.53</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow7_col1\" class=\"data row7 col1\" >100.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow7_col2\" class=\"data row7 col2\" >27.74</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow7_col3\" class=\"data row7 col3\" >1.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow7_col4\" class=\"data row7 col4\" >0.87</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow7_col5\" class=\"data row7 col5\" >8.78</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow7_col6\" class=\"data row7 col6\" >100.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow7_col7\" class=\"data row7 col7\" >12.13</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow7_col8\" class=\"data row7 col8\" >24.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow7_col9\" class=\"data row7 col9\" >711.00</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow7_col10\" class=\"data row7 col10\" >21.20</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow7_col11\" class=\"data row7 col11\" >396.90</td>\n",
       "                        <td id=\"T_0744ba78_f3fb_11ea_bd64_0cc47af5c63brow7_col12\" class=\"data row7 col12\" >37.97</td>\n",
       "            </tr>\n",
       "    </tbody></table>"
      ],
      "text/plain": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "<pandas.io.formats.style.Styler at 0x14aeb94db0d0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<style  type=\"text/css\" >\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "</style><table id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63b\" ><caption>After normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
       "                <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63blevel0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow0_col0\" class=\"data row0 col0\" >354.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow0_col1\" class=\"data row0 col1\" >354.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow0_col2\" class=\"data row0 col2\" >354.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow0_col3\" class=\"data row0 col3\" >354.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow0_col4\" class=\"data row0 col4\" >354.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow0_col5\" class=\"data row0 col5\" >354.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow0_col6\" class=\"data row0 col6\" >354.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow0_col7\" class=\"data row0 col7\" >354.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow0_col8\" class=\"data row0 col8\" >354.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow0_col9\" class=\"data row0 col9\" >354.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow0_col10\" class=\"data row0 col10\" >354.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow0_col11\" class=\"data row0 col11\" >354.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow0_col12\" class=\"data row0 col12\" >354.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63blevel0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow1_col0\" class=\"data row1 col0\" >0.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow1_col1\" class=\"data row1 col1\" >0.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow1_col2\" class=\"data row1 col2\" >0.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow1_col3\" class=\"data row1 col3\" >0.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow1_col4\" class=\"data row1 col4\" >-0.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow1_col5\" class=\"data row1 col5\" >-0.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow1_col6\" class=\"data row1 col6\" >0.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow1_col7\" class=\"data row1 col7\" >-0.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow1_col8\" class=\"data row1 col8\" >0.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow1_col9\" class=\"data row1 col9\" >0.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow1_col10\" class=\"data row1 col10\" >0.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow1_col11\" class=\"data row1 col11\" >0.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow1_col12\" class=\"data row1 col12\" >-0.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63blevel0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow2_col0\" class=\"data row2 col0\" >1.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow2_col1\" class=\"data row2 col1\" >1.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow2_col2\" class=\"data row2 col2\" >1.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow2_col3\" class=\"data row2 col3\" >1.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow2_col4\" class=\"data row2 col4\" >1.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow2_col5\" class=\"data row2 col5\" >1.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow2_col6\" class=\"data row2 col6\" >1.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow2_col7\" class=\"data row2 col7\" >1.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow2_col8\" class=\"data row2 col8\" >1.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow2_col9\" class=\"data row2 col9\" >1.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow2_col10\" class=\"data row2 col10\" >1.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow2_col11\" class=\"data row2 col11\" >1.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow2_col12\" class=\"data row2 col12\" >1.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63blevel0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow3_col0\" class=\"data row3 col0\" >-0.45</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow3_col1\" class=\"data row3 col1\" >-0.49</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow3_col2\" class=\"data row3 col2\" >-1.60</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow3_col3\" class=\"data row3 col3\" >-0.29</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow3_col4\" class=\"data row3 col4\" >-1.46</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow3_col5\" class=\"data row3 col5\" >-4.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow3_col6\" class=\"data row3 col6\" >-2.28</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow3_col7\" class=\"data row3 col7\" >-1.29</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow3_col8\" class=\"data row3 col8\" >-1.00</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow3_col9\" class=\"data row3 col9\" >-1.35</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow3_col10\" class=\"data row3 col10\" >-2.82</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow3_col11\" class=\"data row3 col11\" >-4.07</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow3_col12\" class=\"data row3 col12\" >-1.58</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63blevel0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow4_col0\" class=\"data row4 col0\" >-0.44</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow4_col1\" class=\"data row4 col1\" >-0.49</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow4_col2\" class=\"data row4 col2\" >-0.91</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow4_col3\" class=\"data row4 col3\" >-0.29</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow4_col4\" class=\"data row4 col4\" >-0.92</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow4_col5\" class=\"data row4 col5\" >-0.58</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow4_col6\" class=\"data row4 col6\" >-0.91</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow4_col7\" class=\"data row4 col7\" >-0.82</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow4_col8\" class=\"data row4 col8\" >-0.66</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow4_col9\" class=\"data row4 col9\" >-0.77</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow4_col10\" class=\"data row4 col10\" >-0.68</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow4_col11\" class=\"data row4 col11\" >0.20</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow4_col12\" class=\"data row4 col12\" >-0.82</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63blevel0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow5_col0\" class=\"data row5 col0\" >-0.41</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow5_col1\" class=\"data row5 col1\" >-0.49</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow5_col2\" class=\"data row5 col2\" >-0.22</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow5_col3\" class=\"data row5 col3\" >-0.29</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow5_col4\" class=\"data row5 col4\" >-0.16</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow5_col5\" class=\"data row5 col5\" >-0.09</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow5_col6\" class=\"data row5 col6\" >0.31</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow5_col7\" class=\"data row5 col7\" >-0.29</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow5_col8\" class=\"data row5 col8\" >-0.54</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow5_col9\" class=\"data row5 col9\" >-0.37</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow5_col10\" class=\"data row5 col10\" >0.25</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow5_col11\" class=\"data row5 col11\" >0.37</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow5_col12\" class=\"data row5 col12\" >-0.15</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63blevel0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow6_col0\" class=\"data row6 col0\" >0.05</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow6_col1\" class=\"data row6 col1\" >0.06</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow6_col2\" class=\"data row6 col2\" >0.97</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow6_col3\" class=\"data row6 col3\" >-0.29</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow6_col4\" class=\"data row6 col4\" >0.57</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow6_col5\" class=\"data row6 col5\" >0.52</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow6_col6\" class=\"data row6 col6\" >0.90</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow6_col7\" class=\"data row6 col7\" >0.71</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow6_col8\" class=\"data row6 col8\" >1.63</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow6_col9\" class=\"data row6 col9\" >1.50</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow6_col10\" class=\"data row6 col10\" >0.82</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow6_col11\" class=\"data row6 col11\" >0.43</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow6_col12\" class=\"data row6 col12\" >0.64</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63blevel0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow7_col0\" class=\"data row7 col0\" >9.04</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow7_col1\" class=\"data row7 col1\" >3.91</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow7_col2\" class=\"data row7 col2\" >2.37</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow7_col3\" class=\"data row7 col3\" >3.48</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow7_col4\" class=\"data row7 col4\" >2.67</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow7_col5\" class=\"data row7 col5\" >3.69</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow7_col6\" class=\"data row7 col6\" >1.11</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow7_col7\" class=\"data row7 col7\" >3.99</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow7_col8\" class=\"data row7 col8\" >1.63</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow7_col9\" class=\"data row7 col9\" >1.77</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow7_col10\" class=\"data row7 col10\" >1.30</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow7_col11\" class=\"data row7 col11\" >0.44</td>\n",
       "                        <td id=\"T_074d8df6_f3fb_11ea_bd64_0cc47af5c63brow7_col12\" class=\"data row7 col12\" >3.63</td>\n",
       "            </tr>\n",
       "    </tbody></table>"
      ],
      "text/plain": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "<pandas.io.formats.style.Styler at 0x14aeb9738090>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<style  type=\"text/css\" >\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "</style><table id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63b\" ><caption>Few lines of the dataset :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63blevel0_row0\" class=\"row_heading level0 row0\" >433</th>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow0_col0\" class=\"data row0 col0\" >0.27</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow0_col1\" class=\"data row0 col1\" >-0.49</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow0_col2\" class=\"data row0 col2\" >0.97</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow0_col3\" class=\"data row0 col3\" >-0.29</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow0_col4\" class=\"data row0 col4\" >1.33</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow0_col5\" class=\"data row0 col5\" >0.24</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow0_col6\" class=\"data row0 col6\" >0.68</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow0_col7\" class=\"data row0 col7\" >-0.72</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow0_col8\" class=\"data row0 col8\" >1.63</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow0_col9\" class=\"data row0 col9\" >1.50</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow0_col10\" class=\"data row0 col10\" >0.82</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow0_col11\" class=\"data row0 col11\" >-2.94</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow0_col12\" class=\"data row0 col12\" >0.50</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63blevel0_row1\" class=\"row_heading level0 row1\" >200</th>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow1_col0\" class=\"data row1 col0\" >-0.44</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow1_col1\" class=\"data row1 col1\" >3.69</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow1_col2\" class=\"data row1 col2\" >-1.45</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow1_col3\" class=\"data row1 col3\" >-0.29</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow1_col4\" class=\"data row1 col4\" >-1.31</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow1_col5\" class=\"data row1 col5\" >1.27</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow1_col6\" class=\"data row1 col6\" >-1.89</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow1_col7\" class=\"data row1 col7\" >1.84</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow1_col8\" class=\"data row1 col8\" >-0.77</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow1_col9\" class=\"data row1 col9\" >-0.07</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow1_col10\" class=\"data row1 col10\" >-0.71</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow1_col11\" class=\"data row1 col11\" >0.29</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow1_col12\" class=\"data row1 col12\" >-1.19</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63blevel0_row2\" class=\"row_heading level0 row2\" >471</th>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow2_col0\" class=\"data row2 col0\" >0.07</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow2_col1\" class=\"data row2 col1\" >-0.49</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow2_col2\" class=\"data row2 col2\" >0.97</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow2_col3\" class=\"data row2 col3\" >-0.29</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow2_col4\" class=\"data row2 col4\" >-0.21</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow2_col5\" class=\"data row2 col5\" >-0.07</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow2_col6\" class=\"data row2 col6\" >0.78</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow2_col7\" class=\"data row2 col7\" >-0.34</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow2_col8\" class=\"data row2 col8\" >1.63</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow2_col9\" class=\"data row2 col9\" >1.50</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow2_col10\" class=\"data row2 col10\" >0.82</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow2_col11\" class=\"data row2 col11\" >0.42</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow2_col12\" class=\"data row2 col12\" >0.02</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63blevel0_row3\" class=\"row_heading level0 row3\" >344</th>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow3_col0\" class=\"data row3 col0\" >-0.44</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow3_col1\" class=\"data row3 col1\" >1.93</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow3_col2\" class=\"data row3 col2\" >-1.11</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow3_col3\" class=\"data row3 col3\" >-0.29</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow3_col4\" class=\"data row3 col4\" >-0.62</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow3_col5\" class=\"data row3 col5\" >0.88</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow3_col6\" class=\"data row3 col6\" >-1.40</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow3_col7\" class=\"data row3 col7\" >1.27</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow3_col8\" class=\"data row3 col8\" >-0.54</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow3_col9\" class=\"data row3 col9\" >-0.26</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow3_col10\" class=\"data row3 col10\" >-0.43</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow3_col11\" class=\"data row3 col11\" >0.34</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow3_col12\" class=\"data row3 col12\" >-1.17</td>\n",
       "            </tr>\n",
       "            <tr>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "                        <th id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63blevel0_row4\" class=\"row_heading level0 row4\" >374</th>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow4_col0\" class=\"data row4 col0\" >1.94</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow4_col1\" class=\"data row4 col1\" >-0.49</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow4_col2\" class=\"data row4 col2\" >0.97</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow4_col3\" class=\"data row4 col3\" >-0.29</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow4_col4\" class=\"data row4 col4\" >0.95</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow4_col5\" class=\"data row4 col5\" >-3.15</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow4_col6\" class=\"data row4 col6\" >1.11</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow4_col7\" class=\"data row4 col7\" >-1.28</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow4_col8\" class=\"data row4 col8\" >1.63</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow4_col9\" class=\"data row4 col9\" >1.50</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow4_col10\" class=\"data row4 col10\" >0.82</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow4_col11\" class=\"data row4 col11\" >0.44</td>\n",
       "                        <td id=\"T_074e709a_f3fb_11ea_bd64_0cc47af5c63brow4_col12\" class=\"data row4 col12\" >3.63</td>\n",
       "            </tr>\n",
       "    </tbody></table>"
      ],
      "text/plain": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "<pandas.io.formats.style.Styler at 0x14aeba3bb8d0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n",
    "\n",
    "mean = x_train.mean()\n",
    "std  = x_train.std()\n",
    "x_train = (x_train - mean) / std\n",
    "x_test  = (x_test  - mean) / std\n",
    "\n",
    "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"After normalization :\"))\n",
    "display(x_train.head(5).style.format(\"{0:.2f}\").set_caption(\"Few lines of the dataset :\"))\n",
    "\n",
    "x_train, y_train = np.array(x_train), np.array(y_train)\n",
    "x_test,  y_test  = np.array(x_test),  np.array(y_test)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 4 - Build a model\n",
    "About informations about : \n",
    " - [Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)\n",
    " - [Activation](https://www.tensorflow.org/api_docs/python/tf/keras/activations)\n",
    " - [Loss](https://www.tensorflow.org/api_docs/python/tf/keras/losses)\n",
    " - [Metrics](https://www.tensorflow.org/api_docs/python/tf/keras/metrics)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {},
   "outputs": [],
   "source": [
    "  def get_model_v1(shape):\n",
    "    \n",
    "    model = keras.models.Sequential()\n",
    "    model.add(keras.layers.Input(shape, name=\"InputLayer\"))\n",
    "    model.add(keras.layers.Dense(64, activation='relu', name='Dense_n1'))\n",
    "    model.add(keras.layers.Dense(64, activation='relu', name='Dense_n2'))\n",
    "    model.add(keras.layers.Dense(1, name='Output'))\n",
    "    \n",
    "    model.compile(optimizer = 'rmsprop',\n",
    "                  loss      = 'mse',\n",
    "                  metrics   = ['mae', 'mse'] )\n",
    "    return model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 5 - Train the model\n",
    "### 5.1 - Get it"
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: \"sequential\"\n",
      "_________________________________________________________________\n",
      "Layer (type)                 Output Shape              Param #   \n",
      "=================================================================\n",
      "Dense_n1 (Dense)             (None, 64)                896       \n",
      "_________________________________________________________________\n",
      "Dense_n2 (Dense)             (None, 64)                4160      \n",
      "_________________________________________________________________\n",
      "Output (Dense)               (None, 1)                 65        \n",
      "=================================================================\n",
      "Total params: 5,121\n",
      "Trainable params: 5,121\n",
      "Non-trainable params: 0\n",
      "_________________________________________________________________\n",
      "Failed to import pydot. You must install pydot and graphviz for `pydotprint` to work.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
      ]
     },
     "metadata": {},
     "output_type": "display_data"
   "source": [
    "model=get_model_v1( (13,) )\n",
    "\n",
    "model.summary()\n",
    "\n",
    "img=keras.utils.plot_model( model, to_file='./run/model.png', show_shapes=True, show_layer_names=True, dpi=96)\n",
    "display(img)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 5.2 - Train it"
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 9ms/step - loss: 446.6037 - mae: 19.2578 - mse: 446.6037 - val_loss: 386.7883 - val_mae: 17.0661 - val_mse: 386.7883\n",
      "Epoch 2/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 218.0804 - mae: 12.4885 - mse: 218.0804 - val_loss: 154.0005 - val_mae: 9.9977 - val_mse: 154.0005\n",
      "Epoch 3/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 77.5444 - mae: 6.8722 - mse: 77.5444 - val_loss: 67.8402 - val_mae: 6.1398 - val_mse: 67.8402\n",
      "Epoch 4/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 39.4528 - mae: 4.8223 - mse: 39.4528 - val_loss: 42.8524 - val_mae: 4.5159 - val_mse: 42.8524\n",
      "Epoch 5/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 24.7109 - mae: 3.6920 - mse: 24.7109 - val_loss: 33.6560 - val_mae: 3.9751 - val_mse: 33.6560\n",
      "Epoch 6/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 20.0575 - mae: 3.2955 - mse: 20.0575 - val_loss: 28.1081 - val_mae: 3.4396 - val_mse: 28.1081\n",
      "Epoch 7/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 17.5427 - mae: 3.0599 - mse: 17.5427 - val_loss: 25.3431 - val_mae: 3.3389 - val_mse: 25.3431\n",
      "Epoch 8/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 15.4941 - mae: 2.8394 - mse: 15.4941 - val_loss: 22.9326 - val_mae: 3.1904 - val_mse: 22.9326\n",
      "Epoch 9/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 14.3105 - mae: 2.6853 - mse: 14.3105 - val_loss: 22.8496 - val_mae: 3.2345 - val_mse: 22.8496\n",
      "Epoch 10/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 13.1828 - mae: 2.5744 - mse: 13.1828 - val_loss: 20.5914 - val_mae: 3.0849 - val_mse: 20.5914\n",
      "Epoch 11/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 12.5782 - mae: 2.4991 - mse: 12.5782 - val_loss: 19.7353 - val_mae: 3.0247 - val_mse: 19.7353\n",
      "Epoch 12/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 12.1698 - mae: 2.4564 - mse: 12.1698 - val_loss: 18.8873 - val_mae: 2.9056 - val_mse: 18.8873\n",
      "Epoch 13/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 11.7293 - mae: 2.3903 - mse: 11.7293 - val_loss: 19.1095 - val_mae: 2.8887 - val_mse: 19.1095\n",
      "Epoch 14/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 11.3441 - mae: 2.3263 - mse: 11.3441 - val_loss: 18.5024 - val_mae: 2.8737 - val_mse: 18.5024\n",
      "Epoch 15/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 10.8598 - mae: 2.2824 - mse: 10.8598 - val_loss: 19.2043 - val_mae: 2.9070 - val_mse: 19.2043\n",
      "Epoch 16/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 10.5605 - mae: 2.2494 - mse: 10.5605 - val_loss: 17.8935 - val_mae: 2.8521 - val_mse: 17.8935\n",
      "Epoch 17/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 10.4829 - mae: 2.2239 - mse: 10.4829 - val_loss: 18.2009 - val_mae: 2.9156 - val_mse: 18.2009\n",
      "Epoch 18/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 10.0201 - mae: 2.1768 - mse: 10.0201 - val_loss: 18.8540 - val_mae: 2.9471 - val_mse: 18.8540\n",
      "Epoch 19/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 9.8773 - mae: 2.1541 - mse: 9.8773 - val_loss: 17.9174 - val_mae: 2.9169 - val_mse: 17.9174\n",
      "Epoch 20/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 9.7499 - mae: 2.1822 - mse: 9.7499 - val_loss: 17.6539 - val_mae: 2.8095 - val_mse: 17.6539\n",
      "Epoch 21/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 9.4263 - mae: 2.1179 - mse: 9.4263 - val_loss: 17.3389 - val_mae: 2.8069 - val_mse: 17.3389\n",
      "Epoch 22/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 9.2461 - mae: 2.1105 - mse: 9.2461 - val_loss: 17.3363 - val_mae: 2.7985 - val_mse: 17.3363\n",
      "Epoch 23/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 9.2967 - mae: 2.0983 - mse: 9.2967 - val_loss: 17.7068 - val_mae: 2.8551 - val_mse: 17.7068\n",
      "Epoch 24/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 9.0171 - mae: 2.0590 - mse: 9.0171 - val_loss: 17.6013 - val_mae: 2.8819 - val_mse: 17.6013\n",
      "Epoch 25/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 9.0039 - mae: 2.0880 - mse: 9.0039 - val_loss: 18.1039 - val_mae: 2.8558 - val_mse: 18.1039\n",
      "Epoch 26/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 8.6806 - mae: 2.0975 - mse: 8.6806 - val_loss: 17.1357 - val_mae: 2.7136 - val_mse: 17.1357\n",
      "Epoch 27/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 8.5762 - mae: 2.0289 - mse: 8.5762 - val_loss: 17.1106 - val_mae: 2.7783 - val_mse: 17.1106\n",
      "Epoch 28/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 8.6417 - mae: 2.0260 - mse: 8.6417 - val_loss: 17.0406 - val_mae: 2.7918 - val_mse: 17.0406\n",
      "Epoch 29/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 8.5833 - mae: 2.0244 - mse: 8.5833 - val_loss: 18.0475 - val_mae: 2.8360 - val_mse: 18.0475\n",
      "Epoch 30/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 8.2054 - mae: 2.0043 - mse: 8.2054 - val_loss: 17.0133 - val_mae: 2.7095 - val_mse: 17.0133\n",
      "Epoch 31/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 8.2301 - mae: 1.9699 - mse: 8.2301 - val_loss: 18.3437 - val_mae: 2.9549 - val_mse: 18.3437\n",
      "Epoch 32/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 7.9471 - mae: 1.9438 - mse: 7.9471 - val_loss: 19.1730 - val_mae: 3.0434 - val_mse: 19.1730\n",
      "Epoch 33/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 8.0745 - mae: 1.9784 - mse: 8.0745 - val_loss: 16.7722 - val_mae: 2.7913 - val_mse: 16.7722\n",
      "Epoch 34/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 7.7404 - mae: 1.9509 - mse: 7.7404 - val_loss: 16.2314 - val_mae: 2.7512 - val_mse: 16.2314\n",
      "Epoch 35/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 7.7764 - mae: 1.9542 - mse: 7.7764 - val_loss: 17.5090 - val_mae: 2.8030 - val_mse: 17.5090\n",
      "Epoch 36/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 7.6741 - mae: 1.8898 - mse: 7.6741 - val_loss: 16.4816 - val_mae: 2.7928 - val_mse: 16.4816\n",
      "Epoch 37/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 7.6694 - mae: 1.9532 - mse: 7.6694 - val_loss: 16.6889 - val_mae: 2.7137 - val_mse: 16.6889\n",
      "Epoch 38/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 7.5041 - mae: 1.9462 - mse: 7.5041 - val_loss: 16.7302 - val_mae: 2.6825 - val_mse: 16.7302\n",
      "Epoch 39/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 7.2888 - mae: 1.8822 - mse: 7.2888 - val_loss: 16.4285 - val_mae: 2.7840 - val_mse: 16.4285\n",
      "Epoch 40/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 7.2930 - mae: 1.8663 - mse: 7.2930 - val_loss: 16.8343 - val_mae: 2.7821 - val_mse: 16.8343\n",
      "Epoch 41/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 7.2549 - mae: 1.8683 - mse: 7.2549 - val_loss: 15.7884 - val_mae: 2.7318 - val_mse: 15.7884\n",
      "Epoch 42/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 7.0984 - mae: 1.8449 - mse: 7.0984 - val_loss: 17.2381 - val_mae: 2.8447 - val_mse: 17.2381\n",
      "Epoch 43/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 7.2413 - mae: 1.8850 - mse: 7.2413 - val_loss: 16.0552 - val_mae: 2.6502 - val_mse: 16.0552\n",
      "Epoch 44/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.9367 - mae: 1.8398 - mse: 6.9367 - val_loss: 17.2112 - val_mae: 2.8687 - val_mse: 17.2112\n",
      "Epoch 45/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.9827 - mae: 1.8430 - mse: 6.9827 - val_loss: 17.0917 - val_mae: 2.8490 - val_mse: 17.0917\n",
      "Epoch 46/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.9057 - mae: 1.8588 - mse: 6.9057 - val_loss: 15.8673 - val_mae: 2.6752 - val_mse: 15.8673\n",
      "Epoch 47/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.7441 - mae: 1.8413 - mse: 6.7441 - val_loss: 15.9673 - val_mae: 2.6831 - val_mse: 15.9673\n",
      "Epoch 48/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.6772 - mae: 1.8257 - mse: 6.6772 - val_loss: 15.8700 - val_mae: 2.6894 - val_mse: 15.8700\n",
      "Epoch 49/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.7987 - mae: 1.8268 - mse: 6.7987 - val_loss: 15.9252 - val_mae: 2.6604 - val_mse: 15.9252\n",
      "Epoch 50/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.4837 - mae: 1.8267 - mse: 6.4837 - val_loss: 15.9070 - val_mae: 2.6712 - val_mse: 15.9070\n",
      "Epoch 51/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.4992 - mae: 1.7764 - mse: 6.4992 - val_loss: 17.6725 - val_mae: 2.9236 - val_mse: 17.6725\n",
      "Epoch 52/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.4255 - mae: 1.7977 - mse: 6.4255 - val_loss: 15.9662 - val_mae: 2.6543 - val_mse: 15.9662\n",
      "Epoch 53/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.5858 - mae: 1.8303 - mse: 6.5858 - val_loss: 15.8725 - val_mae: 2.6448 - val_mse: 15.8725\n",
      "Epoch 54/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.3289 - mae: 1.7924 - mse: 6.3289 - val_loss: 16.2535 - val_mae: 2.7397 - val_mse: 16.2535\n",
      "Epoch 55/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.1070 - mae: 1.7290 - mse: 6.1070 - val_loss: 17.4497 - val_mae: 2.8085 - val_mse: 17.4497\n",
      "Epoch 56/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.2357 - mae: 1.8001 - mse: 6.2357 - val_loss: 15.7940 - val_mae: 2.6139 - val_mse: 15.7940\n",
      "Epoch 57/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.1776 - mae: 1.7134 - mse: 6.1776 - val_loss: 18.2101 - val_mae: 3.0060 - val_mse: 18.2101\n",
      "Epoch 58/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.0313 - mae: 1.7406 - mse: 6.0313 - val_loss: 16.0014 - val_mae: 2.6532 - val_mse: 16.0014\n",
      "Epoch 59/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.0825 - mae: 1.7771 - mse: 6.0825 - val_loss: 17.4272 - val_mae: 2.8013 - val_mse: 17.4272\n",
      "Epoch 60/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.9886 - mae: 1.7806 - mse: 5.9886 - val_loss: 15.6423 - val_mae: 2.6311 - val_mse: 15.6423\n",
      "Epoch 61/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.8739 - mae: 1.6941 - mse: 5.8739 - val_loss: 15.7738 - val_mae: 2.6235 - val_mse: 15.7738\n",
      "Epoch 62/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 6.0186 - mae: 1.7272 - mse: 6.0186 - val_loss: 16.2887 - val_mae: 2.7315 - val_mse: 16.2887\n",
      "Epoch 63/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.6992 - mae: 1.6959 - mse: 5.6992 - val_loss: 16.2439 - val_mae: 2.6728 - val_mse: 16.2439\n",
      "Epoch 64/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.7267 - mae: 1.6931 - mse: 5.7267 - val_loss: 17.3420 - val_mae: 2.9330 - val_mse: 17.3420\n",
      "Epoch 65/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.5663 - mae: 1.6936 - mse: 5.5663 - val_loss: 15.8615 - val_mae: 2.6978 - val_mse: 15.8615\n",
      "Epoch 66/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.6906 - mae: 1.7106 - mse: 5.6906 - val_loss: 16.3725 - val_mae: 2.7047 - val_mse: 16.3725\n",
      "Epoch 67/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.5431 - mae: 1.6698 - mse: 5.5431 - val_loss: 16.4046 - val_mae: 2.7959 - val_mse: 16.4046\n",
      "Epoch 68/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.5527 - mae: 1.6936 - mse: 5.5527 - val_loss: 15.5068 - val_mae: 2.6383 - val_mse: 15.5068\n",
      "Epoch 69/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.4648 - mae: 1.6626 - mse: 5.4648 - val_loss: 16.5591 - val_mae: 2.7705 - val_mse: 16.5591\n",
      "Epoch 70/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.4885 - mae: 1.6831 - mse: 5.4885 - val_loss: 16.0854 - val_mae: 2.7222 - val_mse: 16.0854\n",
      "Epoch 71/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.4027 - mae: 1.6897 - mse: 5.4027 - val_loss: 16.1947 - val_mae: 2.7365 - val_mse: 16.1947\n",
      "Epoch 72/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.4546 - mae: 1.6858 - mse: 5.4546 - val_loss: 15.5937 - val_mae: 2.6997 - val_mse: 15.5937\n",
      "Epoch 73/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.4391 - mae: 1.6800 - mse: 5.4391 - val_loss: 15.3495 - val_mae: 2.6369 - val_mse: 15.3495\n",
      "Epoch 74/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.2675 - mae: 1.6067 - mse: 5.2675 - val_loss: 15.3150 - val_mae: 2.6281 - val_mse: 15.3150\n",
      "Epoch 75/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.0789 - mae: 1.6050 - mse: 5.0789 - val_loss: 15.6628 - val_mae: 2.7041 - val_mse: 15.6628\n",
      "Epoch 76/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.1433 - mae: 1.6192 - mse: 5.1433 - val_loss: 15.6630 - val_mae: 2.7125 - val_mse: 15.6630\n",
      "Epoch 77/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.2613 - mae: 1.6272 - mse: 5.2613 - val_loss: 15.5012 - val_mae: 2.6684 - val_mse: 15.5012\n",
      "Epoch 78/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 5.0384 - mae: 1.5870 - mse: 5.0384 - val_loss: 15.4386 - val_mae: 2.5987 - val_mse: 15.4386\n",
      "Epoch 79/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.8677 - mae: 1.6115 - mse: 4.8677 - val_loss: 14.8730 - val_mae: 2.5933 - val_mse: 14.8730\n",
      "Epoch 80/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.7888 - mae: 1.6307 - mse: 4.7888 - val_loss: 15.8612 - val_mae: 2.6449 - val_mse: 15.8612\n",
      "Epoch 81/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.8544 - mae: 1.5776 - mse: 4.8544 - val_loss: 15.9151 - val_mae: 2.7450 - val_mse: 15.9151\n",
      "Epoch 82/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.9277 - mae: 1.6223 - mse: 4.9277 - val_loss: 15.4618 - val_mae: 2.6289 - val_mse: 15.4618\n",
      "Epoch 83/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.6935 - mae: 1.5533 - mse: 4.6935 - val_loss: 15.5422 - val_mae: 2.6907 - val_mse: 15.5422\n",
      "Epoch 84/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.7293 - mae: 1.5713 - mse: 4.7293 - val_loss: 16.1069 - val_mae: 2.6952 - val_mse: 16.1069\n",
      "Epoch 85/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.9442 - mae: 1.6012 - mse: 4.9442 - val_loss: 16.8197 - val_mae: 2.7933 - val_mse: 16.8197\n",
      "Epoch 86/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.7069 - mae: 1.5407 - mse: 4.7069 - val_loss: 15.1649 - val_mae: 2.6126 - val_mse: 15.1649\n",
      "Epoch 87/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.5711 - mae: 1.5661 - mse: 4.5711 - val_loss: 15.4229 - val_mae: 2.5960 - val_mse: 15.4229\n",
      "Epoch 88/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.7171 - mae: 1.5643 - mse: 4.7171 - val_loss: 14.9234 - val_mae: 2.5848 - val_mse: 14.9234\n",
      "Epoch 89/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.6757 - mae: 1.5674 - mse: 4.6757 - val_loss: 15.6304 - val_mae: 2.6254 - val_mse: 15.6304\n",
      "Epoch 90/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.5371 - mae: 1.5218 - mse: 4.5371 - val_loss: 15.2124 - val_mae: 2.6103 - val_mse: 15.2124\n",
      "Epoch 91/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.5749 - mae: 1.5530 - mse: 4.5749 - val_loss: 15.0673 - val_mae: 2.6155 - val_mse: 15.0673\n",
      "Epoch 92/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.4479 - mae: 1.5061 - mse: 4.4479 - val_loss: 15.6725 - val_mae: 2.6823 - val_mse: 15.6725\n",
      "Epoch 93/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.4346 - mae: 1.5632 - mse: 4.4346 - val_loss: 15.9227 - val_mae: 2.7507 - val_mse: 15.9227\n",
      "Epoch 94/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.3117 - mae: 1.5320 - mse: 4.3117 - val_loss: 14.8743 - val_mae: 2.5851 - val_mse: 14.8743\n",
      "Epoch 95/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.3167 - mae: 1.5485 - mse: 4.3167 - val_loss: 15.8938 - val_mae: 2.7321 - val_mse: 15.8938\n",
      "Epoch 96/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.2353 - mae: 1.5293 - mse: 4.2353 - val_loss: 15.6551 - val_mae: 2.6875 - val_mse: 15.6551\n",
      "Epoch 97/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.3570 - mae: 1.5247 - mse: 4.3570 - val_loss: 14.6511 - val_mae: 2.5859 - val_mse: 14.6511\n",
      "Epoch 98/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.1628 - mae: 1.5172 - mse: 4.1628 - val_loss: 15.3245 - val_mae: 2.6279 - val_mse: 15.3245\n",
      "Epoch 99/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.1995 - mae: 1.4868 - mse: 4.1995 - val_loss: 15.1456 - val_mae: 2.5795 - val_mse: 15.1456\n",
      "Epoch 100/100\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "36/36 [==============================] - 0s 3ms/step - loss: 4.1808 - mae: 1.5035 - mse: 4.1808 - val_loss: 16.9576 - val_mae: 2.8004 - val_mse: 16.9576\n"
   "source": [
    "history = model.fit(x_train,\n",
    "                    y_train,\n",
    "                    epochs          = 100,\n",
    "                    batch_size      = 10,\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "                    verbose         = 1,\n",
    "                    validation_data = (x_test, y_test))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 6 - Evaluate\n",
    "### 6.1 - Model evaluation\n",
    "MAE =  Mean Absolute Error (between the labels and predictions)  \n",
    "A mae equal to 3 represents an average error in prediction of $3k."
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "x_test / loss      : 16.9576\n",
      "x_test / mae       : 2.8004\n",
      "x_test / mse       : 16.9576\n"
   "source": [
    "score = model.evaluate(x_test, y_test, verbose=0)\n",
    "\n",
    "print('x_test / loss      : {:5.4f}'.format(score[0]))\n",
    "print('x_test / mae       : {:5.4f}'.format(score[1]))\n",
    "print('x_test / mse       : {:5.4f}'.format(score[2]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 6.2 - Training history\n",
    "What was the best result during our training ?"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>loss</th>\n",
       "      <th>mae</th>\n",
       "      <th>mse</th>\n",
       "      <th>val_loss</th>\n",
       "      <th>val_mae</th>\n",
       "      <th>val_mse</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>count</th>\n",
       "      <td>100.000000</td>\n",
       "      <td>100.000000</td>\n",
       "      <td>100.000000</td>\n",
       "      <td>100.000000</td>\n",
       "      <td>100.000000</td>\n",
       "      <td>100.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>mean</th>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "      <td>14.927569</td>\n",
       "      <td>2.249331</td>\n",
       "      <td>14.927569</td>\n",
       "      <td>22.950146</td>\n",
       "      <td>3.050924</td>\n",
       "      <td>22.950146</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>std</th>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "      <td>49.102919</td>\n",
       "      <td>2.129139</td>\n",
       "      <td>49.102919</td>\n",
       "      <td>39.685006</td>\n",
       "      <td>1.642340</td>\n",
       "      <td>39.685006</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>min</th>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "      <td>4.162772</td>\n",
       "      <td>1.486817</td>\n",
       "      <td>4.162772</td>\n",
       "      <td>14.651099</td>\n",
       "      <td>2.579468</td>\n",
       "      <td>14.651099</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25%</th>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "      <td>5.231783</td>\n",
       "      <td>1.625981</td>\n",
       "      <td>5.231783</td>\n",
       "      <td>15.784752</td>\n",
       "      <td>2.666427</td>\n",
       "      <td>15.784752</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>50%</th>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "      <td>6.542478</td>\n",
       "      <td>1.826209</td>\n",
       "      <td>6.542478</td>\n",
       "      <td>16.416533</td>\n",
       "      <td>2.742338</td>\n",
       "      <td>16.416533</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>75%</th>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "      <td>8.761405</td>\n",
       "      <td>2.066272</td>\n",
       "      <td>8.761405</td>\n",
       "      <td>17.681088</td>\n",
       "      <td>2.859058</td>\n",
       "      <td>17.681088</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>max</th>\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "      <td>446.603668</td>\n",
       "      <td>19.257833</td>\n",
       "      <td>446.603668</td>\n",
       "      <td>386.788330</td>\n",
       "      <td>17.066065</td>\n",
       "      <td>386.788330</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "             loss         mae         mse    val_loss     val_mae     val_mse\n",
       "count  100.000000  100.000000  100.000000  100.000000  100.000000  100.000000\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
       "mean    14.927569    2.249331   14.927569   22.950146    3.050924   22.950146\n",
       "std     49.102919    2.129139   49.102919   39.685006    1.642340   39.685006\n",
       "min      4.162772    1.486817    4.162772   14.651099    2.579468   14.651099\n",
       "25%      5.231783    1.625981    5.231783   15.784752    2.666427   15.784752\n",
       "50%      6.542478    1.826209    6.542478   16.416533    2.742338   16.416533\n",
       "75%      8.761405    2.066272    8.761405   17.681088    2.859058   17.681088\n",
       "max    446.603668   19.257833  446.603668  386.788330   17.066065  386.788330"
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "source": [
    "\n",
    "df=pd.DataFrame(data=history.history)\n",
    "df.describe()"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "min( val_mae ) : 2.5795\n"
   "source": [
    "print(\"min( val_mae ) : {:.4f}\".format( min(history.history[\"val_mae\"]) ) )"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg4AAAGdCAYAAAB6oftJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZwcVd3v8c+vl5nJZJJJQhLIAiTsISQEJArGBxW4AhcVL/ooPoCiImqLC3pV8D6y6eP6IAjS+IDeqyIgi4CgPBJRQlCWgBiIGEiAJGQhK9kzSy/n/nGqZ2o6PZOerbtr8n2/Xv2qnqrT1adrZrq/fc6pU+acQ0RERKQcsWpXQERERKJDwUFERETKpuAgIiIiZVNwEBERkbIpOIiIiEjZFBxERESkbAoOIiIiUjYFBxHpMzP7uZm54JYxs/F7KP++UHlnZueXKDPGzP6PmT1uZm8E+11nZs+Z2e1m9ikzO6jE464o2ndPt2sH8DCI7FUS1a6AiAwZCeDfgJ4+lD/S0w7M7C3A/UA4gGwDhgMzg9vZwG+B93WzmzywYQ913baH7SLSDQUHERkIrwEH4INByeBgZmOAM4AdQDswpmj7KDpDw1LgCuB+59yOYPt+wNuBD+LDQXdWOuem9P2liEhPFBxEZCA8AWSAY8xsunPuhRJlzgbqgNuBU7rZPh5oA05yzq0Kb3TOrQXuAO4ws2EDWXkRKZ/GOIjIQLklWHbXHVFY/8tuts8IlguLQ0Mx51xLL+smIgNEwUFEBkohOJxjZl3eW8zsMOAtwEpg3h72M8HMbOCrJyIDQcFBRAaEc+5V4K/AJOCkos2F1oZbnXPdjU94JlgeAPyHmdUPfC1FpL8UHERkIBW6ITq6K4LWg3OLtpdyO/BScP9SYK2Z/cbMvmpm7zSzxjLrsL+Zrd3DbXpvXpSIdFJwEJGBdCfQCpxlZsODdW8HDgSecc4t7u6BzrlWfEvF74NVo4CzgO8Bfwa2mNn9ZnbCHuoQA/bdwy3Z+5cmIqDgICIDyDm3BXgAP+/C+4PVexoUGX78Gufcu4Fp+FaH3wOvB5uTwHuAv5rZF3rYzQrnnO3htrAPL09EUHAQkYFXCAjnBadNvh9/qubt5e7AOfeic+67zrl3O+cm4oPElcAuwIAfmtmxA1xvESmDgoOIDLQ/AOvx3Q4XASOB/3bObezrDoMgcQVwOuDw710f7X9VRaS3FBxEZEA557LAr/HvL/8RrL6l+0f0at/z8bNKAhw2EPsUkd5RcBCRwVDorkgCm/HjHgbKzmDZPoD7FJEyacppERlwzrm/mdkVwAjgeedc254eY2azgSXOua09lJkOHB38qAGOIlWg4CAig8I5d2UvH/Ih4AIzux34DfCUc247gJntg7+41WX4ltKdwE8HsLoiUiYFBxGpFRmgGfh0cMPMtuHfp8KTP20BznbOrexmP/ub2do9PNfjzrmz+llfkb2SgoOI1IqvA78DTgNOAI4AxuFPv9wALAYeAm52zm3oYT+FCaB6MmYP20WkG+acq3YdREREJCJ0VoWIiIiUTcFBREREyqbgICIiImVTcBAREZGyKTj0IJVKuVQqpdGjIiIiAZ2OWR6FBxER2VtYTxvV4iAiIiJlU3AQERGRsik4iIiISNkUHERERKRsGhzZB5lMhlWrVtHa2lrtqkRCQ0MDkydPJplMVrsqIiLSTwoOfbBq1SpGjBjBlClTMOtx8OlezznHpk2bWLVqFVOnTq12dUREpJ/UVdEHra2t7LPPPgoNZTAz9tlnH7XOiIgMEQoOfaTQUD4dKxGRoUPBQURERMqm4CAiIiJlU3CIqOXLl3PEEUdwwQUXcNRRR3HOOefw8MMPM2fOHA499FAWLFjAo48+yqxZs5g1axbHHHMM27dvB+AHP/gBs2fPZubMmVx++eVVfiUiIhIlOquin0795u8Hbd8PfeOMHre//PLL3HXXXdx0003Mnj2b2267jb/85S/cf//9fPvb3yaXy3HDDTcwZ84cduzYQUNDA3PnzmXp0qUsWLAA5xzvfe97mT9/PieeeOKgvQ4RERk61OIQYVOnTmXGjBnEYjGmT5/OySefjJkxY8YMli9fzpw5c/jSl77Eddddx5YtW0gkEsydO5e5c+dyzDHHcOyxx/Liiy+ydOnSar8UERGJCLU4RFh9fX3H/Vgs1vFzLBYjm81yySWXcMYZZ/Dggw9y/PHH8/DDD+Oc49JLL+VTn/pUtaotIiIRpuDQT3vqTijYtL2VTdv9XAZjmuoZO3LYYFYLgFdeeYUZM2YwY8YMnnjiCV588UVOPfVUvvGNb3DOOefQ1NTE6tWrSSaTjB8/ftDrIyIi0afgUCHhqQxchZ7z2muv5ZFHHiEej3PkkUdy+umnU19fz+LFiznhhBMAaGpq4le/+pWCg4iIlMWcq9THWPSkUikHkE6nu6xfvHgx06ZN69W+Nu9sY8PWFgBGDa9nfPPgtzjUkr4cMxERqYoeZ+3T4MgKCf8WFNZERCSqFBwqJDztsmKDiIhElYJDhXRtcahaNURERPpFwaFCugyOVHIQEZGIUnCokC5dFcoNIiISUQoOFdL1dEwlBxERiSYFhwox1OIgIiLRp+BQIV3HOFT2uZuamir7hCIiMmQpOFRIl7Mq1FUhIiIRpSmn++uC08oq1gAc1tt9//QPJVd/7Wtf48ADDySVSgFwxRVXYGbMnz+fzZs3k8lk+Na3vsWZZ565x6eYN28el19+Ofvuuy8LFy7krLPOYsaMGfzoRz+ipaWF++67j4MPPpi77rqLK6+8kng8TnNzM/PnzyeXy3HJJZcwb9482tra+OxnP6uLZ4mIDHFqcYigs88+mzvuuKPj5zvvvJOPfexj3HvvvTz77LM88sgjfPnLXy77tM/nnnuOH/3oRyxatIhbbrmFJUuWsGDBAi644AKuv/56AK666ioeeughnnvuOe6//34Afvazn9Hc3MzTTz/N008/zc0338yyZcsG/gWLiEjNUItDBB1zzDGsX7+eNWvWsGHDBkaPHs2ECRO4+OKLmT9/PrFYjNWrV7Nu3Tr222+/Pe5v9uzZTJgwAYCDDz6Yd73rXQDMmDGDRx55BIA5c+Zw/vnn88EPfpCzzjoLgLlz5/L8889z9913A7B161aWLl3K1KlTB+Nli4hIDVBw6K9uuhOKZXN5Xl23DYB4LMbB+43s19N+4AMf4O6772bt2rWcffbZ3HrrrWzYsIG//e1vJJNJpkyZQmtra1n7qq+v77gfi8U6fo7FYmSzWQB+8pOf8NRTT/H73/+eWbNmsXDhQpxzXH/99Zx66qn9ei0iIhId6qqokIGeOfLss8/m17/+NXfffTcf+MAH2Lp1K+PHjyeZTPLII4+wYsWKfj9H2CuvvMJb3vIWrrrqKsaOHcvKlSs59dRTufHGG8lkMgAsWbKEnTt3DujziohIbVGLQ4UM9EWupk+fzvbt25k0aRITJkzgnHPO4T3veQ/HHXccs2bN4ogjjhiAZ+n0la98haVLl+Kc4+STT+boo49m5syZLF++nGOPPRbnHOPGjeO+++4b0OcVEZHaYrpuQvdSqZQDSKfTXdYvXryYadOm9WpfzjmWvr614+dDJzR3CRNDXV+OmYiIVEWPH07qqqgQM9OltUVEJPLUVVFBRmdgcM51HfgwyBYtWsR5553XZV19fT1PPfVUxeogIiLRp+BQQRZKDpXuIZoxYwYLFy6s7JOKiMiQo66KPurL2JC9tatC42hERIYOBYc+aGhoYNOmTb3+QOxyvYq95MPUOcemTZtoaGiodlVERGQAqKuiDyZPnsyqVavYsGFDrx63aXsr2ZwPDG1v1JOI7x25raGhgcmTJ1e7GiIiMgBqLjiYWSPwAjAFuME5d1HR9sOB7wFvB+qAZ4HLnXN/LrGvGPAF4FPB/jYAdwKXOef6PFNRMpns07TKn/6v+Sxbvx2A9CffxsH7Nfe1CiIiIlVRi195rwLGltpgZgcDjwMnAN8HvgI0AQ+Z2SklHnIN8EPgn8DngLuAzwMPBKGiopKJzqfM5PKVfnoREZF+q6kWBzM7Fvgi8FXg6hJFvgOMAt7knFsYPOaX+BaKG8zsCBcMHjCz6fiwcI9z7v2h51gGXAecDdw2iC9nN8lQ10Qmq+AgIiLRUzMtDmYWB24G/gDcU2L7cOC9wLxCaABwzu0AfgocBswOPeTD+PGI1xbt6mZgF3DuQNa/HOEWh3a1OIiISATVTHAALgaOAC7qZvtMoB54osS2J4NlODjMBvLAgnBB51wrsLCobEXUhVocsgoOIiISQTURHMxsKnAlcJVzbnk3xSYGy9UlthXWTSoqv9E519ZN+bFmVteH6vaZuipERCTqaiI4ADcCy/ADGbvTGCxLBYHWojKF+6XKdle+g5ldaGbP9FCXPgmffqnBkSIiEkVVDw5mdi7wLuDTzrlMD0V3Bcv6EtsaisoU7pcq2135Ds65m5xzx/VQlz7RWRUiIhJ1VT2rwszq8a0MDwJrzeyQYFOhy6E5WLcRWFO0LaywLtyNsQY40szqS3RXTMJ3Y7T39zX0hroqREQk6qrd4jAMGAecASwN3eYF288Nfr4AWITvejihxH6OD5bh7oWn8a/vzeGCZtYAzCoqWxFqcRARkair9jwOO4F/LbF+HJDGn5r5M+B559wOM3sAOMvMjnbOPQdgZk34YLGUrmdQ3AF8HT8vxGOh9Z/Ej224dYBfyx4lNcZBREQirqrBIRjTcHfxejObEtx9xTkX3n4pcDIw18yuAbbhg8Ak4AwXunKUc26Rmd0AXGRm9+C7Q6bhZ458lApP/gTqqhARkeirdotDrzjnXjazOcB3gUvovFbFac65h0s85IvAcuBCfHfIRuB6/LUqKv7JrRYHERGJupoMDsFcDtbNtsXAmWXuJ4efurrU9NWV9cCtfPDBu/hgJsMvRh1PJntQtWskIiLSazUZHIakXJa6jJ8+os5l2aUWBxERiaBqn1Wx94h3ZrSky6mrQkREIknBoVISnbNbJ8hrcKSIiESSgkOlJJOdd11OF7kSEZFIUnColERncKhTV4WIiESUgkOlJIrGOKirQkREIkjBoVJCLQ4JtTiIiEhEKThUSig4JFFwEBGRaFJwqBR1VYiIyBCg4FApXboq8mpxEBGRSFJwqJRE19MxFRxERCSKFBwqJangICIi0afgUCnxosGRGuMgIiIRpOBQKWpxEBGRIUDBoVKKxzioxUFERCJIwaFSik/HVIuDiIhEkIJDpZRocXDOVbFCIiIivafgUCnheRzI44C8goOIiESMgkOlFLU4ABrnICIikaPgUCklgkO7xjmIiEjEKDhUSjwO5g93HEfM5dXiICIikaPgUEmay0FERCJOwaGSNJeDiIhEnIJDJcVDczmgFgcREYkeBYdKSna9tHZWwUFERCJGwaGSdGltERGJOAWHSiqedlpjHEREJGIUHCpJLQ4iIhJxCg6VFA4OqMVBRESiR8GhkopaHDRzpIiIRI2CQyVpHgcREYk4BYdKKgoO2byCg4iIRIuCQyUVzeOgFgcREYkaBYdKihedjqkxDiIiEjEKDpWksypERCTiFBwqSVfHFBGRiFNwqCSdVSEiIhGn4FBJxVNOq8VBREQiRsGhkjTltIiIRJyCQyWFgkOCvIKDiIhEjoJDJWmMg4iIRJyCQyWpq0JERCJOwaGSQsGhTi0OIiISQQoOldRlymm1OIiISPQoOFSSppwWEZGIU3CopGTXKaezCg4iIhIxCg6VpLMqREQk4hQcKilRdFlttTiIiEjEKDhUklocREQk4hQcKknzOIiISMQpOFRSouvgSAUHERGJGgWHSiq6Oma7uipERCRiFBwqqairQqdjiohI1FQ9OJjZ4WZ2q5ktNrOtZrbLzF40sx+a2YRuyt9nZpvNbKeZPWZmJ3Wz75iZXRzsr9XMVprZ1WY2fPBfWQlJjXEQEZFoS+y5yKCbDEwA7gVWAVlgBnAhcLaZzXLOrQcws4OBx4My3we2Ap8EHjKz051zDxft+xrg88G+rwamBT8fY2anOOcq+8lddDpmLu/IO0fMrKLVEBER6auqBwfn3J+APxWvN7P5wJ3A+fiQAPAdYBTwJufcwqDcL4EXgBvM7AjnnAvWTwc+B9zjnHt/aL/LgOuAs4HbBulllRbvOjgSIJPNU5+MV7QaIiIifVX1rooerAiWowGC7oX3AvMKoQHAObcD+ClwGDA79PgPAwZcW7Tfm4FdwLmDU+0eFHVVAOquEBGRSKmZ4GBmDWY21swmm9m7gP8KNj0YLGcC9cATJR7+ZLAMB4fZQB5YEC7onGsFFhaVrYxEieCgMytERCRCaiY4ABcAG4CVwEP4LolznXOPBdsnBsvVJR5bWDcptG4isNE519ZN+bFmVtfvWvdGLAbBeIY4jpimnRYRkYippeBwH/A/gP8FXAVsAcaFtjcGy1JBoLWoTOF+qbLdle9gZhea2TNl1Ll3zDR7pIiIRFrNBAfn3Crn3MPOufucc5cDHwW+Z2aXBkV2Bcv6Eg9vKCpTuF+qbHflw3W5yTl3XPm17wVdr0JERCKsZoJDMefc88DfgVSwak2wnFSieGFduBtjDb47olR4mITvxmgfiLr2SviUTNRVISIi0VKzwSEwDBgT3F+E73o4oUS544NluHvhafzre3O4oJk1ALOKylZO0bTTCg4iIhIlVQ8OZrZfN+vfCRxFcMZEcNrlA8A7zOzoULkm/MDKpXQ9g+IOwAFfLNr1J/FjG24doJfQO+qqEBGRCKv6BFDAjcHU0n/Gz93QALwJP0HTduDLobKXAicDc83sGmAbPghMAs4oTP4E4JxbZGY3ABeZ2T340zoLM0c+SqUnfyrQtNMiIhJhtRAcbscPhDwPfxaFwweI/wJ+4Jx7rVDQOfeymc0BvgtcAtQBzwKnlZhuGnxrw3L89NVnABuB64HLKj7ddIEudCUiIhFW9eDgnLsTP7V0ueUXA2eWWTaHv0bF1X2r3SBIdJ12Wl0VIiISJVUf47DX0TwOIiISYQoOlabgICIiEabgUGmh0zETLk+7uipERCRCFBwqTS0OIiISYQoOlaZ5HEREJMIUHCqt6KwKnY4pIiJRouBQaZpyWkREIkzBodI0xkFERCJMwaHSiqec1hgHERGJEAWHSouHLqvtdFltERGJFgWHSktqymkREYkuBYdK0xgHERGJMAWHSlNwEBGRCFNwqDSdjikiIhGm4FBpmjlSREQiTMGh0tRVISIiEabgUGk6q0JERCJMwaHSNI+DiIhEmIJDpe02c2SuipURERHpHQWHSisa45DNuypWRkREpHcUHCotXnQ6psY4iIhIhCg4VFrx4EiNcRARkQhRcKg0zeMgIiIRpuBQaZrHQUREIkzBodJCU04XTsd0TgMkRUQkGsoKDqlU6iOpVGpm0bq6VCo1spvyb0+lUpcNRAWHnKIWB0CtDiIiEhnltjj8HHhf0bpLgc3dlH8HcHnfqjTEJeo67ibxwSGbU4uDiIhEg7oqKq3o6pigFgcREYkOBYdKK9VVoTMrREQkIhQcKi0eBzN/F0dM16sQEZEIUXCoNLMScznoehUiIhINCg7VUDTOQS0OIiISFYk9F+kwKpVKHRD+GSCVSu0PWHHZ/lZsSAu1OCRQV4WIiERHb4LDF4JbseUDU5W9yG6zR+p0TBERiYZyg8NrgD7dBoquVyEiIhFVVnBIp9NTBrkee5fdWhw0OFJERKJBgyOrQS0OIiISUQoO1ZAMBQd0VoWIiERHWV0VqVRqGDAB2JhOp7cVbTsQuAY4CX92xaPA/06n00sGuK5DR1ynY4qISDSV2+JwEbAUODK8MpVKjcAHhTOBkcAI4N3AvFQqtc8A1nNoCZ+O6fLqqhARkcgoNzj8C7AynU4/WbT+M8ABwBPAIcC+wPXAfpQ+dVOga1eFy5FVi4OIiEREuadjHgk8U2L9WfjTND+eTqdfDdZ9IZVKnQGcDlzW/yoOQUWDI9sVHEREJCLKbXEYBywLr0ilUkngGOClEuMZ/oxvgZBSiqecVleFiIhERLnBoR6IF62bDiSBBSXKrwca+1GvoS2hsypERCSayg0Oa4Gjita9Fd9NUaoLYwTwRj/qNbRpHgcREYmocoPDX4GTUqnUO6Dj9MxPBtv+WKL8UcDqftduqNpt5kgFBxERiYZyg8M1wXJuKpV6Fj/eYSYwL51OvxQumEqlRgJzgOIzMKRAwUFERCKqrOCQTqefAc4HWoBZwHh8F8VHSxT/KFAHzB2YKg5BRfM4tGV0rQoREYmGsi+rnU6nf5VKpX6D74bYFDr9stgDwHxg8QDUb2gqmnK6pV3BQUREoqHs4ACQTqdbgKf3UGZ5fyq0VyiacrpVLQ4iIhIRushVNRSNcWhtz1axMiIiIuUr9yJXH+nLztPp9C/78rghr2jKaY1xEBGRqCi3q+Ln+DkbymVBeQWHUnZrcVBwEBGRaOjNGIcs8DvgnwNZATM7DDgXeBdwMNAAvALcBVzrnNtZVP5w4HvA2/FnbzwLXO6c+3OJfcfwF9v6FDAF2ADcCVxWvN+KSmiMg4iIRFO5weFR4ETgffhTMW8G7kyn060DUIePA58F7gduBTLAO4FvAR80s+Odcy0AZnYw8Dg+xHwf2IqfiOohMzvdOfdw0b6vAT4P3AtcDUwLfj7GzE5xzlVnAoVEXedd8rRmNMZBRESiodx5HN4JHA78J/7iVf8PeD2VSl2fSqVm9rMOdwOTnXPnOOeud879xDn3IeA/8JNMfSJU9jvAKOBU59x3nHNp/CW/1wA3mJkVCprZdOBzwD3OubOcczc7574EfAkfTM7uZ737Tl0VIiISUWWfVZFOp19Op9NfA/YHPgg8BXwG+HsqlVqQSqU+kUqlhve2As65Z5xzW0tsuiNYHgVgZsOB9wLznHMLQ4/fAfwUOAyYHXr8h/FjLa4t2u/NwC5890h1FHVVZPNOs0eKiEgk9Pp0zHQ6nU2n079Jp9On4cckfBuYANwErEmlUicMUN0mB8t1wXIm/iqdT5QoW5jeOhwcZgN5iq7e6ZxrBRYWla2sohYHQK0OIiISCf2axyGdTq9Ip9PfAC7EX9SqCRjX30qZWRy4DD+W4bZg9cRgWeriWYV1k0LrJgIbnXNt3ZQfa2Z1JbYNvqLLagMa5yAiIpHQq5kjw1Kp1ET8wMaPAwcCrcCv8Gc59Ne1wPHA151zhYtoNQbLUkGgtahM4X6pssXl24s3mtmFwIWf+cxnelPn8iXV4iAiItHUq+CQSqViwLuBC4DTgscvwp/yeEs6nS41VqFXzOybwEXATc6574Q27QqW9SUe1lBUpnB/fDdPU6p8B+fcTcBNqVSqN3NXlK9oymlAp2SKiEgklDtz5FT82Q0fw49n2An8Arg5nU4v6OmxvWFmVwD/jj9r49NFm9cEy0nsrrAu3I2xBjjSzOpLdFdMwndj7NbaUBHJrlfHBAUHERGJhnJbHF4Ols8AlwO3p9PpAZ1AycwuD/b9S+AC51zxt/1F+K6HUoMvjw/Vr+Bp/KRSbwYeCz1PA/7S4PMHpuZ9UHJwpMY4iIhI7Ss3OBh+YqYJ+EGLl6VSqT09xqXT6QPL2rnZZcAVwC3Ax0pNzOSc22FmDwBnmdnRzrnngsc24btOltL1DIo7gK8DXyQUHPATRjXiJ5uqDp1VISIiEdWbMQ5JOk+RHDBm9lngSuA14GHg30LzOAGsc879Mbh/KXAyMNfMrgG24YPAJOCMcCuFc26Rmd0AXGRm9wAP0jlz5KN0nq1ReSXPqlBwEBGR2ldWcEin04N5+e3CfAoH4MdNFHsU+COAc+5lM5sDfBe4hM5rVZxWYrpp8K0Ny/Gni54BbASux1+ronozLpVqcdDpmCIiEgF9Ph1zoDjnzgfO70X5xcCZZZbN4a9RcXVf6jZo1FUhIiIRNZgtCdKdeLzzLo6Yy6urQkREIkHBoRrMdr/QlYKDiIhEgIJDtYTnciCv0zFFRCQSFByqpajFoUVjHEREJAIUHKpFXRUiIhJBCg7VouAgIiIRpOBQLcXBQWMcREQkAhQcqiXR9QqZbWpxEBGRCFBwqJaiaac1AZSIiESBgkO1JLpeWltjHEREJAoUHKplt9MxNcZBRERqn4JDtRSNcVCLg4iIRIGCQ7UUtTjk8o5MrnoX7BQRESmHgkO1JLsOjgRdIVNERGqfgkO1xEtcWjujcQ4iIlLbFByqJVkiOKjFQUREapyCQ7UkSrU4KDiIiEhtU3ColqJ5HABNOy0iIjVPwaFaik7HBLU4iIhI7VNwqJaEzqoQEZHoUXCoFo1xEBGRCFJwqJaSwUFjHEREpLYpOFRL6HTMOucDg7oqRESk1ik4VEtjU8fdpnwboK4KERGpfQoO1TJ8RMfdEQoOIiISEQoO1dIlOLQC6NLaIiJS8xQcqiUcHHI+OGiMg4iI1DoFh2op0eKgrgoREal1Cg7VMmw4mAEw3GWIu5yCg4iI1DwFh2qJxXY7s0LXqhARkVqn4FBNoe6KkflW2tTiICIiNU7BoZqaRnbcHZFr0+BIERGpeQoO1dTYdYBki6acFhGRGqfgUE3DO8c4jMi3qsVBRERqnoJDNRWdkqmzKkREpNYpOFRT0bTTubwjk8tXsUIiIiI9U3CoJs0eKSIiEaPgUE3hsyo6Zo/UAEkREaldCg7VVDSPA6jFQUREapuCQzXp0toiIhIxCg7VVOpCV5p2WkREapiCQzWVGhypFgcREalhCg7V1Nh5hcwm107M5TXGQUREapqCQzXF4v7y2oGmfJtaHEREpKYpOFRb0ZkVOh1TRERqmYJDtRVPO62uChERqWEKDtVWNECyRcFBRERqmIJDtRXN5aCuChERqWUKDtVWNO20BkeKiEgtU3CoNo1xEBGRCFFwqLbduioUHEREpHYpOFTb8KaOuyNz6qoQEZHapuBQbbt1VWhwpIiI1K6qBwczu9TM7jKzV83MmdnyPZQ/3MzuM7PNZrbTzB4zs5O6KRszs4vN7EUzazWzlWZ2tZkNL1W+KjTGQUREIqTqwQH4NnAS8AqwuaeCZnYw8DhwAvB94CtAE/CQmZ1S4iHXAD8E/jqA6jMAACAASURBVAl8DrgL+DzwgJnVwmuH4eGzKjTGQUREalui2hUADnbOvQpgZv/AB4HufAcYBbzJObcweMwvgReAG8zsCOecC9ZPx4eFe5xz7y/swMyWAdcBZwO3DcLr6Z3iFgfN4yAiIjWs6t+6C6FhT4LuhfcC8wqhIXj8DuCnwGHA7NBDPgwYcG3Rrm4GdgHn9qPaA6exMycNz7fR3papYmVERER6VvXg0AszgXrgiRLbngyW4eAwG8gDC8IFnXOtwMKistUTj+OCK2TGgHjbrurWR0REpAdRCg4Tg+XqEtsK6yYVld/onGvrpvxYM6sbwPr1mYW6KxqzrWRy+SrWRkREpHtRCg6NwbJUEGgtKlO4X6psd+U7mNmFZvZMr2vYVzqzQkREIiJKwaHQhl9fYltDUZnC/VJluyvfwTl3k3PuuF7XsK+augaHFs3lICIiNSpKwWFNsJxUYlthXbgbYw2+O6JUeJiE78ZoH8D69V2XS2vrlEwREaldUQoOi/BdDyeU2HZ8sAx3LzyNf31vDhc0swZgVlHZ6irqqmhTcBARkRoVmeAQnHb5APAOMzu6sN7MmoALgKV0PYPiDsABXyza1SfxYxtuHdQK90YoOIzUtNMiIlLDqj4BlJmdBxwY/DgOqDOzfw9+XuGcuyVU/FLgZGCumV0DbMMHgUnAGYXJnwCcc4vM7AbgIjO7B3gQmIafOfJRamHyp4LG4kmg1OIgIiK1qerBAfgE8Paidd8Mlo8CHcHBOfeymc0BvgtcAtQBzwKnOeceLrHvLwLLgQuBM4CNwPXAZc652jnnsalo2mmdVSEiIjWq6sHBOfeOXpZfDJxZZtkccHVwq11dBke2slUtDiIiUqMiM8ZhSNP1KkREJCIUHGpBl+DQRou6KkREpEYpONSC3c6qUHAQEZHapOBQC0JXyGzKt9LaXhvzUomIiBRTcKgFiQSZOj8Ldgxwu3ZWtz4iIiLdUHCoEdmGzlYH27mjijURERHpnoJDjcg2DO+4b7u2V7EmIiIi3VNwqBEWukJmy+YtVayJiIhI9xQcakT9qFEd99u2bCaXdz2UFhERqQ4FhxqRHNHccb8x08LaLbuqWBsREZHSFBxqRVPXSaBWbtQASRERqT0KDrWiaNrpFRsUHEREpPYoONSKouCgFgcREalFCg61YuTojruTM1t4TcFBRERqkIJDrZh6eMfdQ9vXs2H9GzinMytERKS2KDjUiqaRuElTAIjjmLJ9FZu2t1W3TiIiIkUUHGqIHTaj4/6M1tXqrhARkZqj4FBLDu8MDjPbVrNyo6aeFhGR2qLgUEsO7QwOh7WtY/W6zVWsjIiIyO4UHGpJ82haxkwAoI48tuylKldIRESkKwWHGpM/9KiO+2NfX1LFmoiIiOxOwaHGDDvqmI77h25bybaW9irWRkREpCsFhxoTCw2QnNb+OqvW6RLbIiJSOxQcas2YcWxuHANAvcux9Z//qHKFREREOik41KBNEw7ruB9fquAgIiK1Q8GhBuUOmd5xf9RqDZAUEZHaoeBQg4bP6Bwguf+WFZDLVbE2IiIinRQcatC+h0xlfbwJgGH5DG2vvFjlGomIiHgKDjUomYjzysgDO37e9tzfq1gbERGRTgoONWrDfod23E8+/yToEtsiIlIDFBxqVMuhM8lhAIx6/WV47A9VrpGIiIiCQ80ac+AB3DtyVueKO2+GTeurVyEREREUHGrW1PEj+EXz8axMjPIrWnfBL69Vl4WIiFSVgkONOmi/kYwf28wP9zmZfGHlC8/CXx6qZrVERGQvp+BQo2JmvPu4A/lnw0TuHRHusrgJ3thQvYqJiMheTcGhhv2PoydTn4jxi1HHs6rQZdGyC278FuzYXt3KiYjIXknBoYY1NSR554xJtMWS/HCfk3HBWRYsewm+92W1PIiISMUpONS497zJTwT1QsNEbtznxM4Nr78G37kY1rxWpZqJiMjeSMGhxh0yoZlpk303xW+bZvL4iedDPOE3bt4I3/0SPL9AZ1uIiEhFKDhEQKHVAeDGLePJfe5KqG/wK3btgOsug6s+C0/8CbLZKtVSRET2BgoOEfAvR06gubEOgPVbW1iQnAxf+T40NXcWWvkq/OwHcOn58Ptfw5ZN1amsiIgMaQoOEVCXiHParP07fv6/f36RNSMnwWU/hne+B+rqOwtv3gj3/hy+eh78+Ep4/ikfIrZvgZ3b/URS6tYQEZE+MqcPkW6lUikHkE6nq10V1m7ZxcdvmEcu739fjfUJvvyembxt2gTYsQ3m/Q7+dL8PCHsyZjwcfxK89WTYb/89lxcRkb2J9bhRwaF7tRQcAP743Cp+9PtFZHIdc0ly1lum8vGTjyAZj0GmHZ55zF8Qa8mi8nZ60BFw9PGw7yQYPxHGT4CGxkF6BSIiEgEKDn1Va8EBYMmaLXzrN8+ybktLx7p9m4dx+rEHcNqs/RndFHRbrF3pA8TCJ/2kUfk85HPQ3gbZTM9PMmJUZ4gYPxGaRkJ7O7S3+nBiBs1j/G3UGKhr8F0kmzfApg2+O2TigXDQ4TBpKsTjuz9Hawts2QibN8G2zTCi2bd+jB7r9x91+Zx/bRteh/VrYONaqB8Gx50I+06sdu1ERHqi4NBXtRgcALa3ZPjP3y7kyaVdr5aZiBlvmzaBd82azKwp+xCPlRjCks340zef+JNf5gb5LIy6epg81Y+raG3xoaJ1lw8z3ZXfdzKMHOXPHKlv8MGkYVhwa/TLRLJrwMi0Q8tO2LXTLzPtPrDEExCL++C0fQvs2Arbt/oANXYCTJgMEw7wASlZF+zT/L9NLOYfG4v5+q9f4+fNeP01WLcKhjXBpAN9SJpwgN/3Ky/Cshdh+RJoay39Go84Gv7lNDh2jn/OMOf8xF7Ll/gwNnZfv/+x+/l69Ec+719fqWCWy8HqZf64TZqye6tTPgfr1vhwGAuOazwB9fW+tSqR7F/ddqtrDl59CV58zr/uabPgwEPLPwbOwdY3YMXL/vc95VD/ugqv3Tl46XkfrpcvgQn7++67o4/v/J3k8/53vfJVH5IPnd7/17ljG6xa5v8HphwGo/bp3/5Etm2Bl1/w7ycDR8Ghr2o1OAA457j3qWXc/peX2dayewtCc2Mdbz18X048ciIzDhzjuzKKbd8Kf38c1qzwH4rr18CGtYMfJsRL1vkPpJGj/C2fh2VLSo9Tqav34cY5H/7a2yCTAZf361we8g7q6jrDVX2DbynatcPfWnbCsOFB2Jnilzu3w9IX4JXF0Ba0Ypn55zrwEF9+5av+w669rfTrSCRh8hT/wT75IB/YCi1cuZz/sI8nOoMYzm8v1LnAzD/m5X/CC3/zdQtrGglHHus/cBMJ/zyxuH/Mrp3B69zpLz//2su+JSuseQwceYwPYQvmwbrVu7+WYcNh1gn+uV9+we+zoKHRP37mm31Yymb9/0o264/t9i2wbatfZtrAYkFQi/n/tdXLfBgMGz8RDjsKDjjEB+vtW3zZnds7f68O/zY+epwP1ftO9IHyjY2wZjmsXgGvr/THpGlkcGv2xyaX7fw91Nd3thQ2j/GtfHX1/lbfEIQig1gQnvN5/7oKQb+t1f/uwuJJSCb9YxNJ/zs2C37ncR+uE4muj8m0+2O/dpX/m3Ohv4dkPTSNgOHB66ir9/XP5/1raG3xv9fCbfOmzpbOzRt8HQ86wv+dTD8WDjjYHwfn/PNmM/5/I1bUCuqcD/5b3vD1Hj4CGpt2D/YF+Zz/wN7yBrTs8M/b3uaXiSRMPMB/mSgMXHfO/+7XrPCBNlnXeewbGmH8JP+6S3Gua9h3zv8/PveUH/y+7CW/7vu3wJhxpffRewoOfVXLwaGgPZvjsX++zgN/W8HiVaUHRibjMQ4c18QhE5o5ZL+RHLxfM1PHj2BYXWL3wvmc/wMvBIn1a/w/a129/6euq/P/wNs2+7M1tr4Bra0weh//xrbPeP9GsuJl/wfd3bTYiaT/tjV6Hxg52u9r7ardPyyibEQzjJvQeVv5Cjz/tH+DFNlbNDVD82gfBLZsgvWvV+5/oL4BMP+hXnhOi/lgMKLZh4MdW/37VKZ998fX1fsWz0QiCKsJH6S2bd3za7CY7+5tbPJdx921shaMHO0Dx7gJPrC+scG/F2/d7MNcIukDRz7fNdAWnPc5ePsZZR2WMig49FUUgkPYK2u3Mfe5lfxl8Vo2bu+mmTxgwIQxjRw0fiST9xnOmBENjGmqZ58RDYxqrKNpWJLh9UnisX6ONygEgmQy9E24EYY3lW4y374V1q+GnTv8mIq20K3wzae1ZfdWkXjC/4MOa/TfGgvfVHI5vwT/BjYiuCWSwbeelf7b2sa1wbceBzj/xarwrbnwzXjMuM5vEvtN9iFnzQp/e32Vf20HHQ4HTYOph5dO/5s3wl//CH+d68c/lNLQ6JvWx03wZVavKO9smf4aPdYfu7Ur/Wsv1jzGf9N2zh//XM6/6W5av3vZgdA8BmYc55/nhWd3b0HYk/oG/41z+Eg/WLj4zXZYI7zlJHjTHFjyD3jyz7v/TkY0+xaO11+Djev693rA/91NmuL/Ppe9tOfxRiJ7EovBIdPhlPcNZHeFgkNfRS04FOSdY/Gqzcz/5+s8uWQda0MDKXvD8Kd9jhiWZMSwOkYGyxHDkgyvT9DUkGR4Q5IRDUlGNtbRHNxGDEuSKNU1Ip2c883A27YETdxb/Ifx5IN8KCnuy9++FTat8wEpWdd5i8U7m5bBN5EXxpK0tfoyjSN8UGto9B++q5cHgec1/0F2yJG+uXzMeB/m2ttg1XJY+bJvTZp0IOx/sP/WWMqObb6FacVSH8bMOrsRYrGu3Rb5nK9rLNbZrF04HoXluP3gqNmw/0Gd2/N53zz7wrO+STq8TzP/+oY1QeNwP7h3/6m+G6DQJJ3P+Tr+8+8+JB5ypB+oWpiBtfDcry72Yx9GBmMaxk/0+3fOB8xFC/w+2lr876LwLbRhmH/eEaN82GgY1rULqb7eDxQeP7FzsHCm3Y+vWPIPH1iGN0HTKBjZ7L8RxxOdY1JyWd+NuG61v21a54PVpCn+NvEA/w13x1b/+9i+DVyuc4xPPO5D99Y3/K3QxN7eBm1tPqRnM0Gd8fWOxfzfTCGM1zfs3mSey/ous2xwK4TvfN5v27Vj93ljzGCfff24khHNnV06sZj/m92xDXZu81cAzma6jjUqdO81j/bf0JtH+7/bMeNhzFj/XIsXwj+f9b+ncNgsdKe0dvPNf1ijD8+5XGf3Xi5Xuix0tqSMaPatEoUun107Ort/w6992HA/Xmncfr57q73N33Zu81+uSrV4dKexCWbM9t1m04/rvpuj7xQc+iqqwaHYtpZ2Xl27jaVrt/Ly69t4dd02Vm3aSX4Qf/d1iRjD6hIMq4szrC5BPGbEzIjFjHjMaGpIMnJYHSMb/bI+GScRj5GMG4l4jEQsRjxuJOMx4jGjIRmnsT7BsLoEjfUJGuoSHdtEpEblcp3BePsW/yG77+SugW2wOOcDdyLpn68Q2LJZ/2FdGEvSNNJ3szYO3/3xbS3+Az2T6QxJ9Q0+MOxpoGx7m2+patnlvww0j+n+jLF8zrfcrXnNh8KmkT7EjB4bDKA1H6Iy7b4eI0aVPltt4Cg49NVQCQ6ltGVyrNiwnWXrt7N+awtv7Gjjje2tvLGjja0t7exoybCzrfYHScbMqEv4AOGcb21xzmFmDKtL0FAXpyEZpz4Z7/xPMP+4QghprEswrD5BIgg18ViMWMx/y8w5Rz7v/BcHg7gZFgSghmScpoYEwxuSNDUkScTMf1kL/qUScaMh6cNTQ12cRCxGNp8nm3Nkc3nMzD9/faL04FURkeroMTiUGB0ne4P6ZJzDJo7isImjui2Tyzt2tmbY3pphe0s721sywa2dnW1Ztrdm/PaWDFt3tbNtVztbd/lylYqjeedozZRuTmzN5GBnhSrST8l4jPqkP+Og0FqMo6OFpnCz0DcWg45WmWQ8RjIRoy4Rp76wTMaJlfiGY0FwMoN4zIKWHn8zM7K5PJl8nmww0diwpA9WjXVx6pJxXz/nghMiXEdLUsysY391QX2ScR/CzIxY8Hy5vPPhKZ8nl3O+darQmlSXIBG3Li28hfr6/fjjksnlyeR8CHPOUZ+MByExoVYokUE2pIODmcWALwCfAqYAG4A7gcuccxH5SKmeeMwY2VjHyMY6YPgeyxc452jL5NjVnqWlPUdre468c+Tyjlw+Ty7v2NGSYVtLO1t3+SDS+UGQJ5PNk807crk8mbz/dt6WybGrLcuu9iy72rK0Z3K0Z/MVCyiDrfD6pf+S8Rh1CR/E6pNxkvFYR0jJ5PzfXyE4FQJPIm4kYj7oFMbnFFqv8s4PI4mFWqTiMfMtVPGYb2lykM13hpmY0dGiNawuQV3C79OHQodhJBP+sclEnETMOv/mc3nyzpGI+boUyhGEpgKzzkAZC8KSKyTOYHssVKawvfC6CruyUNlE3KhLxENBNNbxcyJu5B1BC5wj7xzZ4P8zl/ctc13CazLe5fHJRKxkkA0rHO980NIXC46zlfG4TC4f1CGu8DjIhnRwAK4BPg/cC1wNTAt+PsbMTnFO58UNBjOjoc6PQxhMLggj7dngwyBW+CZt5PJ5WttztGZytLZnacvmOx4D/s1vV3uWlrZCwMkG34T9m08u7zq+JRe+MTvnOt5483lHSybHjqDVZUdrpuMx/o3Yh4HW9hwt7VlaMzmyOefHZcT9m2He4cNQW3ZQx5vsbQohLApdbXsbg46gE7NC157/f8p3tGJ1FTOjPhnrGAdV+D90DnL5PG3ZPJlsrstjCy149ckgfAUhLB6zLt2FmVw+GH9qHWEyEQTDwv+qYbhCS6BzQcDyQarQrVmIKYV9JYKA6cvsHmIKga5wHLK5zi9LeUdHgKsLWu2AjmNVHPgK90+ZOZkp4wd8kGRJQzY4mNl04HPAPc6594fWLwOuA84GbqtS9WQAWOGbYsnxAXGG1w/wbIaDxDkfftoyuY7xF4W3msIYi2zOt9Z0fRydrTS5PO3Zwi1HW0eLjNvtMdAZfvLOkcnmgw9b/02y8K07GXzDbAlajlras7Rnc13eZIHON/28fyPPBN/sMzn/hh4OW3kXDI6Pxzq+ubdnc7S0+xalQoCDridc5ELfcju+rQfdNEAQEP3rVgSrXQ7I+iaFsh+Tdy74++vhDIcihb+/HT2flT6kHLn/aAWHAfBhfBC7tmj9zcB3gXNRcJAaYGYdzerSPx0hLJujPeOX2Vy+Y+xF4dukwwedfBBGcqGwky3+For/wAt3teVCTfTZXD70LdQHrlxHi5bvXstk/XTfhdaoLqEv6JpLxDq/ycbM7yNcp4Jw61cuCG250AexBb0ahW6FnPPfZC0Ie4WWtEI8LYTLXL4zRBYCaCaoX3s2TzafJ0bnt2QzgmPqu2xiQStbe8aH4Lbg8e3ZfMd+y+Fne/fPUfzaelLokmnP7p0NydbzeMYBNZSDw2wgDywIr3TOtZrZwmC7iAwhXULYsGrXRsKKxy/4rr2uA3ULXY1h2ZwPgG1Bd1/hMeAf4wcCxzquzRNuwWvN5DoCWCHoFQJauCuiY9xHEMYK5bP5fDDjs3UJZLlgPEsu5zq6GcOteeGuh1zQStZxHOhsfcvlg66JoE6FY5DNB+EtaDksBD6DzvMdXOfCOThgbNPg/OJKGMrBYSKw0TlXaoL91cBbzazOOdeLWTdERKQvzIy4QRyDXjSuFVpyyu16DIfHkX2sq/RsKJ883gh0c1UeWkNldmNmF5rZM4NSKxERkQgbysFhF1DfzbaGUJndOOducs4dNyi1EhERibChHBzWAGPNrFR4mITvxlA3hYiISC8M5eDwNP71vTm80swagFmAuiJERER6aSgHhzvwA06/WLT+k/ixDbdWvEYiIiIRN2TPqnDOLTKzG4CLzOwe4EE6Z458FM3hICIi0mtDNjgEvggsBy4EzgA2Atfjr1Wxd84SIiIi0g9DOjg453L4a1RcXe26iIiIDAVDeYyDiIiIDDAFBxERESmbgoOIiIiUbUiPcRgoqVSq2lUQERGpFJdOp7u93KZaHERERKRs5lx51zqXgWFmz+g6GP2n4zgwdBwHho7jwNBxHBiDfRzV4iAiIiJlU3AQERGRsik4VN5N1a7AEKHjODB0HAeGjuPA0HEcGIN6HDXGQURERMqmFgcREREpm4KDiIiIlE3BYZCZWczMLjazF82s1cxWmtnVZja82nWrRWZ2mJldZWZPmtkGM9tuZgvN7P+UOmZmdriZ3Wdmm81sp5k9ZmYnVaPutczMGs1smZk5M/txie06jj0wszFm9p9m9nLwf7zBzB4xs38pKqfj2A0zazKzr5vZouD/eqOZPW5m55uZFZXd64+jmV1qZneZ2avB/+3yPZQv+5j193NJM0cOvmuAzwP34q/SOS34+RgzO0WX997Nx4HPAvcDtwIZ4J3At4APmtnxzrkWADM7GHgcyALfB7YCnwQeMrPTnXMPV6H+teoqYGypDTqOPTOzA4F5QBPwM2AJ0AzMBCaFyuk4dsPMYsB/A28FfgFcDzQCHwb+H/598WtBWR1H79vAG8CzwKieCvbhmPXvc8k5p9sg3YDpQB74TdH6zwEO+Ldq17HWbsBxQHOJ9d8KjtlFoXV3AjlgVmhdE7ACeIlg8O/efgOODd5QvhQcwx8Xbddx7Pn4PQasBCbsoZyOY/fH5oTgb++aovV1wKvAFh3H3Y7ZQaH7/wCW91C27GM2EJ9L6qoYXB8GDLi2aP3NwC7g3IrXqMY5555xzm0tsemOYHkUQNCk9l5gnnNuYejxO4CfAocBswe5ujXPzOL4v7c/APeU2K7j2AMzOxF4G/B959zrZpY0s8YS5XQcezYyWK4Jr3TOtQMbgZ2g4xjmnHu1nHJ9OGb9/lxScBhcs/HJbkF4pXOuFVjIXvIPMEAmB8t1wXImUA88UaLsk8FSxxcuBo4ALupmu45jz/5nsHzNzB4AWoCdZrbEzMJvsDqOPVsAbAG+amb/amYHBH3y3wHeBFwRlNNx7L3eHrN+fy4pOAyuicBG51xbiW2rgbFmVlfhOkVO8K35Mnxz+23B6onBcnWJhxTWTSqxba9hZlOBK4GrnHPLuymm49izw4PlzcAY4KPAJ4B24BYz+1iwXcexB865zfhvxW/gm9VXAC/ixzO93zl3c1BUx7H3envM+v25pMGRg6sRKPXLAWgNlWmvTHUi61rgeODrzrmXgnWF5uJSx7e1qMze6kZgGfDDHsroOPZsRLDcDrwzaFrHzO7F981/28x+gY5jOXbg++rvxw/kG4MPDreZ2ZnOuT+i49gXvT1m/f5cUnAYXLuA8d1sawiVkW6Y2Tfxzew3Oee+E9pUOG71JR621x/boBn9XcCJzrlMD0V1HHvWEixvL4QG8N+gzex+4CP4Vgkdxx6Y2Qx8WLjYOfeT0Prb8WHi5uDMAB3H3uvtMev355K6KgbXGnyzT6lf6CR8c5FaG7phZlcA/44/XevTRZsLg6xKNVsW1pVquhvygr+3HwIPAmvN7BAzOwQ4MCjSHKwbhY7jnqwKlmtLbHs9WI5Gx3FPLsZ/KN0VXumc2wX8Hv+3OQUdx77o7THr9+eSgsPgehp/jN8cXmlmDcAs4JlqVCoKzOxy4HLgl8AFLjhfKGQRvrnthBIPPz5Y7q3HdxgwDjgDWBq6zQu2nxv8fAE6jntSGEA2ucS2wrr16DjuSeEDLF5iWyK01HHsvd4es/5/LlX7XNWhfANm0PP5sudWu461eMMPhHT40BDrodxd+HOXjw6tK5y7vIS95HzvEsclCXygxO0zwXH97+Dnw3Qc93gsRwPb8C0PTaH1E/B99ktC63Qcuz+O1wR/e18tWl9o9XoDSOg4dnv89jSPQ9nHbCA+l3R1zEFmZtfj++jvxTcdF2bo+itwktPMkV2Y2WeBHwOvAd/A/4GHrXN+EBVB8/sC/OyS1+Df4D+J/8c4wzn3UKXqHQVmNgU/WPIG59xFofU6jj0wswuB/wJeAP4vftKiz+DDw7udc3ODcjqO3Qhm33wWH8Ruxb//jcEfnynAZ51z6aCsjiNgZufR2b34Ofzf3dXBzyucc7eEyvbqmPX7c6naSWqo3/BNc1/Gz97Vhu9r+iGhby+6dTleP8en3u5u84rKTwN+iz9HfBfwF+CUar+OWrzh36B3mzlSx7GsY3cW/pz4nfgzLOYCc3Qce3UMD8ZPN70q+IDbBswHztJxLHm85pX7PtjbY9bfzyW1OIiIiEjZNDhSREREyqbgICIiImVTcBAREZGyKTiIiIhI2RQcREREpGwKDiIiIlI2BQcREREpm66OKSJDXiqVugJ/7ZN3ptPpedWtjUi0KTiIyB6lUqlyZorTh7LIXkDBQUR648oeti2vVCVEpHoUHESkbOl0+opq10FEqkvBQUQGXHhMAf4Kf18EjsBfIOp3wNfT6fTaEo87FH9V1JOBccBG4GHgm+l0emmJ8nH8VQDPA47CX0FwNf4CQd/r5jEfAL4alG/FX7Dqy+l0enV/XrPI3kJnVYjIYLoY+AnwHHAt/mp8HwMeT6VS48IFU6nUbOAZ4FzgaeA/8VekPAd4JpVKHVdUvg74A3AjsD9wG3Ad8DfgfwFzStQnBfwK361yA/AP4EPAw6lUqr7fr1ZkL6AWBxEpW9CSUEprOp3+bon1pwNvSafTfw/t4xp8C8R3gU8E6wz4JTASODedTt8aKv8h4NfAr1Kp1JHpdDofbLoCOAV4APjXdDrdFnpMfbCvYqcBs9Pp9KJQ2duADwNnAnd2++JFBFCLg4j0zuXd3C7ppvwt4dAQuALYCvxb6Fv+W/FdGU+EQwNAOp2+A/gLcDjwNujookgBLcCnw6EheExbOp3eUKI+14VDQ+DmYPnmbl6DiISoxUFEypZOp62XD3m0xD62plKphcDbgWnAQuDYfLn+twAAAeFJREFUYPOfu9nPn/Gh4RhgPj5kNANPpdPpNb2ozzMl1q0MlqN7sR+RvZZaHERkMK3rZn1hYGRz0fL1bsoX1o8qWvZ2QOOWEuuywTLey32J7JUUHERkMO3bzfr9guXWouV+JcoCTCgqVwgAk/peNRHpCwUHERlMby9ekUqlmoFZ+FMhFwerC+Mg3tHNfgrrnw2WL+LDw8xUKjVxICoqIuVRcBCRwXReKpU6pmjdFfiuidtDgxr/ij9V823BPAsdgp9PBJbgB0mSTqdzQBoYBvyk+FTKVCpVV3y6p4gMDA2OFJGy9XA6JsB96XR6YdG6/wb+mkql7sSPU3hbcFtO6EyMdDrtUqnUR4E/AnekUqnf4lsVDgfeh5846iOhUzHBT3/9FuA9wJJUKvW7oNz+wLuArwA/79MLFZFuKTiISG9c3sO25fgzJMKuAe7Fz9vwIWAH/sP86+l0en24YDqdfiqYBOrf8fMzvAc/c+Tt+JkjXyoq355KpU4DPg18BPgoYMCa4Dn/0vuXJyJ7Ys6Vc9E7EZHy6TLWIkOXxjiIiIhI2RQcREREpGwKDiIiIlI2jXEQERGRsqnFQURERMqm4CAiIiJlU3AQERGRsik4iIiISNkUHERERKRsCg4iIiJStv8PmuN4/ZPr/hsAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 576x432 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAGdCAYAAABKLepoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXycZb3//9dnksme7ntKFwq0QFu2siggiwoIKsoXjygucOSgjuByzvHghtQD4tGjHvzVMwroQUFwAQQpLiBKCyhQCpTNAqWlhe5b9n1mrt8f1ySZTCfJJJl05k7fz8djHpPcc9/3XJO0mfd8ruU25xwiIiIiwxHKdwNEREQk+BQoREREZNgUKERERGTYFChERERk2BQoREREZNgUKERERGTYFChERERk2BQoRCSnzOxnZuaSt04zmzLA/u9L2d+Z2SUD7H9Dyr5fyaI9S9PO39/thkG+XBFJUqAQkZFUDHx4gH0+lu3JzCz9fB8fRFsSwI4Bbg2DOJ+IpCjOdwNEZNR6A5iFDwwZP/mb2QTgPKAJ6AAmDHDOc4HJwEpgGjDfzE5yzj2RRXvedM7Nya7pIjJYqlCIyEh5HFgPHGNmR/axz0VACXA30JrFObsqEnckb6nbRCSPFChEZCTdlrzvq1uja/utA50oWc14N76ScRdwe/KhD5pZ6XAaKSLDp0AhIiOpK1BcbGa9/t6Y2WHAicCbwIoszvUhfDXjT865vc659cCTwHjgvTlrsYgMiQKFiIwY59wG4G9ADXBm2sNd1YnbnXOJLE7X1bVxe8q229MeE5E8UaAQkZHW1Z3R3e1hZgZ8JO3xPpnZ4cDxQCOwPOWhXwMx4GwzmzrAaQ4ys+0D3Poa6yEiA1CgEJGR9hugDbjAzCqT204DZgOrnXNrszjHJcn7e5xz3YM3nXM7gYfwM9YuHuAcIWDqALdwFm0RkQwUKERkRDnn6vBVhUrg/yU3D2YwZoieasYdGXbp6vYYaD2LTc45G+C2ZqD2iEhmChQisj90BYePmlk5Plh0Ar/M4th3AjOArmpEunuBFuAoMzsqB20VkSFQoBCR/eFP+EBwJnAFMAb4o3NudxbHdg24nALE0pfLxo+rqEjbV0T2MwUKERlxzrkY8Cv835xvJjff1vcRnpmNAd43iKe6OLk8t4jsZwoUIrK/dHV7hIFaes/W6Ms/AeX4tSrG93ObCOzBVzHOyWmrRSQrSvIisl845542s6VANfC8c649i8O6ujB+mxzc2Scz+x3wz8lj7h9OW0Vk8BQoRGS/cc59I9t9zWwecEry299mcchv8YHiPWY23jlXO4QmisgQKVCISKHqmga6A3gsi/3/jL/8+Bj8Rcd+lPb4QWa2fYBz/N05d8GgWikigMZQiEgBSq6k2RUofpfN0tzOuQ56ujoyzfbIZmGrgS6fLiJ9MOdcvtsgIiIiAacKhYiIiAybAoWIiIgMW94DhZkdZmb/aWZPmNkuM2s0szVm9tWUCwml7j/fzO41s1ozazazR80s/bLIAz3nWDNbZmZbzKzNzF4ys08n+21FRERkkPI+hsLM/gv4DHAf8AR+ff8z8AvaPA+c1HV1weQ0slX4yxXfANQD/wIsBN7lnMu0zn/685XgR4wfAywD1gLvAt4PfMM5tzSHL09EROSAUAiBYgmwzjlXn7b9OuCrwJXOuR8mt/0Gf1Gh47quCmhmVcBL+MsjL3ADvCAziwD/C3zWObcsZfvdwHuAQ51zm/o6PhKJOIBoNKpqhoiISFLeuzycc6vTw0TSr5P3CwGS3R/vBVakXmLYOdcE/AQ4DDg+i6f8MP7KhDenbb8BvyTwB7Ntum666aabbrodQLd+5T1Q9GNm8n5H8n4xUAo8nmHfJ5L3/QYKMwsBxwLPOufa0h5eBSQGOoeIiIjsqyADhZkVAV/Hj5W4I7l5RvJ+S4ZDurbVDHDq8fgLDe1zjuR1Bfb0dQ4zu9zMVg9wfhERkQNSQQYKfPfDScDXnXOvJLdVJO8zXVCoLW2fvvR3jq7zZDyHc+4m59ySAc4vIiJyQCq4QGFm1wJXADc5576V8lBL8r40w2Flafv0pb9zdJ1noHOIiIhImoK6OFjy0sZfA24BPpX28NbkfaYuia5tmbpDUtUCrZnOYWalwERgZZbN7aWzs5PNmzfT1pY+NEP6UlZWxsyZMwmHw/luioiIDFPBBAozuwa4BrgVuCzD9M8X8F0Vb8lw+EnJ+37HODjnEmb2DHCMmZUmx010OQFfsRnSOInNmzdTXV3NnDlz0PpYA3POsWfPHjZv3szcuXPz3RwRERmmgujyMLOvA0uB24BLM11ZMDk9dDlwupkdlXJsFXAZsA4/U6Nre9jMFpjZrLRT/RI/TuLytO2fxw8C/c1QXkNbWxsTJ05UmMiSmTFx4kRVdERERom8VyjM7DPAN4A3gIeAD6e9Ke9wzv05+fWXgbcDD5rZ/wAN+JUya4Dz0qoaNfhVMFcCp6dsvxm4FPi+mc1J7nMufqXM65xzrw/jtQz10AOSfl4iIqNH3gMFPes+zAJ+nuHxlcCfAZxzr5nZycB/AV8CSoBngHOyWXY7eY4OM3sHcB3wIfy4ifXAlfgVNEVERGSQ8h4onHOXAJcMYv+1wPlZ7LcRyPgR2DlXh59JckW2zysiIiJ9K4gxFJIbGzduZMGCBVx22WUsXLiQiy++mIceeoiTTz6ZQw89lFWrVrFq1Sre+ta3cswxx/DWt76VV17xy3zE43G++MUvcvzxx7N48WJuvPHGPL8aEREJkrxXKEajs6/9/Yid+4Grz+v38ddee40777yTm266ieOPP5477riDxx57jPvuu4/rr7+eW2+9lUceeYTi4mIeeughvvKVr3D33Xfz05/+lLFjx/LUU0/R3t7OySefzFlnnaUZGCIikhUFilFm7ty5LFq0CIAjjzySt7/97ZgZixYtYuPGjdTX1/Pxj3+cdevWYWZ0dnYC8OCDD/L8889z1113AVBfX8+6desUKEREJCsKFKNMaWnPIqChUKj7+1AoRCwW4+qrr+aMM87gnnvuYePGjZx++umAXxdi2bJlnH322flotoiIBJwCxQgYqFsi1eY9TbS0xwComVBJZdnIrhpZX19PTY1fKPRnP/tZ9/azzz6bH/3oR5x55pmEw2FeffVVampqqKysHNH2iIjI6KBBmXmWuhbDPmuDjoD/+I//4Mtf/jInn3wy8Xi8e/tll13GEUccwbHHHsvChQv55Cc/SSwWG/kGiYjIqGD7rnAt/YlEIg4gGo322r527VoOP/zwQZ9vW20Lja0dAEwbV8GYipIctDI4hvpzExGR/a7f1QhVociz1MUiHQp3IiISTAoUeRbaz10eIiIiI0GBIs9SKxQJJQoREQkoBYo829+DMkVEREaCAkWepf4CVKEQEZGgUqDIM1UoRERkNFCgyLNQ6iwPJQoREQkoBYo8S61QJPZznqiqqtq/TygiIqOWAkWemSoUIiIyCuhaHiPhsnOy3rU6ecvaT/7U50NXXXUVs2fPJhKJALB06VLMjEceeYTa2lo6Ozu57rrrOP/88wd8mhUrVnDNNdcwdepU1qxZwwUXXMCiRYv4wQ9+QGtrK/feey/z5s1j+fLlXHfddXR0dDBx4kRuv/12pk6dSnNzM1deeSUvvPACsViMpUuXZvW8IiISTKpQjCIXXXQRv/71r7u//81vfsOll17KPffcwzPPPMPDDz/Mv/3bv2VdCXnuuef4wQ9+wAsvvMBtt93Gq6++yqpVq7jssstYtmwZAKeccgpPPPEEzz77LBdddBHf+c53APjmN7/JmWeeyVNPPcXDDz/MF7/4RZqbm3P/okVEpCCoQjGKHHPMMezcuZOtW7eya9cuxo8fz/Tp0/nCF77AI488QigUYsuWLezYsYNp06YNeL7jjz+e6dOnAzBv3jzOOussABYtWsTDDz8MwObNm/ngBz/Itm3b6OjoYO7cuQA8+OCD3HfffXz3u98FoK2tjTfeeEPX7RARGaUUKEZCP90S6do647yxqxGA0nARsycPqgNkHxdeeCF33XUX27dv56KLLuL2229n165dPP3004TDYebMmUNbW1tW5yotLe3+OhQKdX8fCoW6r0R65ZVX8q//+q+8973vZcWKFSxduhTw40Huvvtu5s+fP6zXIyIiwaAujzwL5Xjp7Ysuuohf/epX3HXXXVx44YXU19czZcoUwuEwDz/8MJs2bRr2c6Sqr6+npqYGgJ///Ofd288++2yWLVvW3b3y7LPP5vR5RUSksChQ5FmuF7Y68sgjaWxspKamhunTp3PxxRezevVqlixZwu23386CBQuG/yQpli5dygc+8AFOPfVUJk2a1L396quvprOzk8WLF7Nw4UKuvvrqnD6viIgUFtNUxcGJRCIOIBqN9tq+du3aIY0PiMcTrN/RAEAoZBwybWwOWhkcQ/25iYjIfmf9PagKRZ5p6W0RERkNNCgzz9IXtnLO9QoZI+2FF17gox/9aK9tpaWlPPnkk/utDSIiEnwKFHlmZphZ9+BF53qHjJG2aNEi1qxZs/+eUERERiV1eeTQUMejHKgXCDuQXquIyGiX90BhZl82szvNbIOZOTPb2M++boDbV7N4vtP7Of7+ob6OsrIy9uzZM6Q3yXxeICxfnHPs2bOHsrKyfDdFRERyoBC6PK4H9gLPAOMG2PejfWxfCswDlg/ieW8CHk3btnkQx/cyc+ZMNm/ezK5duwZ97O7GNuJxnyTa95ZSXJT3nLdflJWVMXPmzHw3Q0REcqAQAsU859wGADN7EejzmtrOuV+kbzOzmcBcYLVz7vlBPO/jmc43VOFwuHvZ6cH61I2P8PpOv1pm9F9OZd60MblqloiIyH6R94/CXWFiGC7Fv46fDPZAM6s0s7zX3EvDRd1ft8fieWyJiIjI0OQ9UAyH+cEHlwItwC8HefgPgCag1cxeNbPP2f6cr5mipLjn19DRqUAhIiLBUwhdHsNxJr6742fOuYYsj+kE7gP+AGwFZgCfAG4AjsYHlP1KFQoREQm6QFcogMuS9z/N9gDn3N+cc+c75250zi13zt0InAQ8AFxiZqdkOs7MLjez1cNv8r5Ki1MCRWdiJJ5CRERkRAU2UJjZeOD9wMvOuceGcy7nXAL4VvLbc/vY5ybn3JLhPE9felUo1OUhIiIBFNhAAXwEKGUQ1YkBbEzeT+pvp5HQawyFujxERCSAghwoPoEfD3Frjs53aPJ+R47Ol7XeYyjU5SEiIsETyEBhZkuAo4DlzrmdfewTNrMFZjYrbfvEDPuW4hfHgsEtjpUTvcdQqEIhIiLBk/dZHmb2UWB28tvJQImZfS35/Sbn3G0ZDvtE8r6/tSdqgLXASuD0lO1/MrOtwNP0zPL4CL5Cscw5t2oor2PIVq3g6FfWUly3jT9WHalpoyIiEkh5DxT4cHBa2rZrk/crgV6BwszKgQ/hl8l+YAjPdxfwPuBK/FLfzcCzwDXOucGuZTF8D93LsRte5ljgmfJZmjYqIiKBlPdA4Zw7fZD7tzLwNT9wzm0E9lmoyjn3beDbg3nOERUu6f6yJBFTl4eIiARSIMdQjCrh0u4vS11MgzJFRCSQFCjyrSSlQuHiGkMhIiKBpECRbyldHqVOXR4iIhJMChT5VtLT5VGiLg8REQkoBYp8C6d1eWiWh4iIBJACRb6py0NEREYBBYp8S+/yUKAQEZEAUqDIt7QKRYfGUIiISAApUOTbPoMyVaEQEZHgUaDIN42hEBGRUUCBIt/SFrZq71SXh4iIBI8CRb6lLb2dcI5YXKFCRESCRYEi30p6XxwM0DgKEREJHAWKfEurUAAaRyEiIoGjQJFvKYMyw84HiQ6NoxARkYBRoMi3kt6zPEBdHiIiEjwKFPkW7r0OBajLQ0REgkeBIt8yVijU5SEiIsGiQJFvGSoUHapQiIhIwChQ5FuvCoUPEuryEBGRoFGgyLf0CoVzGpQpIiKBo0CRb0VF/gYU4SgmoSuOiohI4ChQFIK0KoW6PEREJGgUKApBONz9pa44KiIiQaRAUQh6VSjimjYqIiKBo0BRCHpdwjymaaMiIhI4ChSFIPUCYYmYZnmIiEjgKFAUgrQKhcZQiIhI0OQ9UJjZl83sTjPbYGbOzDb2s+/S5D6Zbv8+iOcca2bLzGyLmbWZ2Utm9mkzs5y8qMFKu4S5po2KiEjQFOe7AcD1wF7gGWBclsd8Adidtu3pbA40sxLgz8AxwDJgLfAuIApMBZZm2Ybc6VWhiNOmCoWIiARMIQSKec65DQBm9iJQlcUx9zrnNg7x+S4Djgc+65xbltx2s5ndDXzFzG5xzm0a4rmHJtz7AmGtGkMhIiIBk/cuj64wMVhmNsbMhhKIPgy0ADenbb8BCAMfHEp7hqVEC1uJiEiw5T1QDNHzQD3QZmZ/N7N3ZXOQmYWAY4FnnXNtaQ+vAhL46sX+lVah0BgKEREJmkLo8hiMOuAm4O9ALTAf+DzwezP7Z+fczwY4fjxQDmxJf8A5125me4CanLY4G2HN8hARkWALVIXCOXeDc+6TzrmfO+fuc879N7AY2AH8j5kNNP6iInnf3sfjbSn79GJml5vZ6iE1fCD7rJSpQCEiIsESqECRiXNuD/Bj/AyRtw6we0vyvrSPx8tS9kl/npucc0uG1MiBlKR1eXSqy0NERIIl8IEiaWPyftIA+9UCrWTo1jCzUmAiGbpDRlza1UY1bVRERIJmtASKQ5P3O/rbyTmXwK93cUwyQKQ6Af/zGJlujf6kVyjU5SEiIgETmEBhZsVmNjbD9oOATwN78IM1u7aHzWyBmc1KO+SX+HESl6dt/zwQA36T04ZnI3VQZiJORyxBwrn93gwREZGhyvssDzP7KDA7+e1koMTMvpb8fpNz7rbk11XA62Z2L351y65ZHpclH/uQc6415dQ1yf1WAqenbL8ZuBT4vpnNSe5zLvB+4Drn3Ou5fH1ZKem99DZARyxBWbhovzdFRERkKPIeKIBPAKelbbs2eb8S6AoUrcDdwInA+/AhYjfwEPAd59yqbJ7MOddhZu8ArgM+hB83sR64Evjfob+MYUibNgrQ0RlXoBARkcDIe6Bwzp2e5X7t+GpEtufdCGS82Jdzrg64InnLv7SFrQBNHRURkUAJzBiKUS1t6W1AU0dFRCRQFCgKQYYKhaaOiohIkChQFIKUCkXY+SChqaMiIhIkChSFQGMoREQk4BQoCkGGMRS6QJiIiASJAkUh6FWhSHZ5aFCmiIgEiAJFIchUoVCXh4iIBIgCRSEIh7u/LHMxcE5dHiIiEigKFIUgVARFPWuMhYnTHlOXh4iIBIcCRaFIveJoIkaHKhQiIhIgChSFItx7HIXGUIiISJAoUBSKkt4zPTSGQkREgkSBolCkVSg6NIZCREQCRIGiUKRdwlwVChERCRIFikJR0nv5bQUKEREJEgWKQtGry0PTRkVEJFgUKApFWoVCVxsVEZEgUaAoFBpDISIiAaZAUShSujw0hkJERIJGgaJQlPSuUGjaqIiIBIkCRaFIr1BoDIWIiASIAkWhSK1QJLRSpoiIBIsCRaEIp83y6FSXh4iIBIcCRaEo0cXBREQkuBQoCkWvaaNx4glHLK4qhYiIBIMCRaEo6T0oE1CVQkREAkOBolCkLWwFaByFiIgEhgJFoUgblAmqUIiISHDkPVCY2ZfN7E4z22Bmzsw29rGfmdlHzOxXZvaambWY2Rtmdp+ZnTiI5zs9+TyZbvfn7IUNVtqgTEBTR0VEJDCK890A4HpgL/AMMK6f/UqB24A1wK+A14HpwKeAx83sY865XwzieW8CHk3btnkQx+dWhgqFVssUEZGgKIRAMc85twHAzF4EqvrYLwac7pxbmbrRzG4GXgK+Z2Z3OOeyfRd+fJABZGSlXb4cVKEQEZHgyHuXR1eYyGK/WHqYSG7fAawEpiRvWTOzSjMrG8wxI6YkwxgKBQoREQmIvAeKHJkJdAB1gzjmB0AT0Gpmr5rZ58zMRqR12QhnGEOhQZkiIhIQgQ8UZnYucALwa+dcWxaHdAL3Af8BvBc/BqMOuAH4v36e53IzWz38FvehpPfCVqAKhYiIBEegA4WZHYofqLkF+LdsjnHO/c05d75z7kbn3HLn3I3AScADwCVmdkofx93knFuSq7bvI0OFok2BQkREAiKwgcLM5gJ/ARzwLufcrqGeKzmQ81vJb8/NQfMGLxzu/rI0kQwUHQoUIiISDIUwy2PQzGwO8DB+RsjbnXMv5OC0G5P3k3JwrsFLXSmTOOacKhQiIhIYgatQmNlsfJgYC7zTOfdsjk59aPJ+R47ONzihEBT3VClKXIy2jlhemiIiIjJYgQoUyTCxAhgPnOWce7qffcNmtsDMZqVtn5hh31JgafLb5Tlr8GClrZapCoWIiARF3rs8zOyjwOzkt5OBEjP7WvL7Tc6525L7VeMrE3OAZcB8M5ufdro/J9elAKgB1uLXqDg9ZZ8/mdlW4GlgKzAD+Ai+QrHMObcqd69ukHqtlhnXGAoREQmMvAcK4BPAaWnbrk3er8TP4gCYCMxNfn1lH+c6g4G7LO4C3pc8xzigGXgWuMY598vsmz0CVKEQEZGAynugcM6dnuV+G4GsF57qa3/n3LeBb2d7nv0q7XoeGkMhIiJBEagxFKNer8WtVKEQEZHgUKAoJGkXCFOgEBGRoFCgKCRpFwhrVZeHiIgEhAJFIQmry0NERIJJgaKQpHR5+EGZChQiIhIMChSFJLVCkVCFQkREgkOBopCU9K5QtHfGSTiXxwaJiIhkR4GikPQaQ+GrE+2qUoiISAAoUBSStFkeoEuYi4hIMGQVKCKRyNsikcisgffs3n9xJBL52NCbdYAK9156G9A4ChERCYRsKxQPA5ekbohEIldFIpE9fez/fuCWYbTrwJSxQqG1KEREpPBlGygyXUOjDH9xLcmVtJUyQRUKEREJBo2hKCRpC1sBtGoMhYiIBIACRSHJ1OXRqS4PEREpfAoUhSTToExVKEREJAAUKApJxgqFAoWIiBS+wQQKLdk40jQoU0REAqp4EPsujUQiS9M3RiIRvePlSsm+gzI1bVRERIJgMIEi09TR/qiiMVgpszxKExpDISIiwZFVoIhGoxprsT+UaKVMEREJJgWFQhLWtFEREQmmEQkUkUjkXZFI5J6ROPeoluFqo+ryEBGRIBjMGIp+RSKRGuCfgU8AB+XqvAcUdXmIiEhADStQRCIRA84DLgfOAYqSD60Ebh5e0w5AxWEwA+cIkyDkErRqloeIiATAkAJFJBI5CLgMX5GYQc8MkMeAS6PR6PrcNO8AY+a7PTraAV+lUIVCRESCIOtAEYlEQsB7gX8BzsJXIzqAe/CXKl8OvKwwMUwpgaLUxTWGQkREAiGrQBGJRK4DLgWm4asRzwA/A+6IRqN7k/uMUBMPMCWl0Nzov3Qx2lWhEBGRAMi2QvEVIAH8CPhRNBp9KVcNMLMvA8cCxwFzgU3OuTn97D8f+DZwGlCCDzfXOOf+OojnHAtcB1wATATWAz8Efuycy++CXGlTRxsVKEREJACynTbqkvteDFwRiUROzGEbrgfOxL+p1/a3o5nNA/4OvAX4DvBFoAp4wMzekc2TmVkJ8GfgU8CvgSuBV4AocM3QXkIOhXsvv61BmSIiEgTZVihm48dOXAp8Erg8Eom8ih87cWs0Gt0+jDbMc85tADCzF/EBoS/fAsYBxznn1iSPuRV4CfhfM1uQRYXhMuB44LPOuWXJbTeb2d3AV8zsFufcpmG8nuFJmTpa6mJ0xBLEE46i0GBXPhcREdl/sqpQRKPRzdFo9BpgDn5g5u+BQ4D/At6MRCJ/GGoDusLEQMysMvncK7rCRPL4JuAnwGH4oDCQDwMt7Dut9QYgDHwwm/aMmNQKRfJ6HhpHISIihW5Q00aj0WgCuB+4PxKJzKBn6ug5yV0+EIlE2oGfRqPRNX2cZqgWA6XA4xkeeyJ5fzywqq8TmFkIP17jGedcW9rDq/DjRLIJJSOnj+W3K0pztgaZiIhIzg156e1oNLo1Go3+J34g5XnA74BK4DPA05FI5KncNLHbjOT9lgyPdW2rGeAc44HyTOdwzrUDe7I4x8jqtVqmlt8WEZFgGPa1PKLRqItGo3+MRqPvxy+5/TVgI74SkEsVyfv2DI+1pe0zlHN0nSfjOczscjNbPcD5h6+svPvLctcJQKsChYiIFLicXhwsGo3uiEaj10ej0XnA2bk8N37cA/huj3RlafsM5Rxd58l4DufcTc65JQOcf/jKK7u/rEr4nKQrjoqISKEbscuXR6PRh3J8yq3J+0xdEl3bMnWHpKoFWjOdw8xK8WtSDHSOkVXRM8mlKuELKVp+W0RECl22K2V+bCgnj0ajtw7luD68gO+qeEuGx05K3vfbJeGcS5jZM8AxZlaaHDfR5QR8wBr5bo3+pASKykQHAO3q8hARkQKX7dSBn+EXt8qWJffPWaBwzjWZ2XLgAjM7yjn3HICZVeFnm6wjZYaHmYWBeUCLc+6NlFP9EjgZf4XUZSnbPw/EgN/kqs1DkhIoqru7PBQoRESksA1mLmIMP2X0H7lsgJl9FL9wFsBkoMTMvpb8fpNz7raU3b8MvB140Mz+B2jAL7hVA5yXtqhVDbAWfyn101O234xfoOv7ZjYnuc+5wPuB65xzr+fsxQ1FRc8Yiq4KhVbLFBGRQpdtoFgJvA14HzAF/6b8m2g0mr6Ww1B8An9djlTXpjxvd6Bwzr1mZifjF9T6Ej3X8jjHOZfVmA3nXEdyme7rgA/Rcy2PK4H/HcbryA2NoRARkQDKdqXMM4D5wHfxK2TeAmyLRCLLIpHI4uE0wDl3unPO+ridnmH/tc65851z45xzFc65UzKFCefcxn7OUeecu8I5N8M5V+qcO8I598O8XxgMMgcKjaEQEZECl3WXRzQafQ24KhKJfBU4H9/V8GkgEolEngZuBH4VjUabR6SlB4qK1GmjqlCIiEgwDHraaDQajUWj0buj0eg5+EGP1wPTgZuArZFIJNMsDMlWRXX3l5XdgUJjKEREpLANax2KaDS6KRqNXo2fMbEFf6XQyblo2AGrrBzMX1m0wnUScgmtlMZKqAYAACAASURBVCkiIgVvyFecSl4c7J+Tt9n4Zat/gR8kKUMVCvnVMluaAN/toTEUIiJS6AYVKCKRSAh4N37dh3OSx78AfA64LRqN1ue8hQeiit6Bol1dHiIiUuCyXSlzLn5656X48RLNwM+Bm6PRaJ+XC5chqqgCdgB+HIUGZYqISKHLtkLxWvJ+NXAN8EvN5hhBvVbLbKdJXR4iIlLgsg0UBnTiqxNfB74eiUQGOsZFo9HZA+0kGZSnrpbZzm5VKEREpMANZgxFGJg5Ug2RFJW9F7fS0tsiIlLosgoU0Wh0xC5zLhmU9w4UGkMhIiKFTkGhEKWtlqlpoyIiUugUKApRZepqmR10xhPEE/m/zIiIiEhfFCgKUXlqhcJf0FXLb4uISCFToChEuuKoiIgEjAJFIUoJFJWJDkCBQkRECpsCRSHKeAlzdXmIiEjhUqAoRJm6PDR1VERECpgCRSHSGAoREQkYBYpCVFIKRX7NsRLihF1Mq2WKiEhBU6AoRGa9xlFUx7VapoiIFDYFikKVOtPDKVCIiEhhU6AoVGnjKDSGQkRECpkCRaFKv56HKhQiIlLAFCgKVfoVRzUoU0RECpgCRaGqTF0tUxUKEREpbAoUhWqfCoUChYiIFC4FikK1zxgKdXmIiEjhUqAoVOmzPNTlISIiBSxQgcLMlpqZ6+fWmcU5VvRz/JL98TqyknbFUXV5iIhIISvOdwMG6bfAaxm2Lwa+CCzP8jy7gS9k2L5hiO3KvdSVMhNtWnpbREQKWqAChXPueeD59O1mdmPyy59meapm59wvctawkZBeoVCXh4iIFLBAdXlkYmYVwEXAFuBPgzguZGZjzMxGrHHDoTEUIiISIIEPFMA/AWOAW5xz2b7r1gBNQD3QZGa/NbMFI9XAIdHS2yIiEiCB6vLowycAB/xflvu/DvwN33USB04ErgDebmanOOdeGJFWDlbKGIrKRDvtGkMhIiIFLNAVCjObD5wC/NU593o2xzjnLnXOfdU592vn3F3OuS8CZwFVwPf7ea7LzWx1ThqejeIwrqQUgCIcxbF2YvHEfnt6ERGRwQh0oMBXJwB+MpyTOOceBR4BzjCz8j72uck5t1+nlZrGUYiISEAENlCYWTHwMWAvcE8OTrkRKALG5+BcuZG+WqbGUYiISIEKbKAA3gNMBW5zzrXn4HyHAjF8QCkMFekXCNM4ChERKUxBDhRd3R0Z154ws+lmtiA5rbRr21gzK8qw73nAycCfnXNtI9LaodBMDxERCYhAzvIwsxnAOcCqfmZlfAv4OHAGsCK57Qzg+2a2HL8qZgw4AfgIfvXMz49gswevvHeXR6vGUIiISIEKZKAALsGPdxjsYMxXgKeBd+O7S8LAZuDHwPXOuS05bOPw7VOhUJeHiIgUpkAGCufc9cD1A+xzCT54pG5bC3xgxBqWa5XpYyhUoRARkcIU5DEUo195T6Co1hgKEREpYAoUhSxttUzN8hARkUKlQFHI0sZQ1Ld05rExIiIifVOgKGRpgWJnfUseGyMiItI3BYpClrZS5o761jw2RkREpG8KFIWsorr7y8pEB7vqC2fNLRERkVQKFIUsrUKxs76VhHN5bJCIiEhmChSFrLx71XAqXQfxWIy65lxctkRERCS3FCgKWaio1/LblYkOdqrbQ0RECpACRaFLW4tipwZmiohIAVKgKHRpU0d3aOqoiIgUIAWKQle+78BMERGRQqNAUegqe6aO+kChMRQiIlJ4FCgKnSoUIiISAAoUha5qTPeX4+MtWn5bREQKkgJFoZsyo/vLmbFamtpiNLfrImEiIlJYFCgK3bSZ3V/O7KwD0BLcIiJScBQoCt3Umu4va2J14JymjoqISMFRoCh04yZCaTkA1Yl2xiZaNdNDREQKjgJFoTPrVaU4qLNWMz1ERKTgKFAEQdo4CgUKEREpNAoUQZA2jkJjKEREpNAoUARBSoXioM5azfIQEZGCo0ARBL26PGrZ09hGZzyRxwaJiIj0pkARBCldHtNjDYRcnN0NqlKIiEjhUKAIgrIKP30UKCbB1FijBmaKiEhBUaAIirRxFAoUIiJSSBQogmJqyjiKWC07FChERKSABC5QmJnr49Y0iHOca2Z/N7NmM9trZnea2dyRbPewpYyjmNlZxy4FChERKSDF+W7AED0K3JS2LatLcJrZBcBdwHPAF4GxwOeBv5nZEufc1lw2NGdSujxqOut4RIFCREQKSFADxQbn3C8Ge5CZhYFlwJvAqc65puT2PwJPA0uBy3PYztyZ1rvLQ2MoRESkkASuy6OLmZWYWdUgDzsNmAH8pCtMADjn1gArgA8mQ0fhmTQVV+Tz38R4C421dTjn8twoERERL6iB4kKgBWg0s51mtszMxmZx3PHJ+8czPPYEMAY4LEdtzK1QETZlRve3U9v2UtfckccGiYiI9AhioFiF75q4EPg48FfgCuDRLCoWXe/IWzI81rWtJsNjmNnlZrZ60K3NpbSLhGmmh4iIFIrABQrn3InOue865+51zt3qnLsI+CqwCPjcAIdXJO/bMzzWlrZP+vPe5JxbMqRG50rK1NGDNI5CREQKSOACRR/+G+gAzhtgv67LdJZmeKwsbZ/Ck3ZNDwUKEREpFKMiUDjnOoGtwKQBdu2aEpqpW6NrW6bukMKQehnzzjre2N2Yx8aIiIj0GBWBwszKgJnAjgF2fSp5/5YMj50ENACv5rBpudVr6mgdr2yuzWNjREREegQqUJjZxD4euha/psbylH2nm9kCM0sdE7ES2AZcljqA08yOAk4H7kxWOwpT9VhcZTUAZS5G8/btNLcXbnNFROTAEahAAXzNzB43s+vN7FNm9u9m9lfg34En8YtWdfkWsBY4oWtDMix8DjgIPyskYmZfAh4EdgHX7K8XMlTWawnuWl7dWp/H1oiIiHhBCxQr8N0SHwduAL4BTMDP8jjdOTfgKEXn3J3Ae/EzPb4LXIVfyvtk51zhjp/okroEd6yOter2EBGRAhCopbedc78DfpflvpcAl/Tx2P3A/Tlr2P40fVb3l29peZ3lW+ry2BgREREvaBUKOe4UnBkAS9reoGn9Oi3BLSIieadAETRTZsAxb+3+9uydq9hep/UoREQkvxQoAsjOvrD76zOaX2XDKxvy2BoREREFimCadzg7Jx8MQJgEFY/+Ps8NEhGRA50CRUDVn/qe7q8XvPZ3aG3OY2tERORAp0ARUFPfdgabi8cBUB5vJ7byj3lukYiIHMgUKAJqTFUZf5l+Yvf37sF7IBbLY4tERORApkARYHsWnkJdqByAcMMeWP1InlskIiIHKgWKADtk1mTuq17cs+GBu0FrUoiISB4oUATY4TPHs7x6EW2WXPD0zfWw9tn8NkpERA5IChQBNndKNW2llTxYdXjPxj/dlb8GiYjIAUuBIsCKi0IcOn0sd1cfQxy/HDf/eAbeWJ/fhomIyAFHgSLgFtSMY3t4LI9VzOvZ+ICqFCIisn8pUATcwlkTALhzzLE9G59aCXt25KlFIiJyIFKgCLgTD53CIdPGsK50KmtKZ/qNiQT8+d78NkxERA4oChQBVxQK8dnzFmHAnWOP6Xng0T9Cc2Pe2iUiIgcWBYpRYP6Mcbzn+NmsLpvN6+GJfmN7G/zvf8KaxyERz28DRURk1FOgGCUuOX0+E6rLuGtMSpXi1Rfgh9+AL10C99+hioWIiIwYBYpRorIszKfOOoK/Vs7n/qqFJFIf3LsL7r0VvnYZ/O1BP8ZCREQkh4rz3QDJnbcdMZ0Hn5vKsvVncOeYY3l/+1re0/oyRS3JykRjPdzyfXj0T/ChT0NxGDa/7m+N9XDkcbDkVDDL7wsREZHAMadrPwxKJBJxANFoNN9NyWhbbQuRmx6lpcNfeXRcifE/i2LMWHGnr1QMZP5iuPgKmDFrhFsqIiIB0++nTXV5jDLTx1dw/cUnUFnqi091HY7PvFDKi5d/G971T1A0QFHqlefhG5+Gu/8P2lr2Q4tFRGQ0UIVikAq9QtFl3bZ6vnL7kzS0dgJQWhzimg8u4bjyNvj1jfDyczBmPMyc629tLbDi/t7jK4qKYPahcNhiOGyhr16UluXpFY1Cu7bDi6th2kw4/Oh8t0ZEZCD9VigUKAYpKIECYOPORr70iyepbW4HoDhk/Nt7j+LMRTU+OITSClSbX4dfLIPX/pH5hBVV8I73wZnnQ1X1CLd+lGpqhKcfgSf+Cute6tn+4Qic+d78tUt6JBK+QrfuRfh//+yDtIiAAkVuBSlQAGzZ08xVv3iCXQ1t3dv+5R2Hc+FbDs58QCIBjz8Ef77HB4xMyirg9HfDW86EqrFQWeUHePals8MvBe6AqTMgVJT2nHF/QbNN62DXDti93d+aGmDseJg4FSZOgUnTYNHxMGHy4H4IheLh+311KNaZ+fGPfhZOO3f/timIWpp8IJszHw6en/vzr/wD3Pb/+a8rquAbP4bxk3L/PKna23yF0AxOO0+VQClUChS5FLRAAbCroZWv3rGKTbuaurddcNJc/uUdhxPqb0ZHU4P/lPbKC/DcE7BrW9/7lpb5P74VVVBe4e/b2/wxtbuh699ZWQXMnQ/zDofKar9WxivP+zeJbIRCcOwp8M73wcGHZz8jpakBNqyFncn2dN0Axk30t/ETYcZsOOLYfas32XIuc5seuhd+9eN9X8uY8VC3p2fbJf8Kp5w1tOceKfV7obwSSkr3fSzWCX9d7n+W1WN8wKwe63+OU2ty35bGOvjvq2DrJv/zu+IaWHxi7s5fvxeuvrz3v8cjjoXPXzf0fxMD6eyAZUv9lYIBDlsEn/2G/78iMlR9/S0aHgWKXApioABobO1k6W9W8+Ibe7u3nXDIZK48dxFTxpYPfIJ43F907Pe/gm1vjGBLB2HOYf5m5v/Yh0K+UhIugXCpHwOydZPvwtn+ZvbnnX2on1Z7yBG9tzvnp9e2NkNrix930lALmzemTL+tg/lHwfkf8cEJ9g0T02f5SsTxp/m2fv9LsHGdf8wMPnKlf6yisueYeNy/ltdfgaZ6KCnzb/ClZTBmHBxypD/XQBIJH/LiMbCQf76iIhg/GYpTBuw659/g/nQnrF3jQ8JlV8GRKReha22G6LX+8UxOPQc++Ekoy+LfVzaaGuF7V8GbG3q2lZTCv35r399VXxIJ2LwBXnoWcHDGu3u/cd/0LVi1ct/jPvRpePv5Pd/v2g4vr/FTrYdTMYvH4cffhGf/3nv7wQvgc9f60N2XLRth9w444pjsfvcHIuf8/8t4HOYcmu/W7D97dsKProUPf8b/W8odBYpcCmqgAGjvjPPte57lb6/0XIm0LFzEx04/jPedMIeibD6BJRL+j9/KP/hujOYmvwKn62exLAvBhEkQi/lPgJmMneD7qqfN9F0bk6bBmLFQt9c/z56dvprx8nODfNXDcOIZ8M4L/BvQP571z91Qm/3xR58ENXN8COtyyBH+027qm1hzI3z3S/Dm+t7Hj58E0w6CWAdseg062vt+rtJyWHwCHHcyLDx+3zfxxjp47EH/e9u9fd/ji8Mwa54PU5OnweN/6f3GDf73eMElcM4H/O/xB1fvu0+6KTN8EBlu10RLE3zvy75bLF1FFVz1Xf+zzqSzA9Y8Ac8/CS8+7X8WXWbMgsjX/b+7F1fDDV/reezIY+GlZNUgXAJX/9B3vf3x1/Cnu3x1prTMh6ZTz+n/02Ai7t/Yiop9oAyF/P+lW77nf9aZHDQP/vWbUD2uZ1tDHTz5MPz9oZ5/L9Nmwsc+7wdOd9mzE5b/Al5+3ncbzjrE/24Pmusfb23xgbCtxVfJptbAhCkjV4UZqq2b4LlVvt1HHpf9J+6ubrFH/tjTdXvSmfCRK/Zv5ae9DV55zld5J0z23VnFGWba7dnpp/VPnzX88WmbX/f/juv2QNUY+NL3/N+R3Bg9gcLMDgM+ApwFzAPKgPXAncANzrnmLM6xAjitj4ePd86t7u/4IAcKgHjC8ZO/rOW3T/QeH3HItDF86qwjWDhrAjbYMlkiAW2t0NoELc3+D1VLk3+TmjQNJk31XzsHe3fC+rX+1tLs32gWHO3/KGbzvG9ugL/cC0883PdYhEyKimH2If6P9PhJ/jZhEmBQtxtq9/hP7k/81b8BjYRMYaJLYz189yr/qXO4ior8m0PXz769DZ752+B+Xv05+iT/e9izs2fb297lu7oa62Hn1t4De0MhOPtC357ODujs9CGps9O3Kdbp/22Mm+jfsCdM8d1P8Ri0tUFHG9z1U9jwsj+fGbzv4/DQPf75wP8+v/Q9P96myxuvwaMP+Dfg/rrUyivgo5+D3/6f/8QP/s3n45+Hb36u5w1pxiwf6nbv2Pcci0/0+48d33t7W4sPcn/5XU+XYWU1HHqkD2iplYmz/59v/x0pf1u6/q3GYv7ntGOz/7SdyWnnwbs+AA8vh7/cN/jfd7jEB8BZh8CCxf7/5cQpmffdu8tfJ+i5J/3r6uzouRUV+5/VzIP9DLKDDvZhJtMbaSadHf7f68o/+A8RXWbO9VPfl7zN/xtvavCPr3vJfx2P+eDW0e7Df6YAPmUGfPLLvj0jIZHw/4dfetqH19de6v17mHUIfOLfe8JvQ50fAPy3B3v2GT/Jv9Y5h8Fb3u7bnK1XnveXW2hNvhUWh+GTX4Fj3jLcV9ZlVAWK/wI+A9wHPAF0AmcA/wQ8D5zknGsd4BwrgCOBL2R4+A/OuT4+QntBDxRdXnpzLz/4/Qu9xlWAv9DYhW85mJMXTM2uYpEvDXXwwlP+zSaR6LnFOqGzHTqSf9zGT/TdAXMOyzwGIN3u7f7Na/WjmR8vq/Dl//IK/3VFFUw/qGf6LcD9v/TdQ6n6CxNdGuvgvtv9H8kdW/Z9Qxg/yZcvu96YO9qgvd1/at+5deDX1qWiyleEXPJn1tHeexxHl5JSOOVs/+Z65829Z6V0CYX8G+nJKeM+nPOfuu+IjsxaJh/7nA8wm9b58RRdz2EhKEt2BYWKesbIpKsaA4cu9BWJTOGxshquu9lXBja/Dtd9NvObc0lp7zetqrG+QhQu9X/I21rgyb/6asBA3vYuPyjXzL+5/OyG/qt+4ANAqAja+/2TNzyTp/twEC6FkhL/ujau82FtMMorfdfMkcf5+4pqHzCKi32w3PSa7857/RUfBprq+29TWbn/3WTz/lUc7v37Kw7D+R/zoa6iyg8qr0gOLE/9UNPSDNs2wdY3fHguLfPdkOWV/v+xcz7ExOP+DfyV530lM7UC1ld73nuxP8e9tw48fmzhEj8IfvHx/u/elk0+tDTW+crD7EN8ZWPN43Dzt3tea1kFfObruZ6SPqoCxRJgnXOuPm37dcBXgSudcz8c4BwrgDnOuTlDacNoCRQAnfEEdz++gdsfXUdHrPcfr2njyjn76IN46/xpzJ5cNfiqRdC98jzc+3PYvtl/qjjiGP8fc+bB2ZWF39wA9/3Cl9mPXAKXXzW4Ums87j/5bXvDv1HOOdR/gs/EOf8H5pm/wdOP9V3lOHiB/8O05NR9w1Vjnf+jvvFV/5pnzIK3nevffMH/kfrNzfDX+3qOKS2DT3/N/8HLZNd2+Ml3YH0f05CHIn167do1vutloE/jk6b5T3uLT/B/gENFPpBEr+1daQG45As+SHV58G7/2rtUjYELLvVdYr+9xVcfslFR5Z83/c3yxDP8p9bU2U+rVsJP/9u/YaU75Ah46zv9J/W2Frj9h75SkG7OYfC+j/l/H5te869325sQDvs3xfIK/zus3Q3btwz8RpgPoZDvCl2/tv8uv0xq5vixSiedCc+vgtuW9R++iop812FpmQ/afXXPDlbNHP9vbtXK/v+dTq3x/xb72ic9GKUKl/RU+sBXyj53ne/GzK3REyj6YmaL8BWKG51znxpg3xXAHOBgoApodIP4IYymQNFlW20Lv/rba/zl+S10xvf9VDR9fAUnHTaVxbMnMHfKGKaOK+9/doj0iMf9H6r9qb3NjzvZvd2X59ta/UyFXAxK+/tDvoJTUQWX/cfA54zH4bEHfKgoDqcMmg33fF8c9n/A6/b4LrE9O6G+1u9TWtYzg+iUczKXbp/9O/zsf/a9mm5xGI47xYeD+YszB8GmBrjxW7D2Wf/9YYvgi9/p/Uk1kfDVlqcfg2NPhvd/vCdogR+8esv3+66ITK2Bd7wf3voOH+S2b/azpza87LukzvmnvvvVd25N/sySP7eqMb66lMo5X1G7I+pDwdQaeP8l/rUP5v9pc6MPHF1jlV57qe838aJi3y1y9Fv8z6yswlcwwqX+0/qWjfDm63780boXs1v2P9X4Sb5qc+o5Pkg31vsw+5ff9XyiD4V8aOoae1VU7ENZUZEfB3TQvN6vf8cW/7sebHVlsKrGwhFHwxHH+XE4XVOOt74B//ddH9pTTZnhg/LCJf7/y44tfnzMkw/7Kuxg36On1sAXvulDdO4dEIHiXcAfgP90zl0zwL4rgJPx3SXlQAvwAPAV59zLAz3XaAwUXfY2tbH8qU0sf3oTja19J+mycBGzJ1dz2IyxHDt3EkfNmUhlWT/rUMjokoj3zBApFF3l5472ntuY8dnNMEnE/dTXnVvhPR/uPQgyW63N8MJq/6bc2eHHiMTjfqbPcKYhD0Z7mx9jUTM3NyE21umrGg31yW7ElJ/rEcf2noXUH+d8pe2F1fDiUz5odI2d6arATJ/lw8Hc+TD3MP/JOn29GvAVmbXP+YB1yBGDH2DZ2eFnXb38nA8mLU1+YHlr075jU4qKfVCZMRumTPftbW3xx7S2+N9pUbLbpqjYVyKOPNYHmb5+3/E4PHAnLL/D//859yI/dqavWTq7tvuxJI894CtbZRVQM9s/V/VY3/2xaV1PmD14AVz5Df/YyBjdgcLMioDHgCXAQufcKwPsfwuwFV/RiAMnAlcAHcApzrkX+jjucuDyT3/608fB6AwUXdo6Yvz9lR08/uoOVr+2q/tCY30JmTG/ZizHzJ3EMXMnsaBmHCXF+/lTuYgE08islzB4sc6eQcDxuJ+VMVLVxbZWf+5sp/vG4z7IVI3J/LNqqIPaXX4AbKYgljujPlAswweCrzjnvjXEc5wKrAD+6px7Z3/7juYKRSYdsTjPb9rL6vW72LCjgY07G6lv6X8WRGlxiIWzJrBo9kQOnlrN3CljmDym7MAbhyEiMrr0+0c8y3k8hcnMrsWHiZuGGiYAnHOPmtkjwBlmVj7QTJEDSUlxEUvmTWbJvJ7Fe2qb2lm/o4HnNu7hmQ27WL+9gdRY2h5L8PSG3Ty9oadPubK0mNmTq5kxoYLp4yqYNr6CaeMqmFRdxoTqUlU0REQCLrCBwsyWAl8DbgH6HYiZpY3A6cB4QIGiH+OrSllS5UPGJ96+gPqWDta8vps1G/fw7Ou72Va77zS55vYY/9hcyz82Z14Yakx5mMljypk7tZp508ZyyLQxzJs6ps+xGbF4gvqWDsZVlhT29FYRkQNEIAOFmV0DXAPcClw2mFka/TgUiAE5mit04BhbUcJpR87gtCP9Aiw76lp4btMe1m2r5/Udjby+s4Gmtv7HYTS0dtLQ2sn6HQ089PyW7u0VJcWMqyphfGUp1WVhaps72NXQSm1TOw5f+Vg0eyLHzJ3I0XMmMX18BeHikGahiIjsZ4ELFGb2dWApcBtwqXOZV38xs+nAWOAN51xLcttYoMk5F0/b9zz8zI8/Oufa9jmZDMrUcRWcNa6Cs47yy70659jV0MaWvc1sq21J3prZUd/K3sZ29ja1k+gjE7Z0xGjZG2Pr3syLAzW3x3ji1R088Wrv1QvDRSHCRSHKSoooLymmPHk/oaqUWZOqOCh5Kw0XsbO+lZ31reyqb6W+tYP2zjjtnQnaOuOEi0Isnj2BJfMmM2NClqPaRUQOQIEKFGb2GeAbwBvAQ8CH0wb67XDO/Tn59beAj+NX0lyR3HYG8H0zWw5swFckTsAv570b+PwIv4QDkpkxZWw5U8aWc8zcfR+PJxx1ze1sq21h/fZ6XtvewPrtDbyxuynjuhjgRwaVlxbT0p658tEZT9AZTyRnqAxyQZw0j671SyZPH1/BUbMnUl5aTMj87JaQmb82mRlmRihkVJcVM7ailLGVJYyrKGHKuHIqSzWtVkRGt0AFCuD45P0s4OcZHl8J/DnD9i6vAE8D7wamAmFgM/Bj4Hrn3JZ+jpURUhQyJlaXMbG6jIWzehbtcc7R1BajtqmNvc3tNLZ2Mq6ylMlj/L7FIWPznmbWbNzNs6/v4R9v1tLU1tlnCBmururKUIytKGHGhApmjK9k6thyJo4pY1LyNTe1dbJlbzNbkxUcM2PymDImjyln0pgyqsrCxBMJEgmIJxJUlYVZMHM8ZeHeA1mdc2ze08yWvc0UF4UoKfZVmvKSYg6aVKmxJiIyogI/bXR/O9CmjQaRc47OeIKOWIL2zjgt7TFaO2K0tMfYUd/KG7ubeGN3E2/ubiKecEweU+YrKGPKGV9VSllJEaXFRZSFi9jV2MbT63exZuMe2jv7uChTHoSLQhw+cxxHzZnExOpSXti0lzUbd7OnMXM1pqKkmEWzJ3D03EkcNXsiU8eVU1FaPOixJgnn2N3QRklxiHGVWVwbRURGk9G9DsX+pkBxYOqIxfnHm7Vs3NVIIuGIO+evR+Yczjmc80EmlnA0tHZQ39xBfUsHtc3t7KhrHbGqyXAYUFFaTFVZGDO/vlDCORxQVRpmfFUpE6pKGVdZQl1zR3cQ6wpW4ytLOXhqNQdP9euMxB3dlZSOWJymtk5/a+0klnBUlYWpLg8zpryE6vIwVWVdt2LKS4q725DpL5IB0ydUDNh15JyjvqWD7XWthItC1Eys3KeSIyJDNnrXoRDZX0qKizh67iSOnjtp0MfGE449jW1s3dvM1toWdje0sbuxld2N7extbKO8pJiaCZV+jY7xfinhXQ1t7G5oY1dDK22dcYpC1j1mY2tt8z5Xie1SUVrMtj8yAAAAEb5JREFUYTPGEjKjI5agM5ZgT2Mbuxv3HWvs8INamzOMQ9lNGxt3Ne6zPVVtcztPb2jvtd7ISJs5sZL5M8ZxyLQxmBl1ze3UtXRQ19TOjvpWttW20JZSSTJgythyZk6qYu6Uao6aPZGFsyZQUer/9DW3dfLMht2sXu9XhD3u4Emccvh0qvqYruyco665g817m9lR10IsniCecN2DihfUjO9um8iBRhWKQVKFQgrBnsY2ntu4hzUbd9PY2smCmvEcPXcih0wbs89YCeccW/e2dI81eXVbHY0tnQMuqd6XsRUltHXGC6oLaDCKQsb8GeMoLjJeerOWeKL338BwUYgTDpnMkkOm0Nze6QNgQxs761vZvLe5z4HAXWZOqOSMhX4adVlJUffYmx11rZSVFDFtXAVTx5UzbVwF1eVhDPoMIPFEgsZWX+npur7OzIlVVJdrkK/khbo8ckmBQkaLeCJBc5uvUDjnCCWrIAANye6avU3t1DW3U1kWZnZyqu24ylLiCce22mY27Ghkw44Gmto6fRUlZBSZES4KUZXs1qguC1NUZDS2+jfFhtYOGls7aWmP0djWSXNbZ/ebdNesmXQdsQSb9zT3Ob04VUVJMdPGV9DeGWdbbUtWx+RbKGWmEPgQCBBLZG77hKpSZk+uZlJ1GfUt/ve0t6mdlvYYE6vLmDaunKnjKphYVUpzR6y7C66hpYP2WNzPgooliMWdn6UUMoqSt+KQH8xbXBSiuMiYPr6CEw6ZwpJ5k3URQFGgyCUFCpH8aOuMs2FHA69ureP1nY2Ei/zA0HGVJYytKGHK2HKmd33qT74xd8YTbNvbzKbdTfzjzVrWbNzDhh0Nvc576PSxHH/IZCpKi1n50jbWbavvtx0VpcXMnFDJ9PEVlIaLuoNUU2snq17bSWtHMCs3AykKGYtmT+Cw6eO6AxAG8bijud2HwubkAOiOmB8U3dEZJxQyZkyoZPakKmZNrmLK2HIaWjrY29TOnsY2apvbqW/ppCEZeJrbY8yYUMGCmnEsqBnPodPHUtfczoYdDby+s5E39zQxobKUJfMmc9y8yRkHB///7d17lJ1Vecfx7zOXM/dLJkMnFwMEAhEKKVgQxBTEsqyXWlurpdgAtWoXvmBXU1dpS22J6PK2hLAUX9G09YJAgdWiaIsXlkYFFAw0LUmbBIy5kDBJJpNJZiZzn90/9j6TN4dz5vaezJkwv89a73oz+93nzHuenHP2M/vde79DI6McCOvL7D/SR7kZ5y5pYUFzjS5HpaOEopiUUIic3A4fHeS5nQcZHnGsOL2Flvrq447v6ujhx5v3srujh3n1VbQ2HJvCu7iljua6TMFGqX9ohKef38+PNu3hme0dVFeWszDct6atuYaBoRHau/rY1+UvgfQNDucdhJplQF0YzNpQU8lQ6KmZjYN8S+WshU20NlSP9XxlB0Xni2trYzUrTm1hSWs9h3oHOBjGMXX3DYEd30M2OuoYDQOVzfylrKVt/pYAp7bW09M/NPZ/2dHdT0t9NcsWNLJsYROnNFbT0z/M/77YyeZdh9i6twsMFjQdu9yVqSijOwxa7u4fAgeNtT45bqytpK6qkopyo7ysjIoyG5sKnqkop7KijKrKcirLZ3wquBKKYlJCISLF5Jwf1Jk7lsPMxgbjJo2MjtJ+qI+dB7rpCvezaamvoqW+mppMBR1H+nxDd/gonT0D1FdX0hQaqqbaDNWVvkHKXtbwz+nC5i+DDIeF4fqHRti0q5Onnt8/Yc+NHFM7zqJ7xTSvroq25hrammpoaaimf3B4bMxNT/8QvQPDfOXGNxSzV0azPEREZiszP+5ksn9slpf56bCL5+dfCr6hppKlbY1FO78Ll7Zy7RVn03Gkn2e2H6CzZ+C4qdJlZUZddSW1mQrqqiuozVSQqSwnU15GprKcgaERdod1X3Z29HCwu5+mWp8EzW+oZl59Fc21GZrqqmiqqSRTWc72fUfYsqeLrXv85a2m2gxntDVyRlsDS1rr2XWghw2/PMDm3YfyjpExYH5jNW1hhd7uviE27+6csctRM5FMgJ9pdah3gC17ugrW6R8aoSYzM029EgoREZlQa2M1v3PBkmk99qyFTVOqv6C5lsuWLyh4/LLl8Mcrl9HbP8Sm3Z0MDo/SWJOhsaaShpoMTXWZl10OGBkd5YX2I/zPzoMc7h1kXkho5jdU0xRmzTiOrcdSZscGGQ8Oj7DjQPfYIOQ9nb001mRYEC5fzG+oor2rjxfaD/PL9iP0DgxTXmacuaCR85a0cO6SeWQqysYukbR39TEy6vylrHBJCxgbOHu4b4ijA0OMjPi1bbI9R37BvhEGh0fpHxymwJjd43T3DSmhEBERGU9ddSWXnNU2qbrlZWUsX9TM8kXN0/pdS9saufK8ies55+jsGaCuqoLqE9iQj4yOcrB7YCxBOdQ7MLZQ3bFEJcP8hplb0VYJhYiISJGY+XsTnWjlZWVjN108/7QT/usmRXcLEhERkdSUUIiIiEhqSihEREQkNSUUIiIikpoSChEREUlNCYWIiIikpoRCREREUlNCISIiIqkpoRAREZHUlFCIiIhIakooREREJDXdy2Oaoigq9SmIiIjMJBfHsRU6qB4KERERSc2cm8QN1eWEM7MNzrmLSn0eJzvFsTgUx+JQHItDcSyOEx1H9VCIiIhIakooREREJDUlFLPHl0t9Aq8QimNxKI7FoTgWh+JYHCc0jhpDISIiIqmph0JERERSU0IhIiIiqSmhKBEzKzOz1Wa2xcz6zWy3md1uZnWlPrfZyMzONrPbzOznZnbAzLrNbKOZ/X2+mJnZcjP7ppkdMrNeM/upmb2xFOc+m5lZrZn9ysycmd2V57jiWICZtZjZZ83shfAZPmBmPzKz38qppxgWYGb1ZnaLmT0XPtMdZvakmf2pmVlO3TkfRzP7OzN7yMy2h8/sjgnqTzpmxWiTtFJm6awF/gJ4GLgdOCf8fKGZXeWcGy3lyc1CfwbcCDwC3AsMAVcCHwf+yMwudc71AZjZmcCTwDDwGeAw8AHge2b2FufcYyU4/9nqNqA13wHFsTAzOw1YD9QD/wxsA5qAFcDiRD3FsAAzKwMeBS4DvgZ8HqgFrgG+gv9O/JtQV3H0PgF0As8CzeNVnEbM0rdJzjltM7wBvw6MAv+WU/4hwAHvKfU5zrYNuAhoylP+8RCzmxJlDwIjwAWJsnpgJ7CVMBh5rm/Aa8KXzV+FGN6Vc1xxLBy7nwK7gYUT1FMMC8fmdeF9tzanPANsB7oUx5fF7IzEvzcBO8apO+mYFatN0iWP0rgGMODOnPJ1wFFg1Yyf0SznnNvgnDuc59ADYX8eQOie+z1gvXNuY+LxPcA/AWcDF5/g0531zKwc/377LvDveY4rjgWY2eXASuAzzrmXzKzSzGrz1FMMx9cY9nuThc65QaAD6AXFMck5t30y9aYRs6K0SUooSuNifDb4dLLQOdcPbGSOfDiK5FVhvy/sVwBVwM/y1P152Cu+sBp4NXBTgeOKY2FvDftdZvZtoA/oNbNtZpb84lUMx/c00AXcbGbvNrNTwzX/TwK/CawJ9RTHqZtqzIrSJimhKI1FQIdzbiDPsT1Aq5llZvicTjrhr+x/xHfb3xeKF4X9njwPyZYtznNszjCzpcBHgducczsKVFMcC1se9uuAFuB64H3AIHCPmb03HFcMx+GcO4T/K7oT3z2/E9iCHyv1h865daGq4jh1U41ZUdokDcosjVog338cQH+izuDMnM5J607gUuAW59zWUJbtes4X3/6cOnPVF4FfAXeMU0dxLKwh7LuBK0MXPWb2MP7a/yfM7GsohpPRgx8L8Ah+AGELPqG4z8ze4Zz7AYrjdEw1ZkVpk5RQlMZR4NcKHKtO1JECzOxj+O76LzvnPpk4lI1bVZ6HzfnYhi75NwGXO+eGxqmqOBbWF/b3Z5MJ8H9xm9kjwHX4XgzFcBxmdj4+iVjtnLs7UX4/PslYF2YqKI5TN9WYFaVN0iWP0tiL70LK95+9GN/1pN6JAsxsDfAR/NSyG3IOZwd45esCzZbl6wZ8xQvvtzuA/wTazWyZmS0DTgtVmkJZM4rjeF4M+/Y8x14K+3kohhNZjW+sHkoWOueOAv+Bf1+ejuI4HVONWVHaJCUUpfELfOxfmyw0s2rgAmBDKU7qZGBmtwK3Al8H3u/C3KaE5/Bdd6/L8/BLw36uxrcGOAV4G/B8Ylsfjq8KP78fxXE82YFrr8pzLFu2H8VwItmGrTzPsYrEXnGcuqnGrDhtUqnn1c7FDTif8ef8rir1Oc7GDT8A0+GTibJx6j2En3/9G4my7PzrbcyROet54lIJvCvP9sEQ10fDz2crjuPGcR5wBN9TUZ8oX4gfE7AtUaYYFo7j2vC+uzmnPNtD1glUKI4F4zfROhSTjlmx2iTdbbREzOzz+DEAD+O7oLOrkj0BvNFppczjmNmNwF3ALuAf8G/+pH3OD+AidOM/jV9Ncy3+y/8D+A/N25xz35up8z4ZmNnp+EGaX3DO3ZQoVxwLMLM/B74EbAb+Bb8Y0wfxScXvOue+H+ophgWE1UafxSdo9+K/+1rw8TkduNE5F4e6iiNgZtdy7BLlh/Dvu9vDzzudc/ck6k4pZkVpk0qdZc3VDd/N92H8imUD+OtZd5D4i0fbcfH6Kj5TLrStz6l/DvAt/Dz3o8DjwFWlfh2zccN/eb9spUzFccK4vRM/p78XP+Pj+8DrFcMpxfBM/LLbL4aG7wjwE+CdimPeeK2f7HfgVGNWjDZJPRQiIiKSmgZlioiISGpKKERERCQ1JRQiIiKSmhIKERERSU0JhYiIiKSmhEJERERSU0IhIiIiqeluoyIyZ0VRtAZ/b5gr4zheX9qzETm5KaEQkWmLomgyK+OpsRaZA5RQiEgxfHScYztm6iREpHSUUIhIanEcryn1OYhIaSmhEJEZkxyzgL9r4l8Cr8bfXOs7wC1xHLfnedxZ+LvM/jZwCtABPAZ8LI7j5/PUL8ffWfFa4Dz8XRn34G+u9OkCj3kXcHOo34+/2deH4zjek+Y1i8wVmuUhIqWwGrgb+G/gTvwdDt8LPBlF0SnJilEUXQxsAFYBvwA+i7/L558AG6Iouiinfgb4LvBFYAlwH/A54BngD4DX5zmfCPgG/vLMF4BNwNXAY1EUVaV+tSJzgHooRCS10POQT38cx5/KU/4W4JI4jv8r8Rxr8T0WnwLeF8oM+DrQCKyK4/jeRP2rgX8FvhFF0blxHI+GQ2uAq4BvA++O43gg8Ziq8Fy53gxcHMfxc4m69wHXAO8AHiz44kUEUA+FiBTHrQW2vy1Q/55kMhGsAQ4D70n0ClyGvyTys2QyARDH8QPA48ByYCWMXeqIgD7ghmQyER4zEMfxgTzn87lkMhGsC/vXFngNIpKgHgoRSS2OY5viQ36c5zkOR1G0EbgCOAfYCLwmHP5hgef5IT6ZuBD4CT75aAKeiuN47xTOZ0Oest1hP28KzyMyZ6mHQkRKYV+B8uyAzKac/UsF6mfLm3P2Ux1I2ZWnbDjsy6f4XCJzkhIKESmFtgLlC8L+cM5+QZ66AAtz6mUTg8XTPzURmQ4lFCJSClfkFkRR1ARcgJ+y+X+hODvO4g0Fnidb/mzYb8EnFSuiKFpUjBMVkclRQiEipXBtFEUX5pStwV/iuD8xmPIJ/JTSlWGdiDHh58uBbfjBmcRxPALEQA1wd+6UzyiKMrnTUkWkODQoU0RSG2faKMA34zjemFP2KPBEFEUP4sdBrAzbDhIzQ+I4dlEUXQ/8AHggiqJv4XshlgO/j18Q67rElFHwy4BfArwd2BZF0XdCvSXAm4C/Br46rRcqIgUpoRCRYrh1nGM78DM2ktYCD+PXnbga6ME38rfEcbw/WTGO46fC4lYfwa8v8Xb8Spn341fK3JpTfzCKojcDNwDXAdcDBuwNv/Pxqb88EZmIOTeZmwWKiKSn24WLvHJpDIWIiIikpoRCREREUlNCISIiIqlpDIWIiIikph4KERERSU0JhYiIiKSmhEJERERSU0IhIiIiqSmhEBERkdSUUIiIiEhq/w842CAPwYwChwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 576x432 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg4AAAGdCAYAAAB6oftJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZxcVZ338c+vlt7SSScBQjZIwpoAgaBEwSUCMooyyriMgsAjKjBSAoI+qOiIiD6iOCyjUqDoiDjggIoLAwPKKJuAbAbCGjAL2cm+9lLLef44t7pvV6o7Vb1U1e18369XvW71vefePnV7qW+dc+655pxDREREpByxWldAREREokPBQURERMqm4CAiIiJlU3AQERGRsik4iIiISNkUHERERKRsCg4iIiJSNgUHEdklM7vJzJyZ3T+Afc3MPmRm/2Vmi81sh5ltNrMXzex6Mzu6zOMcZWY/MbOXzWy7mbWb2RIze8TMrjGzk81sVB/7jjezrwRlN5hZxszWmNkzZvYLM/sXM9uv0tcmsjsyTQAlIrtiZjcBHwcecM4dW8F+04BfAnNDq7cCSaAptO7nwDnOuY4+jvN14KuABavywCZgdHCsgg84535btO+bgd8DE0KrtwBxIBw0fuec+6fyXpnI7kstDiIyLMxsOvAoPjRsAf4vMNE5N8Y51wzMBL6PDwFnAPeYWbLEcU4FLsWHhtuBo4BG59weQDMwG/gC8FyJfcfSExpeAU4DRjvn2pxzrcAk4BTgDiAzVK9dZCRTi4OI7FKlLQ5mFgceBo4G1gLHOude6KPsR4Bf4D/IfNc594Wi7Y8Bbwbucs794y6+b1O41cLMPg1cD3QCBzjnlvezb7Nzrn1Xr01kd6cWBxEZDh/EhwaAVF+hAcA5dztwQ/DlZ81sclGR2cHyv3f1TUt0dRT2nd9faAj2VWgQKYOCg4gMh3OC5cvOuV+VUf7b+C6LBuDMPspMGUR9JpmZ7bqYiOyKgoOIDKlgnMJbgi9/V84+zrllwFPBl8cWbX4yWJ5vZm+vsDqFffcF/p+ZNVa4v4gUUXAQkaE2HWgJnj9TwX7PBstZReu/gW+NaAMeDC7jvMHMPmVmh+2iJeEXwMvB80uA1Wb2azP7gpkdZ2Yt/ewrIiUoOIjIUBsfer6+gv3WBcs9wiudc/cB/wQsDVbNBP4F+DGwAFhlZt81s177Bft2AMcDdwWrxuLHX3wH+BOwycx+b2bHVFBPkd2agoOIDLWBjiXocz/n3J3AAcBJwL8DjwGFwYx74y/1fMbMZpbYd2VwNcYsfKvDXcCqYHMSeB/wFzP77ADrLbJbUXAQkaEWbmXYqRWgH4WyG0ptdM5lnXN3O+cudM4dg289+Ad6rraYAtzaV9eFc+4l59y3nXP/6JybjA8SXwd24EPL1Wb2hgrqK7JbUnAQkaG2BP9mDHBEBfsdHiz7vHQzzDnX5Zy7zzn3PuAnweojgTll7v+Sc+4y4D2Aw/8//HgF9RXZLSk4iMiQcs5lgEeCL08uZx8z2wd4Y/DlAwP4tj8JPT+okh2dcw/iZ5WseF+R3ZGCg4gMhx8Fy4PN7MNllP8S/v9RBvjpAL7f9tDzrkHsP5B9RXYrCg4iMhzuAJ4InqfN7JC+CgZTTn86+PJ7zrmVRdtPKGPypo+Fns8P7TvXzNr629HMDqWnS2V+f2VFRMFBRCqTNLM9d/FIOudy+JtHrQH2Ah4xs8+ZWfcdKs3sIDP7d+BW/P+ih4Evl/ie/wUsMLOLzWy2mcWC/eNmdoiZ3YC/yRXAnc65xaF9PwosDW7ffYKZjQ59/z3M7FzgvuD7b8df4iki/dBNrkRkl0I3uSrHcc65+4P9ZuBvq/3G0PYt+Msgm0PrbgXOKnW/CDNbBUwMrcoBm/ETQsVD6/8CvN85tyG07xX4bpCwLUCCnkmqwN+i+xTn3L1lvD6R3Vqi1hUQkZHLObfYzOYCHwb+GX+XywlAFlgI3A/c5Jx7tJ/DHAy8FzgOf0vtGfjQ0AmsBp7G3277V27nT0Jfxl+ueSJwDH7yqL3wl1+uBV4E7gVudM6tHeTLFdktqMVBREREyqYxDiIiIlI2BQcREREpm4KDiIiIlE3BQURERMqm4NCPVCrlUqmURo+KiIgEdDlmeRQeRERkd9HvTK1qcRAREZGyKTiIiIhI2RQcREREpGwKDiIiIlI2DY4cgEwmw/Lly+no6Kh1VepaU1MTU6dOJZlM1roqIiIyRBQcBmD58uWMHj2a6dOnY9bv4NPdlnOO9evXs3z5cmbMmFHr6oiIyBBRV8UAdHR0sMceeyg09MPM2GOPPdQqIyIywig4DJBCw67pHImIjDwKDhHV2tpa6yqIiMhuSMFBREREyqbgEHHOOS6++GIOO+wwZs+ezW233QbAqlWrmDdvHnPmzOGwww7joYceIpfLceaZZ3aXveaaa2pcexERiRpdVTFI7/7GXcN27Hu/etIuy9xxxx3Mnz+fZ555hnXr1jF37lzmzZvHrbfeyrvf/W6+8pWvkMvl2LFjB/Pnz2fFihU899xzAGzatGnY6i4iIiOTWhwi7uGHH+bUU08lHo+z99578453vIMnnniCuXPn8tOf/pTLLruMBQsWMHr0aPbbbz8WLVrE+eefzz333MOYMWNqXX0REYkYBYeIc670jTvnzZvHgw8+yJQpUzjjjDO4+eabGTduHM888wzHHnss1113HWeddVaVaysiIlGnropBKqc7AWD91g7Wb/VzGoxvbWTPMc1D8v3nzZvHD3/4Qz7+8Y+zYcMGHnzwQb773e+ydOlSpkyZwtlnn8327dt5+umnee9730tDQwMf+tCH2H///TnzzDOHpA4iIrL7UHCokvCUBqXbCAbmAx/4AI8++ihHHHEEZsaVV17JxIkT+dnPfsZ3v/tdkskkra2t3HzzzaxYsYJPfOIT5PN5AK644oohrImIiOwOrK+mboFUKuUA0ul0r/Uvvvgis2bNquhYG7d3snZzOwBjRzUyoW1oWhzq3UDOlYiI1FS/s/dpjEOVhH8KCmsiIhJVCg5VEp5+WbFBRESiSsGhSnq3ONSsGiIiIoOi4FAlvQZHKjmIiEhEKThUSa+uCuUGERGJKAWHKul9OaaSg4iIRJOCQ5UYanEQEZHoU3Cokt5jHKr7vVtbW/vctmTJEg477LAq1kZERKJMwaFKel1Voa4KERGJKE05PVhnnVhWsSbgoEqP/eN7Sq7+4he/yLRp00ilUgBcdtllmBkPPvggGzduJJPJ8M1vfpOTTz65om/X0dHBueeey5NPPkkikeDqq6/muOOO4/nnn+cTn/gEXV1d5PN5fv3rXzN58mQ+8pGPsHz5cnK5HF/96lf56Ec/WukrFBGRiFFwiKBTTjmFCy+8sDs43H777dxzzz1cdNFFjBkzhnXr1nH00Ufz/ve/v9fVHLty3XXXAbBgwQJeeukl3vWud7Fw4UJuuOEGPvvZz3LaaafR1dVFLpfj7rvvZvLkydx1110AbN68eehfqIiI1B11VUTQkUceyeuvv87KlSt55plnGDduHJMmTeLLX/4yhx9+OCeccAIrVqxgzZo1FR334Ycf5owzzgBg5syZTJs2jYULF3LMMcfwrW99i+985zssXbqU5uZmZs+ezX333ccXv/hFHnroIdra2objpYqISJ1Ri8Ng9dGdUCyby7NozRYA4rEY+08cM6hv++EPf5hf/epXrF69mlNOOYVbbrmFtWvX8tRTT5FMJpk+fTodHR0VHbOviak+9rGP8eY3v5m77rqLd7/73fz4xz/m+OOP56mnnuLuu+/mkksu4V3veheXXnrpoF6TiIjUPwWHKhnqmSNPOeUUzj77bNatW8cDDzzA7bffzoQJE0gmk/z5z39m6dKlFR9z3rx53HLLLRx//PEsXLiQ1157jYMPPphFixax3377ccEFF7Bo0SKeffZZZs6cyfjx4zn99NNpbW3lpptuGvRrEhGR+qfgUCVDfZOrQw89lK1btzJlyhQmTZrEaaedxvve9z6OOuoo5syZw8yZMys+ZiqV4tOf/jSzZ88mkUhw00030djYyG233cZ//ud/kkwmmThxIpdeeilPPPEEF198MbFYjGQyyfXXXz8Er0pEROqd6b4JfUulUg4gnU73Wv/iiy8ya9asio7lnOOVVT0DCA+c1FbRwMWoGsi5EhGRmur3zUmDI6vEzHRrbRERiTx1VVSR0RMYnHO9Bz4MswULFnRfMVHQ2NjIX//616rVQUREok/BoYoslByq3UM0e/Zs5s+fX91vKiIiI466KgZoIGNDdreuCo2fEREZeRQcBqCpqYn169dX/MbY634VI/xN1TnH+vXraWpqqnVVRERkCKmrYgCmTp3K8uXLWbt2bUX7rd/aQTbnA0PnhkYS8ZGd25qampg6dWqtqyEiIkOo7oKDmbUAzwPTgeucc+cVbT8Y+A7wDqABeBr4mnPuTyWOFQM+C/xLcLy1wO3Apc657QOtYzKZZMaMGRXv9+kfPsji17cCkD77bew/UdM0i4hItNTjR97LgT1LbTCz/YFHgGOAK4GLgVbgXjM7ocQu1wBXAy8A5wO/BC4A7gxCRVUlEz3fMpPLV/vbi4iIDFpdtTiY2RuAC4EvAFeVKHIFMBZ4o3NufrDPzfgWiuvMbKYLBg+Y2aH4sHCHc+5Doe+xGPgecApw6zC+nJ0kQ10TmayCg4iIRE/dtDiYWRy4EbgHuKPE9lHA+4H7C6EBwDm3DfgxcBAwN7TLqfjxiNcWHepGYAdw+lDWvxzhFocutTiIiEgE1U1wAC4CZgLn9bH9cKAReLTEtseCZTg4zAXywOPhgs65DmB+UdmqaAi1OGQVHEREJILqIjiY2Qzg68DlzrklfRSbHCxXlNhWWDelqPw651xnH+X3NLOGAVR3wNRVISIiUVcXwQG4HliMH8jYl5ZgWSoIdBSVKTwvVbav8t3M7Bwze7KfugxI+PJLDY4UEZEoqnlwMLPTgXcBn3bOZfopuiNYNpbY1lRUpvC8VNm+yndzzv3IOXdUP3UZEF1VISIiUVfTqyrMrBHfynA3sNrMDgg2Fboc2oJ164CVRdvCCuvC3RgrgUPMrLFEd8UUfDdG12BfQyXUVSEiIlFX6xaHZmAv4CTgldDj/mD76cHXZwEL8F0Px5Q4ztHBMty98AT+9b0pXNDMmoA5RWWrQi0OIiISdbWex2E78M8l1u8FpPGXZv4EeNY5t83M7gQ+aGZHOOeeATCzVnyweIXeV1DcBnwZPy/EQ6H1Z+PHNtwyxK9ll5Ia4yAiIhFX0+AQjGn4VfF6M5sePP27cy68/RLgncAfzOwaYAs+CEwBTnKhO0c55xaY2XXAeWZ2B747ZBZ+5sgHqPLkT6CuChERib5atzhUxDn3qpm9Ffg28CV67lVxonPuvhK7XAgsAc7Bd4esA76Pv1dF1d+51eIgIiJRV5fBIZjLwfrY9iJwcpnHyeGnri41fXV13XkLH7n7l3wkk+FnY48mk92v1jUSERGpWF0GhxEpl6Uh46ePaHBZdqjFQUREIqjWV1XsPuI9GS3pcuqqEBGRSFJwqJZEz+zWCfIaHCkiIpGk4FAtyWTPU5fTTa5ERCSSFByqJdETHBrUVSEiIhGl4FAtiaIxDuqqEBGRCFJwqJZQi0NCLQ4iIhJRCg7VEgoOSRQcREQkmhQcqkVdFSIiMgIoOFRLr66KvFocREQkkhQcqiXR+3JMBQcREYkiBYdqSSo4iIhI9Ck4VEu8aHCkxjiIiEgEKThUi1ocRERkBFBwqJbiMQ5qcRARkQhScKiW4ssx1eIgIiIRpOBQLSVaHJxzNayQiIhI5RQcqiU8jwN5HJBXcBARkYhRcKiWohYHQOMcREQkchQcqqVEcOjSOAcREYkYBYdqicfB/OmO44i5vFocREQkchQcqklzOYiISMQpOFST5nIQEZGIU3CopnhoLgfU4iAiItGj4FBNyd631s4qOIiISMQoOFSTbq0tIiIRp+BQTcXTTmuMg4iIRIyCQzWpxUFERCJOwaGawsEBtTiIiEj0KDhUU1GLg2aOFBGRqFFwqCbN4yAiIhGn4FBNRcEhm1dwEBGRaFFwqKaieRzU4iAiIlGj4FBN8aLLMTXGQUREIkbBoZp0VYWIiEScgkM16e6YIiIScQoO1aSrKkREJOIUHKqpeMpptTiIiEjEKDhUk6acFhGRiFNwqKZQcEiQV3AQEZHIUXCoJo1xEBGRiFNwqCZ1VYiISMQpOFRTKDg0qMVBREQiSMGhmnpNOa0WBxERiR4Fh2rSlNMiIhJxCg7VlOw95XRWwUFERCJGwaGadFWFiIhEnIJDNSWKbqutFgcREYkYBYdqUouDiIhEnIJDNWkeBxERiTgFh2pK9B4cqeAgIiJRo+BQTUV3x+xSV4WIiESMgkM1FXVV6HJMERGJmpoHBzM72MxuMbMXzWyzme0ws5fM7Gozm9RH+d+a2UYz225mD5nZ8X0cO2ZmFwXH6zCzZWZ2lZmNGv5XVkJSYxxERCTaErsuMuymApOA3wDLgSwwGzgHOMXM5jjnXgcws/2BR4IyVwKbgbOBe83sPc65+4qOfQ1wQXDsq4BZwddHmtkJzrnqvnMXXY6ZyzvyzhEzq2o1REREBqrmwcE597/A/xavN7MHgduBM/EhAeAKYCzwRufc/KDczcDzwHVmNtM554L1hwLnA3c45z4UOu5i4HvAKcCtw/SySov3HhwJkMnmaUzGq1oNERGRgap5V0U/lgbLcQBB98L7gfsLoQHAObcN+DFwEDA3tP+pgAHXFh33RmAHcPrwVLsfRV0VgLorREQkUuomOJhZk5ntaWZTzexdwA+DTXcHy8OBRuDRErs/FizDwWEukAceDxd0znUA84vKVkeiRHDQlRUiIhIhdRMcgLOAtcAy4F58l8TpzrmHgu2Tg+WKEvsW1k0JrZsMrHPOdfZRfk8zaxh0rSsRi0EwniGOI6Zpp0VEJGLqKTj8FvgH4APA5cAmYK/Q9pZgWSoIdBSVKTwvVbav8t3M7Bwze7KMOlfGTLNHiohIpNVNcHDOLXfO3eec+61z7mvAx4HvmNklQZEdwbKxxO5NRWUKz0uV7at8uC4/cs4dVX7tK6D7VYiISITVTXAo5px7FvgbkApWrQyWU0oUL6wLd2OsxHdHlAoPU/DdGF1DUdeKhC/JRF0VIiISLXUbHALNwPjg+QJ818MxJcodHSzD3QtP4F/fm8IFzawJmFNUtnqKpp1WcBARkSipeXAws4l9rD8OOIzgiongsss7gWPN7IhQuVb8wMpX6H0FxW2AAy4sOvTZ+LENtwzRS6iMuipERCTCaj4BFHB9MLX0n/BzNzQBb8RP0LQV+Hyo7CXAO4E/mNk1wBZ8EJgCnFSY/AnAObfAzK4DzjOzO/CXdRZmjnyAak/+VKBpp0VEJMLqITj8Aj8Q8gz8VRQOHyB+CHzXOfdaoaBz7lUzeyvwbeBLQAPwNHBiiemmwbc2LMFPX30SsA74PnBp1aebLtCNrkREJMJqHhycc7fjp5Yut/yLwMllls3h71Fx1cBqNwwSvaedVleFiIhESc3HOOx2NI+DiIhEmIJDtSk4iIhIhCk4VFvocsyEy9OlrgoREYkQBYdqU4uDiIhEmIJDtWkeBxERiTAFh2oruqpCl2OKiEiUKDhUm6acFhGRCFNwqDaNcRARkQhTcKi24imnNcZBREQiRMGh2uKh22o73VZbRESiRcGh2pKaclpERKJLwaHaNMZBREQiTMGh2hQcREQkwhQcqk2XY4qISIQpOFSbZo4UEZEIU3CoNnVViIhIhCk4VJuuqhARkQhTcKg2zeMgIiIRpuBQbTvNHJmrYWVEREQqk9h1kV1LpVIJ4DDAgOfS6XRmKI47IhWNccjmXQ0rIyIiUpmyWhxSqdSMVCr1yVQqdVCJbe8FlgNPAU8CK1Op1IeGtpojSLzockyNcRARkQgpt6viU8CNQFd4ZSqVmgH8EpgALANeAsYDt6ZSqUOHsJ4jR/HgSI1xEBGRCCk3OLwNWJBOp5cUrb8AaMaHihnpdPpQ4KNAEjh/qCo5omgeBxERibByg8MM4LkS608EssAX0+m0A0in078CHgXeMSQ1HGk0j4OIiERYucFhL+C18IpUKjUaOAh4Mp1Obyoq/zQwdfDVG4FCU04XLsd0TgMkRUQkGsoNDg5oK1o3B38VxdMlym9miK7YGHGKWhwAtTqIiEhklBsclgBvLVp3HD5Q/LVE+b2ANQOv1giWaOh+msQHh2xOLQ4iIhIN5bYK/AG4IJVK/SvwPXwXxbn48Q33lCh/FEVdGxIoujsmqMVBRESio9wWhyuBTcDXgY34Voa9gZ+m0+m14YKpVGoacCTwwBDWc+Qo1VWhKytERCQiygoO6XR6FTAP+DPQAawArsJfjlns4/gxDv8zRHUcWeJxMPNPccR0vwoREYmQsgcwptPp54ETyih3OXD5YCo1opn5VoeMn0tL96sQEZEo0U2uaqFonINaHEREJCqG6iZXR+CvsjDgoXQ6/eRQHHfECo1zSKCuChERiY5yb3I1L5VK3ZxKpY4use0y/FwOVwH/Bvw1lUpdPaS1HGl2mj1Sl2OKiEg0lNtV8c/AR4AXwytTqdTbgUuBPHALcAOwHvhscNdMKUX3qxARkYgqNzgcA/w1nU5vLlr/L/hJoC5Ip9P/J51OfwZ/9UUW+MTQVXOE2anFQYMjRUQkGsoNDpOBV0qsPx7Yjr87JgDpdPol4F5g7qBrN1KpxUFERCKq3OCwB0VTSKdSqYnAROCRdDqdLSr/Cn6CKCklGQoO6KoKERGJjnKDQzs7B4E3BMu/lSjfie+ukFLiuhxTRESiqdzg8BLwnlQqFb588yT8+IZHSpTfB1g1yLqNXOHLMV1eXRUiIhIZ5c7j8Cv8/Sp+n0qlbsDf5OpT+Kml/1ii/FspugJDQpK9xzhk1eIgIiIRUW5w+D5wKnAi8O5gnQH/N51Od4QLplKpNwPTg32klKLBkV0KDiIiEhHl3uSqE3+Z5aX422jfArwvnU7/oETxOcDvgDuHqpIjTvGU0+qqEBGRiKjkJlfbgW+WUe6HwA8HU6kRL6GrKkREJJp0k6ta0DwOIiISURXf5CqVSo0CPowfADkZf2XFKuAvwK+Clgnpz04zRyo4iIhINFTU4pBKpU4HlgD/AZwFvBd/WeZZwbolqVTqtCGu48ij4CAiIhFVdnBIpVLnAz/DzyL5JPAt4FwgFTx/Ith2cyqVOm/oqzqCFM3j0JnRvSpERCQayuqqSKVSBwFXAxuB09Lp9L0liv1rKpX6B+BW4OpUKvWHdDq9cOiqOoIUTTnd3qXgICIi0VBui8Nn8fM2nNxHaAAgnU7/ETgZiAMXDL56I1TRlNMdanEQEZGIKDc4vBO4P51O/2VXBdPp9CPAn4ETBlOxEa1ojENHl27rISIi0VBucJgKPFXBcZ8K9pFSiqac1hgHERGJinKDg8N3VZSrkrK7n51aHBQcREQkGsoNDsuBoyo47huBZeUUNLODzOxyM3vMzNaa2VYzm29mXzGzUSXKH2xmvzWzjWa23cweMrPj+zh2zMwuMrOXzKzDzJaZ2VWljltVCY1xEBGRaCo3OPwJmJdKpd66q4KpVOotwLHBPuX4JHAR8HfgcuBi4GX89NaPmFlzoaCZ7Y+/jfcx+Lt1Xgy0AveaWakxFdfgrwZ5ATgf+CV+0OadZla7WTMTDT1PydOR0RgHERGJhnLfPK/Fd1f8JpVK9TnoMZVKvRP4LZAD/r3MY/8KmOqcO805933n3A3OuY8C/w84HH/77oIrgLHAu51zVzjn0sDbgZXAdWbW3UViZofiw8IdzrkPOududM59DvgccBxwSpn1G3rqqhARkYgqax6HdDr9SiqV+jw+QNybSqUeB+7Dd0c4YF/8VRRvwo9v+Fy5czg4557sY9NtwFeAwwCC7oX3A/c75+aH9t9mZj/Gt1bMBR4PNp0a1OXaouPeCHwbOB0/50T1FXVVZPOOTC5PMq5bh4iISH2r5O6Y30ulUpvwb8RvxoeEMAM2AZ9Pp9M/HYK6Fa7KWBMsDwcagUdLlH0sWIaDw1wgH/oaAOdch5nND7bXRlGLA0BHV45ks4KDiIjUt4reqdLp9M341oVPAj8F7gHuBW7CdylMG4rQYGZx4FIgS0+rwORguaLELoV1U0LrJgPrnHOdfZTf08waSmwbfkW31QY0zkFERCKh4rtjptPpbfigcFNfZVKpVBPQkE6ntwywXtcCRwNfds69HKxrCZalgkBHUZnC81Jli8t3FW80s3OAc84999xK6ly+ZOkWBxERkXo3XG3j1wMbBrKjmX0DOA/4kXPuitCmHcGyscRuTUVlCs9Lle2rfDfn3I+cc5VcflqZoimnAV2SKSIikTCcneoVTwJlZpcB/4rvBvl00eaVwXIKOyusC3djrMR3R5QKD1Pw3Rg7tTZURbL33TFBwUFERKKhbkbjmdnXgK8BNwNnOedcUZEF+K6HY0rsfnSwDF+h8QT+9fUaxGlmTcCcorLVVXJwpMY4iIhI/auL4GBmlwKXAT8HPuFc8DE8xDm3DbgTONbMjgjt2wqcBbxC7ysobsNfKnph0aHOxo9tuGUIX0Jl+riqQkREpN5VPDhyqJnZZ4CvA6/h54b4WGgeJ4A1zrk/Bs8vwd+p8w9mdg2wBR8EpgAnhVspnHMLzOw64DwzuwO4G5iFnznyAWo1hwP0cVWFgoOIiNS/mgcHeuZT2Bf4WYntDwB/BHDOvWpmb8VP4PQloAF4GjjROXdfiX0vBJYA5wAnAeuA7wOXlmrVqJpSLQ66HFNERCKg5sHBOXcmcGYF5V8ETi6zbA64KnjUD3VViIhIRJUVHFKplN7VhlI83vMUR8zl1VUhIiKRUG6LQ8WXVuIHJkopZr7VIZsBdGttERGJjnJvclUXV1+MKMme4JAgr8sxRUQkEhQIaqVonEO7xjiIiEgEKDjUSlFwUFeFiIhEgYJDrSg4iIhIBCk41EpxcNAYBxERiQAFh1pJ9L5DZqdaHEREJAIUHGqlaNppTQAlIiJRoOBQK4net9bWGAcREYkCBYda2fnES2YAACAASURBVOlyTI1xEBGR+qfgUCtFYxzU4iAiIlGg4FArRS0Oubwjk6vdDTtFRETKoeBQK8negyNBd8gUEZH6p+BQK/ESt9bOaJyDiIjUNwWHWkmWCA5qcRARkTqn4FAriVItDgoOIiJS3xQcaqVoHgdA006LiEjdU3ColaLLMUEtDiIiUv8UHGoloasqREQkehQcakVjHEREJIIUHGqlZHDQGAcREalvCg61Erocs8H5wKCuChERqXcKDrXS0tr9tDXfCairQkRE6p+CQ62MGt39dLSCg4iIRISCQ630Cg4dALq1toiI1D0Fh1oJB4ecDw4a4yAiIvVOwaFWSrQ4qKtCRETqnYJDrTSPAjMARrkMcZdTcBARkbqn4FArsdhOV1boXhUiIlLvFBxqKdRdMSbfQadaHEREpM4pONRS65jup6NznRocKSIidU/BoZZaeg+QbNeU0yIiUucUHGppVM8Yh9H5DrU4iIhI3VNwqKWiSzJ1VYWIiNQ7BYdaKpp2Opd3ZHL5GlZIRESkfwoOtaTZI0VEJGIUHGopfFVF9+yRGiApIiL1S8GhlormcQC1OIiISH1TcKgl3VpbREQiRsGhlkrd6ErTTouISB1TcKilUoMj1eIgIiJ1TMGhllp67pDZ6rqIubzGOIiISF1TcKilWNzfXjvQmu9Ui4OIiNQ1BYdaK7qyQpdjiohIPVNwqLXiaafVVSEiInVMwaHWigZItis4iIhIHVNwqLWiuRzUVSEiIvVMwaHWiqad1uBIERGpZwoOtaYxDiIiEiEKDrW2U1eFgoOIiNQvBYdaG9Xa/XRMTl0VIiJS3xQcam2nrgoNjhQRkfpV8+BgZpeY2S/NbJGZOTNbsovyB5vZb81so5ltN7OHzOz4PsrGzOwiM3vJzDrMbJmZXWVmo0qVrwmNcRARkQipeXAAvgUcD/wd2NhfQTPbH3gEOAa4ErgYaAXuNbMTSuxyDXA18AJwPvBL4ALgTjOrh9cOo8JXVWiMg4iI1LdErSsA7O+cWwRgZs/hg0BfrgDGAm90zs0P9rkZeB64zsxmOudcsP5QfFi4wzn3ocIBzGwx8D3gFODWYXg9lSlucdA8DiIiUsdq/qm7EBp2JeheeD9wfyE0BPtvA34MHATMDe1yKmDAtUWHuhHYAZw+iGoPnZaenDQq30lXZ6aGlREREelfzYNDBQ4HGoFHS2x7LFiGg8NcIA88Hi7onOsA5heVrZ14HBfcITMGxDt31LY+IiIi/YhScJgcLFeU2FZYN6Wo/DrnXGcf5fc0s4YhrN+AWai7oiXbQSaXr2FtRERE+hal4NASLEsFgY6iMoXnpcr2Vb6bmZ1jZk9WXMOB0pUVIiISEVEKDoU2/MYS25qKyhSelyrbV/luzrkfOeeOqriGA9XaOzi0ay4HERGpU1EKDiuD5ZQS2wrrwt0YK/HdEaXCwxR8N0bXENZv4HrdWluXZIqISP2KUnBYgO96OKbEtqODZbh74Qn863tTuKCZNQFzisrWVlFXRaeCg4iI1KnIBIfgsss7gWPN7IjCejNrBc4CXqH3FRS3AQ64sOhQZ+PHNtwyrBWuRCg4jNG00yIiUsdqPgGUmZ0BTAu+3AtoMLN/Db5e6pz7eaj4JcA7gT+Y2TXAFnwQmAKcVJj8CcA5t8DMrgPOM7M7gLuBWfiZIx+gHiZ/KmgpngRKLQ4iIlKfah4cgE8B7yha941g+QDQHRycc6+a2VuBbwNfAhqAp4ETnXP3lTj2hcAS4BzgJGAd8H3gUudc/Vzz2Fo07bSuqhARkTpV8+DgnDu2wvIvAieXWTYHXBU86levwZEdbFaLg4iI1KnIjHEY0XS/ChERiQgFh3rQKzh00q6uChERqVMKDvVgp6sqFBxERKQ+KTjUg9AdMlvzHXR01ce8VCIiIsUUHOpBIkGmwc+CHQPcju21rY+IiEgfFBzqRLapp9XBtm+rYU1ERET6puBQJ7JNo7qf246tNayJiIhI3xQc6oSF7pDZvnFTDWsiIiLSNwWHOtE4dmz3885NG8nlXT+lRUREakPBoU4kR7d1P2/JtLN6044a1kZERKQ0BYd60dp7Eqhl6zRAUkRE6o+CQ70omnZ66VoFBxERqT8KDvWiKDioxUFEROqRgkO9GDOu++nUzCZeU3AQEZE6pOBQL2Yc3P30wK7XWfv6BpzTlRUiIlJfFBzqResY3JTpAMRxTN+6nPVbO2tbJxERkSIKDnXEDprd/Xx2xwp1V4iISN1RcKgnB/cEh8M7V7BsnaaeFhGR+qLgUE8O7AkOB3WuYcWajTWsjIiIyM4UHOpJ2zjax08CoIE8tvjlGldIRESkNwWHOpM/8LDu53uuWljDmoiIiOxMwaHONB92ZPfzA7csY0t7Vw1rIyIi0puCQ52JhQZIzupaxfI1usW2iIjUDwWHejN+Lza2jAeg0eXY/MJzNa6QiIhIDwWHOrR+0kHdz+OvKDiIiEj9UHCoQ7kDDu1+PnaFBkiKiEj9UHCoQ6Nm9wyQ3GfTUsjlalgbERGRHgoOdWjvA2bwerwVgOZ8hs6/v1TjGomIiHgKDnUomYjz9zHTur/e8szfalgbERGRHgoOdWrtxAO7nyeffQx0i20REakDCg51qv3Aw8lhAIxd9So8dE+NayQiIqLgULfGT9uX34yZ07Pi9hth/eu1q5CIiAgKDnVrxoTR/KztaJYlxvoVHTvg5mvVZSEiIjWl4FCn9ps4hgl7tnH1Hu8kX1j5/NPw8L21rJaIiOzmFBzqVMyMfzxqGi80TeY3o8NdFj+CDWtrVzEREdmtKTjUsX84YiqNiRg/G3s0ywtdFu074Ppvwratta2ciIjslhQc6lhrU5LjZk+hM5bk6j3eiQuusmDxy/Cdz6vlQUREqk7Boc69741+IqjnmyZz/R7zejaseg2uuAhWvlajmomIyO5IwaHOHTCpjVlTfTfF71oP55F5Z0I84TduXAff/hw8+7iuthARkapQcIiAQqsDwPWbJpA7/+vQ2ORX7NgG37sULv8MPPq/kM3WqJYiIrI7UHCIgLcfMom2lgYAXt/czuPJqXDxldDa1lNo2SL4yXfhkjPhrv+CTetrU1kRERnRFBwioCER58Q5+3R//R9/eomVY6bApT+A494HDY09hTeug9/cBF84A37wdXj2rz5EbN0E27f6iaTUrSEiIgNkTm8ifUqlUg4gnU7Xuiqs3rSDT153P7m8/3m1NCb4/PsO522zJsG2LXD/f8P//t4HhF0ZPwGOPh7e8k6YuM+uy4uIyO7E+t2o4NC3egoOAH98Zjn/ftcCMrnuuST54Jtn8Ml3ziQZj0GmC558yN8Qa+GC8g6630w44mjYewpMmAwTJkFTyzC9AhERiQAFh4Gqt+AAsHDlJr7566dZs6m9e93ebc285w37cuKcfRjXGnRbrF7mA8T8x/ykUfk85HPQ1QnZTP/fZPTYnhAxYTK0joGuLujq8OHEDNrG+8fY8dDQ5LtINq6F9Wt9d8jkabDfwTBlBsTjO3+PjnbYtA42roctG2F0m2/9GLenP37U5XP+ta1dBa+vhHWrobEZjpoHe0+ude1ERPqj4DBQ9RgcALa2Z/i3383nsVd63y0zETPeNmsS75ozlTnT9yAeKzGEJZvxl28++r9+mRvmqzAaGmHqDD+uoqPdh4qOHT7M9FV+76kwZqy/cqSxyQeTpubg0eKXiWTvgJHpgvbtsGO7X2a6fGCJJyAW98Fp6ybYthm2bvYBas9JMGkqTNrXB6RkQ3BM8382sZjfNxbz9X99pZ83Y9VrsGY5NLfClGk+JE3a1x/77y/B4pdgyULo7Cj9GmceAW8/Ed7wVv89w5zzE3stWejD2J57++PvOdHXYzDyef/6SgWzXA5WLPbnbcr0nVud8jlYs9KHw1hwXuMJaGz0rVWJ5ODqtlNdc7DoZXjpGf+6Z82BaQeWfw6cg80bYOmr/uc9/UD/ugqv3Tl4+VkfrpcshEn7+O67I47u+Znk8/5nvWyRD8kHHjr417ltCyxf7P8Gph8EY/cY3PFEtmyCV5/3/0+GjoLDQNVrcABwzvGbvy7mFw+/ypb2nVsQ2loaeMvBezPvkMnMnjbed2UU27oZ/vYIrFzq3xRfXwlrVw9/mBAv2eDfkMaM9Y98HhYvLD1OpaHRhxvnfPjr6oRMBlzer3N5yDtoaOgJV41NvqVoxzb/aN8OzaOCsDPdL7dvhVeeh7+/CJ1BK5aZ/17TDvDlly3yb3ZdnaVfRyIJU6f7N/ap+/nAVmjhyuX8m3080RPEcH57oc4FZn6fV1+A55/ydQtrHQOHvMG/4SYS/vvE4n6fHduD17nd337+tVd9S1ZY23g45Egfwh6/H9as2Pm1NI+COcf47/3q8/6YBU0tfv/D3+TDUjbr/1ayWX9ut26CLZv9MtMJFguCWsz/ra1Y7MNg2ITJcNBhsO8BPlhv3eTLbt/a83N1+H/j4/byoXrvyT5QblgHK5fAiqWwapk/J61jgkebPze5bM/PobGxp6Wwbbxv5Wto9I/GpiAUGcSC8JzP+9dVCPqdHf5nFxZPQjLp900k/c/YLPiZx324TiR675Pp8ud+9XL/O+dCvw/JRmgdDaOC19HQ6Oufz/vX0NHuf66Fx8b1PS2dG9f6Ou430/+eHPoG2Hd/fx6c8983m/F/G7GiVlDnfPDftMHXe9RoaGndOdgX5HP+DXvTBmjf5r9vV6dfJpIweV//YaIwcN05/7NfudQH2mRDz7lvaoEJU/zrLsW53mHfOf/3+Mxf/eD3xS/7dVf+HMbvVfoYlVNwGKh6Dg4FXdkcD72wijufWsqLy0sPjEzGY0zbq5UDJrVxwMQx7D+xjRkTRtPckNi5cD7nf8ELQeL1lf6PtaHR/1E3NPg/4C0b/dUamzdARweM28P/Y9tjgv9HsvRV/wvd17TYiaT/tDVuDxgzzh9r9fKd3yyibHQb7DWp57Hs7/DsE/4fpMjuorUN2sb5ILBpPby+qnp/A41NgPk39cL3tJgPBqPbfDjYttn/n8p07bx/Q6Nv8UwkgrCa8EFqy+ZdvwaL+e7ellbfddxXK2vBmHE+cOw1yQfWDWv9/+LNG32YSyR94MjnewfagjPOh3ecVNZpKYOCw0BFITiE/X31Fv7wzDIefnE167b20UweMGDS+Bb2mzCGqXuMYvzoJsa3NrLH6CbGtjTQ2pxkVGOSeGyQ4w0KgSCZDH0SboFRraWbzLduhtdXwPZtfkxFZ+hR+OTT0b5zq0g84f9Am1v8p8bCJ5Vczi/B/wMbHTwSyeBTzzL/aW3d6uBTjwOc/2BV+NRc+GQ8fq+eTxITp/qQs3Kpf6xa7l/bfgfDfrNgxsGl0//GdfCXP8Jf/uDHP5TS1OKb1vea5MusWFre1TKDNW5Pf+5WL/OvvVjbeP9J2zl//nM5/093/es7lx0KbeNh9lH++zz/9M4tCLvS2OQ/cY4a4wcLF/+zbW6BNx8Pb3wrLHwOHvvTzj+T0W2+hWPVa7BuzeBeD/jfuynT/e/n4pd3Pd5IZFdiMTjgUDjhn4ayu0LBYaCiFhwK8s7x4vKNPPjCKh5buIbVoYGUlTD8ZZ+jm5OMbm5gTLAc3ZxkVGOC1qYko5qSjG5KMqalgbbgMbo5SaJU14j0cM43A2/ZFDRxb/JvxlP386GkuC9/62ZYv8YHpGRDzyMW72laBt9EXhhL0tnhy7SM9kGtqcW/+a5YEgSe1/wb2QGH+Oby8RN8mOvqhOVLYNmrvjVpyjTYZ3//qbGUbVt8C9PSV3wYM+vpRojFendb5HO+rrFYT7N24XwUlntNhMPmwj779WzP533z7PNP+ybp8DHN/OtrboWWUX5w7z4zfDdAoUk6n/N1fOFvPiQecIgfqFqYgbXwvRe96Mc+jAnGNEyY7I/vnA+YCx73x+hs9z+LwqfQpmb/fUeP9WGjqbl3F1Jjox8oPGFyz2DhTJcfX7HwOR9YRrVC61gY0+Y/EccTPWNSclnfjbhmhX+sX+OD1ZTp/jF5X/8Jd9tm//PYugVcrmeMTzzuQ/fmDf5RaGLv6oTOTh/Ss5mgzvh6x2L+d6YQxhubdm4yz2V9l1k2eBTCdz7vt+3YtvO8MWawx95+XMnotp4unVjM/85u2wLbt/g7AGczvccaFbr32sb5T+ht4/zv7fgJMH5P/71enA8vPO1/TuGwWehO6ejjk39ziw/PuVxP914uV7os9LSkjG7zrRKFLp8d23q6f8OvvXmUH6+010TfvdXV6R/bt/gPV6VaPPrS0gqz5/pus0OP6rubY+AUHAYqqsGh2Jb2Lhat3sIrqzfz6qotLFqzheXrt5Mfxp99QyJGc0OC5oY4zQ0J4jEjZkYsZsRjRmtTkjHNDYxp8cvGZJxEPEYybiTiMRKxGPG4kYzHiMeMpmSclsYEzQ0JWhoTNDUkureJSJ3K5XqC8dZN/k1276m9A9twcc4H7kTSf79CYMtm/Zt1YSxJ6xjfzdoyauf9O9v9G3om0xOSGpt8YNjVQNmuTt9S1b7DfxhoG9/3FWP5nG+5W/maD4WtY3yIGbdnMIDWfIjKdPl6jB5b+mq1oaPgMFAjJTiU0pnJsXTtVha/vpXXN7ezYVsnG7Z2sGFbJ5vbu9jWnmF7Z/0PkoyZ0ZDwAcI539rinMPMaG5I0NQQpykZpzEZ7/lLML9fIYS0NCRobkyQCEJNPBYjFvOfMnPOkc87/8HBIG6GBQGoKRmntSnBqKYkrU1JEjHzH9aCP6lE3GhK+vDU1BAnEYuRzefJ5hzZXB4z89+/MVF68KqISG30GxxKjI6T3UFjMs5Bk8dy0OSxfZbJ5R3bOzJs7ciwtb2Lre2Z4NHF9s4sWzsyfnt7hs07utiyo4vNO3y5asXRvHN0ZEo3J3ZkcrC9ShUZpGQ8RmPSX3FQaC3G0d1CU3hY6BOLQXerTDIeI5mI0ZCI01hYJuPESnzCsSA4mUE8ZkFLj3+YGdlcnkw+TzaYaKw56YNVS0OchmTc18+54III192SFDPrPl5DUJ9k3IcwMyMWfL9c3vnwlM+TyznfOlVoTWpIkIhbrxbeQn39cfx5yeTyZHI+hDnnaEzGg5CYUCuUyDAb0cHBzGLAZ4F/AaYDa4HbgUudcxF5S6mdeMwY09LAmJYGYNQuyxc45+jM5NjRlaW9K0dHV468c+Tyjlw+Ty7v2NaeYUt7F5t3+CDS80aQJ5PNk807crk8mbz/dN6ZybGjM8uOriw7OrN0ZXJ0ZfNVCyjDrfD6ZfCS8RgNCR/EGpNxkvFYd0jJ5PzvXyE4FQJPIm4kYj7oFMbnFFqv8s4PI4mFWqTiMfMtVPGYb2lykM33hJmY0d2i1dyQoCHhj+lDocMwkgm/bzIRJxGznt/5XJ68cyRivi6FcgShqcCsJ1DGgrDkCokz2B4LlSlsL7yuwqEsVDYRNxoS8VAQjXV/nYgbeUfQAufIO0c2+PvM5X3LXK/wmoz32j+ZiJUMsmGF850PWvpiwXm2MvbL5PJBHeIKj8NsRAcH4BrgAuA3wFXArODrI83sBOd0XdxwMDOaGvw4hOHkgjDSlQ3eDGKFT9JGLp+noytHRyZHR1eWzmy+ex/w//x2dGVp7ywEnGzwSdj/88nlXfen5MInZudc9z/efN7RnsmxLWh12daR6d7H/yP2YaCjK0d7V5aOTI5szvlxGXH/zzDv8GGoMzus4012N4UQFoWutt2NQXfQiVmha8//PeW7W7F6i5nRmIx1j4Mq/B06B7l8ns5snkw212vfQgteYzIIX0EIi8esV3dhJpcPxp9ad5hMBMGw8LdqGK7QEuhcELB8kCp0axZiSuFYiSBg+jI7h5hCoCuch2yu58NS3tEd4BqCVjug+1wVB77C8xMOn8r0CUM+SLKkERsczOxQ4HzgDufch0LrFwPfA04Bbq1R9WQIWOGTYsnxAXFGNQ7xbIbDxDkffjozue7xF4V/NYUxFtmcb63pvR89rTS5PF3ZwiNHZ3eLjNtpH+gJP3nnyGTzwZut/yRZ+NSdDD5htgctR+1dWbqyuV7/ZIGef/p5/488E3yyz+T8P/Rw2Mq7YHB8PNb9yb0rm6O9y7coFQIc9L7gIhf6lNv9aT3opgGCgOhftyJY/XJA1jcplL1P3rng96+fKxyKFH7/tvV/VfqIcsg+4xQchsCp+CB2bdH6G4FvA6ej4CB1wMy6m9VlcLpDWDZHV8Yvs7l899iLwqdJhw86+SCM5EJhJ1v8KRT/hhfuasuFmuizuXzoU6gPXLnuFi3fvZbJ+um+C61RvUJf0DWXiPV8ko2ZP0a4TgXh1q9cENpyoTdiC3o1Ct0KOec/yVoQ9gotaYV4WgiXuXxPiCwE0ExQv65snmw+T4yeT8lmBOfUd9nEgla2rowPwZ3B/l3ZfPdxy+Fne/ffo/i19afQJdOV3T0bkq3/8YxDaiQHh7lAHng8vNI512Fm84PtIjKC9AphzbWujYQVj1/wXXu9B+oWuhrDsjkfADuD7r7CPuD38QOBY9335gm34HVkct0BrBD0CgEt3BXRPe4jCGOF8tl8Ppjx2XoFslwwniWXc93djOHWvHDXQy5oJes+D/S0vuXyQddEUKfCOcjmg/AWtBwWAp9Bz/UOrmfhHOy7Z+vw/OBKGMnBYTKwzjlXaoL9FcBbzKzBOVfBrBsiIjIQZkbcII5BBY1rhZaccrsew+FxzADrKv0byRePtwB93JWHjlCZnZjZOWb25LDUSkREJMJGcnDYATT2sa0pVGYnzrkfOeeOGpZaiYiIRNhIDg4rgT3NrFR4mILvxlA3hYiISAVGcnB4Av/63hReaWZNwBxAXREiIiIVGsnB4Tb8gNMLi9afjR/bcEvVayQiIhJxI/aqCufcAjO7DjjPzO4A7qZn5sgH0BwOIiIiFRuxwSFwIbAEOAc4CVgHfB9/r4rdc5YQERGRQRjRwcE5l8Pfo+KqWtdFRERkJBjJYxxERERkiCk4iIiISNkUHERERKRsI3qMw1BJpVK1roKIiEi1uHQ63eftNtXiICIiImUz58q717kMDTN7UvfBGDydx6Gh8zg0dB6Hhs7j0Bju86gWBxERESmbgoOIiIiUTcGh+n5U6wqMEDqPQ0PncWjoPA4NncehMaznUWMcREREpGxqcRAREZGyKTiIiIhI2RQchpmZxczsIjN7ycw6zGyZmV1lZqNqXbd6ZGYHmdnlZvaYma01s61mNt/MvlLqnJnZwWb2WzPbaGbbzewhMzu+FnWvZ2bWYmaLzcyZ2Q9KbNd57IeZjTezfzOzV4O/47Vm9mcze3tROZ3HPphZq5l92cwWBH/X68zsETM708ysqOxufx7N7BIz+6WZLQr+bpfsonzZ52yw70uaOXL4XQNcAPwGf5fOWcHXR5rZCbq9904+CXwG+D1wC5ABjgO+CXzEzI52zrUDmNn+wCNAFrgS2AycDdxrZu9xzt1Xg/rXq8uBPUtt0Hnsn5lNA+4HWoGfAAuBNuBwYEqonM5jH8wsBvwP8BbgZ8D3gRbgVOCn+P+LXwzK6jx63wI2AE8DY/srOIBzNrj3JeecHsP0AA4F8sCvi9afDzjgY7WuY709gKOAthLrvxmcs/NC624HcsCc0LpWYCnwMsHg3939Abwh+IfyueAc/qBou85j/+fvIWAZMGkX5XQe+z43xwS/e9cUrW8AFgGbdB53Omf7hZ4/Byzpp2zZ52wo3pfUVTG8TgUMuLZo/Y3ADuD0qteozjnnnnTObS6x6bZgeRhA0KT2fuB+59z80P7bgB8DBwFzh7m6dc/M4vjft3uAO0ps13nsh5nNA94GXOmcW2VmSTNrKVFO57F/Y4LlyvBK51wXsA7YDjqPYc65ReWUG8A5G/T7koLD8JqLT3aPh1c65zqA+ewmfwBDZGqwXBMsDwcagUdLlH0sWOr8wkXATOC8PrbrPPbvvcHyNTO7E2gHtpvZQjML/4PVeezf48Am4Atm9s9mtm/QJ38F8EbgsqCczmPlKj1ng35fUnAYXpOBdc65zhLbVgB7mllDlesUOcGn5kvxze23BqsnB8sVJXYprJtSYttuw8xmAF8HLnfOLemjmM5j/w4OljcC44GPA58CuoCfm9kngu06j/1wzm3EfyregG9WXwq8hB/P9CHn3I1BUZ3HylV6zgb9vqTBkcOrBSj1wwHoCJXpqk51Iuta4Gjgy865l4N1hebiUue3o6jM7up6YDFwdT9ldB77NzpYbgWOC5rWMbPf4Pvmv2VmP0PnsRzb8H31v8cP5BuPDw63mtnJzrk/ovM4EJWes0G/Lyk4DK8dwIQ+tjWFykgfzOwb+Gb2HznnrghtKpy3xhK77fbnNmhGfxcwzzmX6aeozmP/2oPlLwqhAfwnaDP7PfB/8K0SOo/9MLPZ+LBwkXPuhtD6X+DDxI3BlQE6j5Wr9JwN+n1JXRXDayW+2afUD3QKvrlIrQ19MLPLgH/FX6716aLNhUFWpZotC+tKNd2NeMHv29XA3cBqMzvAzA4ApgVF2oJ1Y9F53JXlwXJ1iW2rguU4dB535SL8m9IvwyudczuAu/C/m9PReRyISs/ZoN+XFByG1xP4c/ym8EozawLmAE/WolJRYGZfA74G3Ayc5YLrhUIW4Jvbjimx+9HBcnc9v83AXsBJwCuhx/3B9tODr89C53FXCgPIppbYVlj3OjqPu1J4A4uX2JYILXUeK1fpORv8+1Ktr1UdyQ9gNv1fL3t6retYjw/8QEiHDw2xfsr9En/t8hGhdYVrlxeym1zvXeK8JIEPl3icG5zX/wm+PkjncZfnchywBd/y0BpaPwnfZ78wtE7nse/zeE3wu/eFovWFVq8NQELnsc/zt6t5HMo+Z0PxvqS7Yw4zM/s+vo/+N/im48IMXX8BjneaObIXM/sM8APgNeCr+F/wsDXOD6IiaH5/HD+75DX4f/Bn4/8wCjzuZgAABNBJREFUTnLO3VutekeBmU3HD5a8zjl3Xmi9zmM/zOwc4IfA88B/4CctOhcfHv7ROfeHoJzOYx+C2TefxgexW/D//8bjz8904DPOuXRQVucRMLMz6OlePB//e3dV8PVS59zPQ2UrOmeDfl+qdZIa6Q9809zn8bN3deL7mq4m9OlFj17n6yZ86u3rcX9R+VnA7/DXiO8AHgZOqPXrqMcH/h/0TjNH6jyWde4+iL8mfjv+Cos/AG/VeazoHO6Pn256efAGtwV4EPigzmPJ83V/uf8HKz1ng31fUouDiIiIlE2DI0VERKRsCg4iIiJSNgUHERERKZuCg4iIiJRNwUFERETKpuAgIiIiZVNwEBERkbLp7pgiMuKlUqnL8Pc+OS6dTt9f29qIRJuCg4jsUiqVKmemOL0pi+wGFBxEpBJf72fbkmpVQkRqR8FBRMqWTqcvq3UdRKS2FBxEZMiFxxTg7/B3ITATf4Oo/wa+nE6nV5fY70D8XVHfCewFrAPuA76RTqdfKVE+jr8L4BnAYfg7CK7A3yDoO33s82HgC0H5DvwNqz6fTqdXDOY1i+wudFWFiAyni4AbgGeAa/F34/sE8EgqldorXDCVSs0FngROB54A/g1/R8rTgCdTqdRRReUbgHuA64F9gFuB7wFPAR8A3lqiPingP/HdKtcBzwEfBe5LpVKNg361IrsBtTiISNmCloRSOtLp9LdLrH8P8OZ0Ov230DGuwbdAfBv4VLDOgJuBMcDp6XT6llD5jwL/BfxnKpU6JJ1O54NNlwEnAHcC/5xOpztD+zQGxyp2IjA3nU4vCJW9FTgVOBm4vc8XLyKAWhxEpDJf6+PxpT7K/zwcGgKXAZuBj4U+5b8F35XxaDg0AKTT6duAh4GDgbdBdxdFCmgHPh0ODcE+nel0em2J+nwvHBoCNwbLN/XxGkQkRC0OIlK2dDptFe7yQIljbE6lUvOBdwCzgPnAG4LNf+rjOH/Ch4YjgQfxIaMN+Gs6nV5ZQX2eLLFuWbAcV8FxRHZbanEQkeG0po/1hYGRbUXLVX2UL6wfW7SsdEDjphLrssEyXuGx/n97d+gSWRTFcfxrETYZdRXzNtFkETUtFsFmUqucvkUE9z+wXYw2WYsKgsGqwbLYVk0mg21h04LMhntHHg/HvQ5O2f1+YHjMncvMe2l+zJxznvRfMjhIGqTRHutj5fizdRx7YS/Ax9a+bgCY6P/UJPXD4CBpkBbaCxExAkyTWyF/lOVuHcRij/fprn8vxxtyeJiKiPH3OFFJdQwOkgZpLSJmWmtfyX9NHDSKGi/JrZpzZc7Cs/J8HrgjF0mSUnoCEvAB2Gu3UkbEcLvdU9L7sDhSUrVX2jEBjlNK1621M+AyIg7JdQpz5XFPoxMjpdSJiA3gHPgWESfkXxU+ASvkwVHrjVZMyOOvZ4Fl4C4iTsu+SeAz8AXY7+tCJfVkcJD0FjuvvHZP7pBo2gWOyHMbVoFf5C/zrZTSY3NjSumqDIHaJs9nWCZPjjwgT468be3/HRFLwCawDmwAQ8BD+cyLt1+epL8Z6nRqbnonSfW8jbX077LGQZIkVTM4SJKkagYHSZJUzRoHSZJUzV8cJElSNYODJEmqZnCQJEnVDA6SJKmawUGSJFUzOEiSpGp/AEGxJ1p+hBDVAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 576x432 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "ooo.plot_history(history, plot={'MSE' :['mse', 'val_mse'],\n",
    "                                'MAE' :['mae', 'val_mae'],\n",
    "                                'LOSS':['loss','val_loss']})"
   ]
  },
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 7 - Make a prediction\n",
    "The data must be normalized with the parameters (mean, std) previously used."
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": 15,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {},
   "outputs": [],
   "source": [
    "my_data = [ 1.26425925, -0.48522739,  1.0436489 , -0.23112788,  1.37120745,\n",
    "       -2.14308942,  1.13489104, -1.06802005,  1.71189006,  1.57042287,\n",
    "        0.77859951,  0.14769795,  2.7585581 ]\n",
    "real_price = 10.4\n",
    "\n",
    "my_data=np.array(my_data).reshape(1,13)"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": 16,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
      "Prediction : 8.21 K$\n",
      "Reality    : 10.40 K$\n"
     ]
    }
   ],
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "source": [
    "\n",
    "predictions = model.predict( my_data )\n",
    "print(\"Prediction : {:.2f} K$\".format(predictions[0][0]))\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "print(\"Reality    : {:.2f} K$\".format(real_price))"
   ]
  },
   "cell_type": "markdown",
   "source": [
    "---\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}