Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Variational AutoEncoder (VAE) with CelebA\n",
"=========================================\n",
"---\n",
"Formation Introduction au Deep Learning (FIDLE) - S. Arias, E. Maldonado, JL. Parouty - CNRS/SARI/DEVLOG - 2020 \n",
"\n",
"## Episode 1 - Train a model\n",
"\n",
" - Defining a VAE model\n",
" - Build the model\n",
" - Train it\n",
" - Follow the learning process with Tensorboard\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 1 - Setup environment\n",
"### 1.1 - Python stuff"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import tensorflow as tf\n",
"import numpy as np\n",
"import os,sys\n",
"from importlib import reload\n",
"\n",
"import modules.vae\n",
"import modules.data_generator\n",
"\n",
"reload(modules.data_generator)\n",
"reload(modules.vae)\n",
"\n",
"from modules.vae import VariationalAutoencoder\n",
"from modules.data_generator import DataGenerator\n",
"\n",
"sys.path.append('..')\n",
"import fidle.pwk as ooo\n",
"reload(ooo)\n",
"\n",
"ooo.init()\n",
"\n",
"VariationalAutoencoder.about()\n",
"DataGenerator.about()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.2 - The good place"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"place, dataset_dir = ooo.good_place( { 'GRICAD' : f'{os.getenv(\"SCRATCH_DIR\",\"\")}/PROJECTS/pr-fidle/datasets/celeba',\n",
" 'IDRIS' : f'{os.getenv(\"WORK\",\"\")}/datasets/celeba' } )\n",
"\n",
"# ---- train/test datasets\n",
"\n",
"train_dir = f'{dataset_dir}/clusters-M.train'\n",
"test_dir = f'{dataset_dir}/clusters-M.test'"
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2 - DataGenerator and validation data\n",
"Ok, everything's perfect, now let's instantiate our generator for the entire dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_gen = DataGenerator(train_dir, 32, k_size=1)\n",
"x_test = np.load(f'{test_dir}/images-000.npy')\n",
"\n",
"print(f'Data generator : {len(data_gen)} batchs of {data_gen.batch_size} images, or {data_gen.dataset_size} images')\n",
"print(f'x_test : {len(x_test)} images')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 3 - Get VAE model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tag = f'CelebA.052-M.{os.getenv(\"SLURM_JOB_ID\",\"unknown\")}'\n",
"input_shape = (192, 160, 3)\n",
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"z_dim = 200\n",
"verbose = 0\n",
"\n",
"encoder= [ {'type':'Conv2D', 'filters':32, 'kernel_size':(3,3), 'strides':2, 'padding':'same', 'activation':'relu'},\n",
" {'type':'Dropout', 'rate':0.25},\n",
" {'type':'Conv2D', 'filters':64, 'kernel_size':(3,3), 'strides':2, 'padding':'same', 'activation':'relu'},\n",
" {'type':'Dropout', 'rate':0.25},\n",
" {'type':'Conv2D', 'filters':64, 'kernel_size':(3,3), 'strides':2, 'padding':'same', 'activation':'relu'},\n",
" {'type':'Dropout', 'rate':0.25},\n",
" {'type':'Conv2D', 'filters':64, 'kernel_size':(3,3), 'strides':2, 'padding':'same', 'activation':'relu'},\n",
" {'type':'Dropout', 'rate':0.25},\n",
" ]\n",
"\n",
"decoder= [ {'type':'Conv2DTranspose', 'filters':64, 'kernel_size':(3,3), 'strides':2, 'padding':'same', 'activation':'relu'},\n",
" {'type':'Dropout', 'rate':0.25},\n",
" {'type':'Conv2DTranspose', 'filters':64, 'kernel_size':(3,3), 'strides':2, 'padding':'same', 'activation':'relu'},\n",
" {'type':'Dropout', 'rate':0.25},\n",
" {'type':'Conv2DTranspose', 'filters':32, 'kernel_size':(3,3), 'strides':2, 'padding':'same', 'activation':'relu'},\n",
" {'type':'Dropout', 'rate':0.25},\n",
" {'type':'Conv2DTranspose', 'filters':3, 'kernel_size':(3,3), 'strides':2, 'padding':'same', 'activation':'sigmoid'}\n",
" ]\n",
"\n",
"vae = modules.vae.VariationalAutoencoder(input_shape = input_shape, \n",
" encoder_layers = encoder, \n",
" decoder_layers = decoder,\n",
" z_dim = z_dim, \n",
" verbose = verbose,\n",
" run_tag = tag)\n",
"vae.save(model=None)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 4 - Compile it"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"optimizer = tf.keras.optimizers.Adam(1e-4)\n",
"r_loss_factor = 10000\n",
"\n",
"vae.compile(optimizer, r_loss_factor)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 5 - Train\n",
"For 10 epochs, adam optimizer : \n",
"- Run time at IDRIS : 1299.77 sec. - 0:21:39\n",
"- Run time at GRICAD : 2092.77 sec. - 0:34:52"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"initial_epoch = 0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vae.train(data_generator = data_gen,\n",
" x_test = x_test,\n",
" epochs = epochs,\n",
" initial_epoch = initial_epoch\n",
" )"
]
},
{
"source": [
"----\n",
"That's all folks !"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}