Skip to content
Snippets Groups Projects
README.md 2.03 KiB
Newer Older
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
![](fidle/img/00-Fidle-titre-01_m.png)

## A propos

Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
This repository contains all the documents and links of the **Fidle Training**.  

The objectives of this training, co-organized by the Formation Permanente CNRS and the SARI and DEVLOG networks, are :
 - Understanding the **bases** of deep learning neural networks (Deep Learning)
 - Develop a **first experience** through simple and representative examples
 - Understand the different types of networks, their **architectures** and their **use cases**.
 - Understanding Tensorflow/Kera**s and Jupyter lab** technologies on the GPU
 - Apprehend the **academic computing environments** Tier-2 (meso) and/or Tier-1 (national)

## Available at this depot:
You will find here :
 - the support of the presentations
 - all the practical work, in the form of Jupyter notebooks
 - sheets and practical information :
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   - **[Configuration SSH](../-/wikis/howto-ssh)**
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed

Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
- [Regression with a Dense Network (DNN)](BHPD/01-DNN-Regression.ipynb)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A Simple regression with a Dense Neural Network (DNN) - BHPD dataset

- [Regression with a Dense Network (DNN) - Advanced code](BHPD/02-DNN-Regression-Premium.ipynb)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;More advanced example of DNN network code - BHPD dataset



Jean-Luc Parouty's avatar
Jean-Luc Parouty committed

Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
## Installation
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
To run this examples, you need an environment with the following packages :
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
 - Python >3.5
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
 - numpy
 - Tensorflow 2.0
 - scikit-image
 - scikit-learn
 - Matplotlib
 - seaborn
 - pyplot

You can install such a predefined environment :
```
conda env create -f environment.yml
```

Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
To manage conda environment see [there](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#)  



Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
## Licence

\[en\] Attribution - NonCommercial - ShareAlike 4.0 International (CC BY-NC-SA 4.0)  
\[Fr\] Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International
See [License](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).  
See [Disclaimer](https://creativecommons.org/licenses/by-nc-sa/4.0/#).