Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n",
"# <!-- TITLE --> [K3WINE1] - Wine quality prediction with a Dense Network (DNN)\n",
" <!-- DESC --> Another example of regression, with a wine quality prediction, using Keras 3 and PyTorch\n",
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
" <!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
"\n",
"## Objectives :\n",
" - Predict the **quality of wines**, based on their analysis\n",
" - Understanding the principle and the architecture of a regression with a dense neural network with backup and restore of the trained model. \n",
"\n",
"The **[Wine Quality datasets](https://archive.ics.uci.edu/ml/datasets/wine+Quality)** are made up of analyses of a large number of wines, with an associated quality (between 0 and 10) \n",
"This dataset is provide by : \n",
"Paulo Cortez, University of Minho, Guimarães, Portugal, http://www3.dsi.uminho.pt/pcortez \n",
"A. Cerdeira, F. Almeida, T. Matos and J. Reis, Viticulture Commission of the Vinho Verde Region(CVRVV), Porto, Portugal, @2009 \n",
"This dataset can be retreive at [University of California Irvine (UCI)](https://archive-beta.ics.uci.edu/ml/datasets/wine+quality)\n",
"\n",
"\n",
"Due to privacy and logistic issues, only physicochemical and sensory variables are available \n",
"There is no data about grape types, wine brand, wine selling price, etc.\n",
"\n",
"- fixed acidity\n",
"- volatile acidity\n",
"- citric acid\n",
"- residual sugar\n",
"- chlorides\n",
"- free sulfur dioxide\n",
"- total sulfur dioxide\n",
"- density\n",
"- pH\n",
"- sulphates\n",
"- alcohol\n",
"- quality (score between 0 and 10)\n",
"\n",
"## What we're going to do :\n",
"\n",
" - (Retrieve data)\n",
" - (Preparing the data)\n",
" - (Build a model)\n",
" - Train and save the model\n",
" - Restore saved model\n",
" - Evaluate the model\n",
" - Make some predictions\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 1 - Import and init\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"os.environ['KERAS_BACKEND'] = 'torch'\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import fidle\n",
"\n",
"# Init Fidle environment\n",
"run_id, run_dir, datasets_dir = fidle.init('K3WINE1')"
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Verbosity during training : \n",
"- 0 = silent\n",
"- 1 = progress bar\n",
"- 2 = one line per epoch"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fit_verbosity = 1\n",
"dataset_name = 'winequality-red.csv'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Override parameters (batch mode) - Just forget this cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fidle.override('fit_verbosity', 'dataset_name')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2 - Retrieve data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_csv(f'{datasets_dir}/WineQuality/origine/{dataset_name}', header=0,sep=';')\n",
"\n",
"display(data.head(5).style.format(\"{0:.2f}\"))\n",
"print('Missing Data : ',data.isna().sum().sum(), ' Shape is : ', data.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 3 - Preparing the data\n",
"### 3.1 - Split data\n",
"We will use 80% of the data for training and 20% for validation. \n",
"x will be the data of the analysis and y the quality"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# ---- Split => train, test\n",
"#\n",
"data = data.sample(frac=1., axis=0) # Shuffle\n",
"data_train = data.sample(frac=0.8, axis=0) # get 80 %\n",
"data_test = data.drop(data_train.index) # test = all - train\n",
"\n",
"# ---- Split => x,y (medv is price)\n",
"#\n",
"x_train = data_train.drop('quality', axis=1)\n",
"y_train = data_train['quality']\n",
"x_test = data_test.drop('quality', axis=1)\n",
"y_test = data_test['quality']\n",
"\n",
"print('Original data shape was : ',data.shape)\n",
"print('x_train : ',x_train.shape, 'y_train : ',y_train.shape)\n",
"print('x_test : ',x_test.shape, 'y_test : ',y_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.2 - Data normalization\n",
"**Note :** \n",
" - All input data must be normalized, train and test. \n",
" - To do this we will subtract the mean and divide by the standard deviation. \n",
" - But test data should not be used in any way, even for normalization. \n",
" - The mean and the standard deviation will therefore only be calculated with the train data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n",
"\n",
"mean = x_train.mean()\n",
"std = x_train.std()\n",
"x_train = (x_train - mean) / std\n",
"x_test = (x_test - mean) / std\n",
"\n",
"display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"After normalization :\"))\n",
"\n",
"# Convert ou DataFrame to numpy array\n",
"x_train, y_train = np.array(x_train), np.array(y_train)\n",
"x_test, y_test = np.array(x_test), np.array(y_test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 4 - Build a model\n",
"More informations about : \n",
" - [Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)\n",
" - [Activation](https://www.tensorflow.org/api_docs/python/tf/keras/activations)\n",
" - [Loss](https://www.tensorflow.org/api_docs/python/tf/keras/losses)\n",
" - [Metrics](https://www.tensorflow.org/api_docs/python/tf/keras/metrics)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_model_v1(shape):\n",
" \n",
" model = keras.models.Sequential()\n",
" model.add(keras.layers.Input(shape, name=\"InputLayer\"))\n",
" model.add(keras.layers.Dense(64, activation='relu', name='Dense_n1'))\n",
" model.add(keras.layers.Dense(64, activation='relu', name='Dense_n2'))\n",
" model.add(keras.layers.Dense(1, name='Output'))\n",
"\n",
" model.compile(optimizer = 'rmsprop',\n",
" loss = 'mse',\n",
" metrics = ['mae', 'mse'] )\n",
" return model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5 - Train the model\n",
"### 5.1 - Get it"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model=get_model_v1( (11,) )\n",
"\n",
"model.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5.2 - Add callback"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"os.makedirs('./run/models', mode=0o750, exist_ok=True)\n",
"save_dir = \"./run/models/best_model.keras\"\n",
"savemodel_callback = keras.callbacks.ModelCheckpoint( filepath=save_dir, monitor='val_mae', mode='max', save_best_only=True)"
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5.3 - Train it"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"history = model.fit(x_train,\n",
" y_train,\n",
" epochs = 100,\n",
" batch_size = 10,\n",
" verbose = fit_verbosity,\n",
" validation_data = (x_test, y_test),\n",
" callbacks = [savemodel_callback])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 6 - Evaluate\n",
"### 6.1 - Model evaluation\n",
"MAE = Mean Absolute Error (between the labels and predictions) \n",
"A mae equal to 3 represents an average error in prediction of $3k."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"score = model.evaluate(x_test, y_test, verbose=0)\n",
"\n",
"print('x_test / loss : {:5.4f}'.format(score[0]))\n",
"print('x_test / mae : {:5.4f}'.format(score[1]))\n",
"print('x_test / mse : {:5.4f}'.format(score[2]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6.2 - Training history\n",
"What was the best result during our training ?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"min( val_mae ) : {:.4f}\".format( min(history.history[\"val_mae\"]) ) )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fidle.scrawler.history( history, plot={'MSE' :['mse', 'val_mse'],\n",
" 'MAE' :['mae', 'val_mae'],\n",
" 'LOSS':['loss','val_loss']}, save_as='01-history')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 7 - Restore a model :"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 7.1 - Reload model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"loaded_model = keras.models.load_model('./run/models/best_model.keras')\n",
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
"loaded_model.summary()\n",
"print(\"Loaded.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 7.2 - Evaluate it :"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"score = loaded_model.evaluate(x_test, y_test, verbose=0)\n",
"\n",
"print('x_test / loss : {:5.4f}'.format(score[0]))\n",
"print('x_test / mae : {:5.4f}'.format(score[1]))\n",
"print('x_test / mse : {:5.4f}'.format(score[2]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 7.3 - Make a prediction"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# ---- Pick n entries from our test set\n",
"n = 200\n",
"ii = np.random.randint(1,len(x_test),n)\n",
"x_sample = x_test[ii]\n",
"y_sample = y_test[ii]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# ---- Make a predictions\n",
"y_pred = loaded_model.predict( x_sample, verbose=2 )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# ---- Show it\n",
"print('Wine Prediction Real Delta')\n",
"for i in range(n):\n",
" pred = y_pred[i][0]\n",
" real = y_sample[i]\n",
" delta = real-pred\n",
" print(f'{i:03d} {pred:.2f} {real} {delta:+.2f} ')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Few questions :\n",
"- Can this model be used for red wines from Bordeaux and/or Beaujolais?\n",
"- What are the limitations of this model?\n",
"- What are the limitations of this dataset?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fidle.end()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"<img width=\"80px\" src=\"../fidle/img/logo-paysage.svg\"></img>"
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.2 ('fidle-env')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
},
"vscode": {
"interpreter": {
"hash": "b3929042cc22c1274d74e3e946c52b845b57cb6d84f2d591ffe0519b38e4896d"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}