Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Deep Neural Network (DNN) - BHPD dataset\n",
"========================================\n",
"---\n",
"Introduction au Deep Learning (IDLE) - S. Arias, E. Maldonado, JL. Parouty - CNRS/SARI/DEVLOG - 2020 \n",
"\n",
"## A very simple example of **regression** (Premium edition):\n",
"\n",
"Objective is to predicts **housing prices** from a set of house features. \n",
"\n",
"The **[Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html)** consists of price of houses in various places in Boston. \n",
"Alongside with price, the dataset also provide information such as Crime, areas of non-retail business in the town, \n",
"age of people who own the house and many other attributes...\n",
"\n",
"What we're going to do:\n",
"\n",
" - (Retrieve data)\n",
" - (Preparing the data)\n",
" - (Build a model)\n",
" - Train and save the model\n",
" - Restore saved model\n",
" - Evaluate the model\n",
" - Make some predictions\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
"outputs": [
{
"data": {
"text/html": [
"<style>\n",
"\n",
"div.warn { \n",
" background-color: #fcf2f2;\n",
" border-color: #dFb5b4;\n",
" border-left: 5px solid #dfb5b4;\n",
" padding: 0.5em;\n",
" font-weight: bold;\n",
" font-size: 1.1em;;\n",
" }\n",
"\n",
"\n",
"\n",
"div.nota { \n",
" background-color: #DAFFDE;\n",
" border-left: 5px solid #92CC99;\n",
" padding: 0.5em;\n",
" }\n",
"\n",
"\n",
"\n",
"</style>\n",
"\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"FIDLE 2020 - Practical Work Module\n",
"Version : 0.2.8\n",
"Run time : Saturday 15 February 2020, 12:32:05\n",
"TensorFlow version : 2.0.0\n",
"Keras version : 2.2.4-tf\n"
]
}
],
"source": [
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"\n",
"from IPython.display import display, Markdown\n",
"from importlib import reload\n",
"\n",
"sys.path.append('..')\n",
"import fidle.pwk as ooo\n",
"\n",
"ooo.init()\n",
"os.makedirs('./run/models', mode=0o750, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Boston housing is a famous historic dataset, so we can get it directly from [Keras datasets](https://www.tensorflow.org/api_docs/python/tf/keras/datasets) "
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"(x_train, y_train), (x_test, y_test) = keras.datasets.boston_housing.load_data(test_split=0.2, seed=113)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.2 - Option 2 : From a csv file\n",
"More fun !"
]
},
{
"cell_type": "code",
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
"outputs": [
{
"data": {
"text/html": [
"<style type=\"text/css\" >\n",
"</style><table id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9\" ><thead> <tr> <th class=\"blank level0\" ></th> <th class=\"col_heading level0 col0\" >crim</th> <th class=\"col_heading level0 col1\" >zn</th> <th class=\"col_heading level0 col2\" >indus</th> <th class=\"col_heading level0 col3\" >chas</th> <th class=\"col_heading level0 col4\" >nox</th> <th class=\"col_heading level0 col5\" >rm</th> <th class=\"col_heading level0 col6\" >age</th> <th class=\"col_heading level0 col7\" >dis</th> <th class=\"col_heading level0 col8\" >rad</th> <th class=\"col_heading level0 col9\" >tax</th> <th class=\"col_heading level0 col10\" >ptratio</th> <th class=\"col_heading level0 col11\" >b</th> <th class=\"col_heading level0 col12\" >lstat</th> <th class=\"col_heading level0 col13\" >medv</th> </tr></thead><tbody>\n",
" <tr>\n",
" <th id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9level0_row0\" class=\"row_heading level0 row0\" >0</th>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col0\" class=\"data row0 col0\" >0.01</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col1\" class=\"data row0 col1\" >18.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col2\" class=\"data row0 col2\" >2.31</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col3\" class=\"data row0 col3\" >0.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col4\" class=\"data row0 col4\" >0.54</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col5\" class=\"data row0 col5\" >6.58</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col6\" class=\"data row0 col6\" >65.20</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col7\" class=\"data row0 col7\" >4.09</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col8\" class=\"data row0 col8\" >1.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col9\" class=\"data row0 col9\" >296.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col10\" class=\"data row0 col10\" >15.30</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col11\" class=\"data row0 col11\" >396.90</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col12\" class=\"data row0 col12\" >4.98</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row0_col13\" class=\"data row0 col13\" >24.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9level0_row1\" class=\"row_heading level0 row1\" >1</th>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col0\" class=\"data row1 col0\" >0.03</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col1\" class=\"data row1 col1\" >0.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col2\" class=\"data row1 col2\" >7.07</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col3\" class=\"data row1 col3\" >0.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col4\" class=\"data row1 col4\" >0.47</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col5\" class=\"data row1 col5\" >6.42</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col6\" class=\"data row1 col6\" >78.90</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col7\" class=\"data row1 col7\" >4.97</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col8\" class=\"data row1 col8\" >2.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col9\" class=\"data row1 col9\" >242.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col10\" class=\"data row1 col10\" >17.80</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col11\" class=\"data row1 col11\" >396.90</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col12\" class=\"data row1 col12\" >9.14</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row1_col13\" class=\"data row1 col13\" >21.60</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9level0_row2\" class=\"row_heading level0 row2\" >2</th>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col0\" class=\"data row2 col0\" >0.03</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col1\" class=\"data row2 col1\" >0.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col2\" class=\"data row2 col2\" >7.07</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col3\" class=\"data row2 col3\" >0.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col4\" class=\"data row2 col4\" >0.47</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col5\" class=\"data row2 col5\" >7.18</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col6\" class=\"data row2 col6\" >61.10</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col7\" class=\"data row2 col7\" >4.97</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col8\" class=\"data row2 col8\" >2.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col9\" class=\"data row2 col9\" >242.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col10\" class=\"data row2 col10\" >17.80</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col11\" class=\"data row2 col11\" >392.83</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col12\" class=\"data row2 col12\" >4.03</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row2_col13\" class=\"data row2 col13\" >34.70</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9level0_row3\" class=\"row_heading level0 row3\" >3</th>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col0\" class=\"data row3 col0\" >0.03</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col1\" class=\"data row3 col1\" >0.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col2\" class=\"data row3 col2\" >2.18</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col3\" class=\"data row3 col3\" >0.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col4\" class=\"data row3 col4\" >0.46</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col5\" class=\"data row3 col5\" >7.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col6\" class=\"data row3 col6\" >45.80</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col7\" class=\"data row3 col7\" >6.06</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col8\" class=\"data row3 col8\" >3.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col9\" class=\"data row3 col9\" >222.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col10\" class=\"data row3 col10\" >18.70</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col11\" class=\"data row3 col11\" >394.63</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col12\" class=\"data row3 col12\" >2.94</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row3_col13\" class=\"data row3 col13\" >33.40</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9level0_row4\" class=\"row_heading level0 row4\" >4</th>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col0\" class=\"data row4 col0\" >0.07</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col1\" class=\"data row4 col1\" >0.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col2\" class=\"data row4 col2\" >2.18</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col3\" class=\"data row4 col3\" >0.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col4\" class=\"data row4 col4\" >0.46</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col5\" class=\"data row4 col5\" >7.15</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col6\" class=\"data row4 col6\" >54.20</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col7\" class=\"data row4 col7\" >6.06</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col8\" class=\"data row4 col8\" >3.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col9\" class=\"data row4 col9\" >222.00</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col10\" class=\"data row4 col10\" >18.70</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col11\" class=\"data row4 col11\" >396.90</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col12\" class=\"data row4 col12\" >5.33</td>\n",
" <td id=\"T_cb315e50_4fe6_11ea_b235_859a5544c0e9row4_col13\" class=\"data row4 col13\" >36.20</td>\n",
" </tr>\n",
" </tbody></table>"
],
"text/plain": [
"<pandas.io.formats.style.Styler at 0x7f869c8eef10>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Données manquantes : 0 Shape is : (506, 14)\n"
]
}
],
"source": [
"data = pd.read_csv('./data/BostonHousing.csv', header=0)\n",
"\n",
"display(data.head(5).style.format(\"{0:.2f}\"))\n",
"print('Données manquantes : ',data.isna().sum().sum(), ' Shape is : ', data.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 3 - Preparing the data\n",
"### 3.1 - Split data\n",
"We will use 80% of the data for training and 20% for validation. \n",
"x will be input data and y the expected output"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Original data shape was : (506, 14)\n",
"x_train : (354, 13) y_train : (354,)\n",
"x_test : (152, 13) y_test : (152,)\n"
]
}
],
"source": [
"# ---- Split => train, test\n",
"#\n",
"data_train = data.sample(frac=0.7, axis=0)\n",
"data_test = data.drop(data_train.index)\n",
"\n",
"# ---- Split => x,y (medv is price)\n",
"#\n",
"x_train = data_train.drop('medv', axis=1)\n",
"y_train = data_train['medv']\n",
"x_test = data_test.drop('medv', axis=1)\n",
"y_test = data_test['medv']\n",
"\n",
"print('Original data shape was : ',data.shape)\n",
"print('x_train : ',x_train.shape, 'y_train : ',y_train.shape)\n",
"print('x_test : ',x_test.shape, 'y_test : ',y_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note :** \n",
" - All input data must be normalized, train and test. \n",
" - To do this we will subtract the mean and divide by the standard deviation. \n",
" - But test data should not be used in any way, even for normalization. \n",
" - The mean and the standard deviation will therefore only be calculated with the train data."
]
},
{
"cell_type": "code",
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
"outputs": [
{
"data": {
"text/html": [
"<style type=\"text/css\" >\n",
"</style><table id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9\" ><caption>Before normalization :</caption><thead> <tr> <th class=\"blank level0\" ></th> <th class=\"col_heading level0 col0\" >crim</th> <th class=\"col_heading level0 col1\" >zn</th> <th class=\"col_heading level0 col2\" >indus</th> <th class=\"col_heading level0 col3\" >chas</th> <th class=\"col_heading level0 col4\" >nox</th> <th class=\"col_heading level0 col5\" >rm</th> <th class=\"col_heading level0 col6\" >age</th> <th class=\"col_heading level0 col7\" >dis</th> <th class=\"col_heading level0 col8\" >rad</th> <th class=\"col_heading level0 col9\" >tax</th> <th class=\"col_heading level0 col10\" >ptratio</th> <th class=\"col_heading level0 col11\" >b</th> <th class=\"col_heading level0 col12\" >lstat</th> </tr></thead><tbody>\n",
" <tr>\n",
" <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col0\" class=\"data row0 col0\" >354.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col1\" class=\"data row0 col1\" >354.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col2\" class=\"data row0 col2\" >354.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col3\" class=\"data row0 col3\" >354.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col4\" class=\"data row0 col4\" >354.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col5\" class=\"data row0 col5\" >354.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col6\" class=\"data row0 col6\" >354.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col7\" class=\"data row0 col7\" >354.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col8\" class=\"data row0 col8\" >354.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col9\" class=\"data row0 col9\" >354.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col10\" class=\"data row0 col10\" >354.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col11\" class=\"data row0 col11\" >354.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row0_col12\" class=\"data row0 col12\" >354.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col0\" class=\"data row1 col0\" >3.76</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col1\" class=\"data row1 col1\" >11.31</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col2\" class=\"data row1 col2\" >11.18</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col3\" class=\"data row1 col3\" >0.07</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col4\" class=\"data row1 col4\" >0.56</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col5\" class=\"data row1 col5\" >6.25</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col6\" class=\"data row1 col6\" >69.29</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col7\" class=\"data row1 col7\" >3.82</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col8\" class=\"data row1 col8\" >9.95</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col9\" class=\"data row1 col9\" >413.48</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col10\" class=\"data row1 col10\" >18.49</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col11\" class=\"data row1 col11\" >354.37</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row1_col12\" class=\"data row1 col12\" >12.89</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col0\" class=\"data row2 col0\" >7.96</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col1\" class=\"data row2 col1\" >23.25</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col2\" class=\"data row2 col2\" >6.80</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col3\" class=\"data row2 col3\" >0.25</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col4\" class=\"data row2 col4\" >0.12</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col5\" class=\"data row2 col5\" >0.70</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col6\" class=\"data row2 col6\" >27.93</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col7\" class=\"data row2 col7\" >2.17</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col8\" class=\"data row2 col8\" >8.87</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col9\" class=\"data row2 col9\" >170.11</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col10\" class=\"data row2 col10\" >2.15</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col11\" class=\"data row2 col11\" >93.94</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row2_col12\" class=\"data row2 col12\" >7.13</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col0\" class=\"data row3 col0\" >0.01</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col1\" class=\"data row3 col1\" >0.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col2\" class=\"data row3 col2\" >0.46</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col3\" class=\"data row3 col3\" >0.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col4\" class=\"data row3 col4\" >0.39</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col5\" class=\"data row3 col5\" >3.56</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col6\" class=\"data row3 col6\" >6.20</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col7\" class=\"data row3 col7\" >1.13</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col8\" class=\"data row3 col8\" >1.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col9\" class=\"data row3 col9\" >187.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col10\" class=\"data row3 col10\" >12.60</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col11\" class=\"data row3 col11\" >0.32</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row3_col12\" class=\"data row3 col12\" >1.73</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col0\" class=\"data row4 col0\" >0.08</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col1\" class=\"data row4 col1\" >0.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col2\" class=\"data row4 col2\" >5.13</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col3\" class=\"data row4 col3\" >0.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col4\" class=\"data row4 col4\" >0.45</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col5\" class=\"data row4 col5\" >5.88</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col6\" class=\"data row4 col6\" >45.18</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col7\" class=\"data row4 col7\" >2.08</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col8\" class=\"data row4 col8\" >4.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col9\" class=\"data row4 col9\" >280.25</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col10\" class=\"data row4 col10\" >17.40</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col11\" class=\"data row4 col11\" >374.49</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row4_col12\" class=\"data row4 col12\" >7.26</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col0\" class=\"data row5 col0\" >0.29</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col1\" class=\"data row5 col1\" >0.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col2\" class=\"data row5 col2\" >9.69</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col3\" class=\"data row5 col3\" >0.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col4\" class=\"data row5 col4\" >0.53</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col5\" class=\"data row5 col5\" >6.17</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col6\" class=\"data row5 col6\" >77.75</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col7\" class=\"data row5 col7\" >3.20</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col8\" class=\"data row5 col8\" >5.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col9\" class=\"data row5 col9\" >335.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col10\" class=\"data row5 col10\" >19.10</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col11\" class=\"data row5 col11\" >391.39</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row5_col12\" class=\"data row5 col12\" >11.86</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col0\" class=\"data row6 col0\" >4.52</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col1\" class=\"data row6 col1\" >12.50</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col2\" class=\"data row6 col2\" >18.10</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col3\" class=\"data row6 col3\" >0.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col4\" class=\"data row6 col4\" >0.63</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col5\" class=\"data row6 col5\" >6.60</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col6\" class=\"data row6 col6\" >94.45</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col7\" class=\"data row6 col7\" >5.19</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col8\" class=\"data row6 col8\" >24.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col9\" class=\"data row6 col9\" >666.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col10\" class=\"data row6 col10\" >20.20</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col11\" class=\"data row6 col11\" >396.12</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row6_col12\" class=\"data row6 col12\" >16.96</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9level0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col0\" class=\"data row7 col0\" >73.53</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col1\" class=\"data row7 col1\" >95.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col2\" class=\"data row7 col2\" >27.74</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col3\" class=\"data row7 col3\" >1.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col4\" class=\"data row7 col4\" >0.87</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col5\" class=\"data row7 col5\" >8.72</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col6\" class=\"data row7 col6\" >100.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col7\" class=\"data row7 col7\" >12.13</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col8\" class=\"data row7 col8\" >24.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col9\" class=\"data row7 col9\" >711.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col10\" class=\"data row7 col10\" >22.00</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col11\" class=\"data row7 col11\" >396.90</td>\n",
" <td id=\"T_cb38331a_4fe6_11ea_b235_859a5544c0e9row7_col12\" class=\"data row7 col12\" >36.98</td>\n",
" </tr>\n",
" </tbody></table>"
],
"text/plain": [
"<pandas.io.formats.style.Styler at 0x7f87141c0c90>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style type=\"text/css\" >\n",
"</style><table id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9\" ><caption>After normalization :</caption><thead> <tr> <th class=\"blank level0\" ></th> <th class=\"col_heading level0 col0\" >crim</th> <th class=\"col_heading level0 col1\" >zn</th> <th class=\"col_heading level0 col2\" >indus</th> <th class=\"col_heading level0 col3\" >chas</th> <th class=\"col_heading level0 col4\" >nox</th> <th class=\"col_heading level0 col5\" >rm</th> <th class=\"col_heading level0 col6\" >age</th> <th class=\"col_heading level0 col7\" >dis</th> <th class=\"col_heading level0 col8\" >rad</th> <th class=\"col_heading level0 col9\" >tax</th> <th class=\"col_heading level0 col10\" >ptratio</th> <th class=\"col_heading level0 col11\" >b</th> <th class=\"col_heading level0 col12\" >lstat</th> </tr></thead><tbody>\n",
" <tr>\n",
" <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col0\" class=\"data row0 col0\" >354.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col1\" class=\"data row0 col1\" >354.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col2\" class=\"data row0 col2\" >354.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col3\" class=\"data row0 col3\" >354.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col4\" class=\"data row0 col4\" >354.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col5\" class=\"data row0 col5\" >354.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col6\" class=\"data row0 col6\" >354.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col7\" class=\"data row0 col7\" >354.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col8\" class=\"data row0 col8\" >354.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col9\" class=\"data row0 col9\" >354.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col10\" class=\"data row0 col10\" >354.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col11\" class=\"data row0 col11\" >354.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row0_col12\" class=\"data row0 col12\" >354.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col0\" class=\"data row1 col0\" >-0.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col1\" class=\"data row1 col1\" >0.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col2\" class=\"data row1 col2\" >0.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col3\" class=\"data row1 col3\" >-0.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col4\" class=\"data row1 col4\" >-0.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col5\" class=\"data row1 col5\" >-0.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col6\" class=\"data row1 col6\" >0.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col7\" class=\"data row1 col7\" >0.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col8\" class=\"data row1 col8\" >0.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col9\" class=\"data row1 col9\" >-0.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col10\" class=\"data row1 col10\" >0.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col11\" class=\"data row1 col11\" >0.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row1_col12\" class=\"data row1 col12\" >-0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col0\" class=\"data row2 col0\" >1.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col1\" class=\"data row2 col1\" >1.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col2\" class=\"data row2 col2\" >1.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col3\" class=\"data row2 col3\" >1.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col4\" class=\"data row2 col4\" >1.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col5\" class=\"data row2 col5\" >1.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col6\" class=\"data row2 col6\" >1.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col7\" class=\"data row2 col7\" >1.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col8\" class=\"data row2 col8\" >1.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col9\" class=\"data row2 col9\" >1.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col10\" class=\"data row2 col10\" >1.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col11\" class=\"data row2 col11\" >1.00</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row2_col12\" class=\"data row2 col12\" >1.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col0\" class=\"data row3 col0\" >-0.47</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col1\" class=\"data row3 col1\" >-0.49</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col2\" class=\"data row3 col2\" >-1.58</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col3\" class=\"data row3 col3\" >-0.27</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col4\" class=\"data row3 col4\" >-1.45</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col5\" class=\"data row3 col5\" >-3.86</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col6\" class=\"data row3 col6\" >-2.26</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col7\" class=\"data row3 col7\" >-1.24</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col8\" class=\"data row3 col8\" >-1.01</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col9\" class=\"data row3 col9\" >-1.33</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col10\" class=\"data row3 col10\" >-2.74</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col11\" class=\"data row3 col11\" >-3.77</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row3_col12\" class=\"data row3 col12\" >-1.56</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col0\" class=\"data row4 col0\" >-0.46</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col1\" class=\"data row4 col1\" >-0.49</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col2\" class=\"data row4 col2\" >-0.89</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col3\" class=\"data row4 col3\" >-0.27</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col4\" class=\"data row4 col4\" >-0.91</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col5\" class=\"data row4 col5\" >-0.54</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col6\" class=\"data row4 col6\" >-0.86</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col7\" class=\"data row4 col7\" >-0.80</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col8\" class=\"data row4 col8\" >-0.67</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col9\" class=\"data row4 col9\" >-0.78</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col10\" class=\"data row4 col10\" >-0.50</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col11\" class=\"data row4 col11\" >0.21</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row4_col12\" class=\"data row4 col12\" >-0.79</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col0\" class=\"data row5 col0\" >-0.44</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col1\" class=\"data row5 col1\" >-0.49</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col2\" class=\"data row5 col2\" >-0.22</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col3\" class=\"data row5 col3\" >-0.27</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col4\" class=\"data row5 col4\" >-0.23</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col5\" class=\"data row5 col5\" >-0.12</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col6\" class=\"data row5 col6\" >0.30</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col7\" class=\"data row5 col7\" >-0.28</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col8\" class=\"data row5 col8\" >-0.56</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col9\" class=\"data row5 col9\" >-0.46</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col10\" class=\"data row5 col10\" >0.29</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col11\" class=\"data row5 col11\" >0.39</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row5_col12\" class=\"data row5 col12\" >-0.14</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col0\" class=\"data row6 col0\" >0.10</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col1\" class=\"data row6 col1\" >0.05</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col2\" class=\"data row6 col2\" >1.02</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col3\" class=\"data row6 col3\" >-0.27</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col4\" class=\"data row6 col4\" >0.63</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col5\" class=\"data row6 col5\" >0.50</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col6\" class=\"data row6 col6\" >0.90</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col7\" class=\"data row6 col7\" >0.63</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col8\" class=\"data row6 col8\" >1.58</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col9\" class=\"data row6 col9\" >1.48</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col10\" class=\"data row6 col10\" >0.80</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col11\" class=\"data row6 col11\" >0.44</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row6_col12\" class=\"data row6 col12\" >0.57</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9level0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col0\" class=\"data row7 col0\" >8.76</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col1\" class=\"data row7 col1\" >3.60</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col2\" class=\"data row7 col2\" >2.44</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col3\" class=\"data row7 col3\" >3.70</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col4\" class=\"data row7 col4\" >2.68</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col5\" class=\"data row7 col5\" >3.55</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col6\" class=\"data row7 col6\" >1.10</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col7\" class=\"data row7 col7\" >3.83</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col8\" class=\"data row7 col8\" >1.58</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col9\" class=\"data row7 col9\" >1.75</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col10\" class=\"data row7 col10\" >1.64</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col11\" class=\"data row7 col11\" >0.45</td>\n",
" <td id=\"T_cb3f14aa_4fe6_11ea_b235_859a5544c0e9row7_col12\" class=\"data row7 col12\" >3.38</td>\n",
" </tr>\n",
" </tbody></table>"
],
"text/plain": [
"<pandas.io.formats.style.Styler at 0x7f8699cc4310>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n",
"\n",
"mean = x_train.mean()\n",
"std = x_train.std()\n",
"x_train = (x_train - mean) / std\n",
"x_test = (x_test - mean) / std\n",
"\n",
"display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"After normalization :\"))\n",
"\n",
"x_train, y_train = np.array(x_train), np.array(y_train)\n",
"x_test, y_test = np.array(x_test), np.array(y_test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" - [Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)\n",
" - [Activation](https://www.tensorflow.org/api_docs/python/tf/keras/activations)\n",
" - [Loss](https://www.tensorflow.org/api_docs/python/tf/keras/losses)\n",
" - [Metrics](https://www.tensorflow.org/api_docs/python/tf/keras/metrics)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
" def get_model_v1(shape):\n",
" \n",
" model = keras.models.Sequential()\n",
" model.add(keras.layers.Input(shape, name=\"InputLayer\"))\n",
" model.add(keras.layers.Dense(64, activation='relu', name='Dense_n1'))\n",
" model.add(keras.layers.Dense(64, activation='relu', name='Dense_n2'))\n",
" model.add(keras.layers.Dense(1, name='Output'))\n",
" \n",
" model.compile(optimizer = 'rmsprop',\n",
" loss = 'mse',\n",
" metrics = ['mae', 'mse'] )\n",
" return model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5 - Train the model\n",
"### 5.1 - Get it"
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"sequential\"\n",
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"Dense_n1 (Dense) (None, 64) 896 \n",
"_________________________________________________________________\n",
"Dense_n2 (Dense) (None, 64) 4160 \n",
"_________________________________________________________________\n",
"Output (Dense) (None, 1) 65 \n",
"=================================================================\n",
"Total params: 5,121\n",
"Trainable params: 5,121\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAGVCAIAAADls7hIAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde1wU5f448Ge4LCwLuyAJCwuKWkRe2Aj80RqEgkGFYGwgmmgdD8Q39QApKph6vJFpmHC+aiocA6VM4fXCAtPyoHQOCAkWmBpi4I27gguCclmZ3x/Pab7TLiw7sOzs4uf9l/vMM898dmI/zeWZzxAkSSIAAABqM2A7AAAA0DOQNwEAgBnImwAAwAzkTQAAYMaI/qGkpOSzzz5jKxQAANBNEolk1apV1Mc/HW/evXs3JydH6yEBoFV1dXXwd05XWlpaWlrKdhS6q7S0tKSkhN5ipNwpOztbW/EAwIITJ06Eh4fD3zklLCwMwQ9/cHj/0MH1TQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBACoJSsri/iDubm5wtLbt28HBwd3dHQghBobG5OSkjw8PPh8vlAo9PHxyc3NHd5Gv/vuO2dnZyOjAe5gkyRZXFy8YsUKZ2dnExMTGxsbLy+vrKwses2NhISE48ePK6yYkJBAfZGXX355GFFB3gRAXZ2dnc8999y8efPYDoRNn3/+OUmSnZ2d9MaKigoPDw9/f38+n48QioqKSklJ2bJlS2NjY2lpqYODg1QqTUhIYLShmpqa4ODgxMTE5ubmATtcv37dy8ururo6Jyenvb29tLR0woQJS5YsWbNmDdUnKioqMTFx48aN9BU/+eQTkiRJkjQ0NGQUEgXyJgDqIkmyv7+/v7+frQDMzc29vLzY2vpgOjo6goKC3n777ZUrV1KNycnJgYGBPB7Pycnpiy++EIlEycnJLS0t6g+7cePGWbNmXbp0ycLCYrA+RkZGJ06ccHV1NTU1nTx5ckZGhrW19d69e3t6enCHKVOm5ObmJiUlnThxYthfcIDtanAsAMY2CwuLmpoatqPQObt27Wpqatq0aRPVkp+fT+/A4XCmTp1aX19//fp1GxsbNYf95z//yeVyVXRwcXHp6+tT2JCjo2NFRUV3d7eJiQluFIvFoaGhq1evlkqlA57vDwMcbwIAho8kyfT0dE9PT3t7exXdamtrEULjxo1Tf2TVSXNAMpnsxo0bbm5uAoGA3h4SElJXV3fq1CmmAw4G8iYAajl58iR1M6G7u1uh5datW+Hh4ZaWltbW1vPmzaMOS5OTk3EHBweHsrIyPz8/CwsLMzOzOXPmFBcX4z7bt2/Hfahz8DNnzuCWZ555hj5OV1dXcXExXqSpQ6cRqqysbG5uFovFKvpkZmbW1NQ4OztPnTp1lMLo6OgoLi4ODg4WCoVHjhxRWPriiy8ihL7//ntNbQ7yJgBqeeutt0iSnD9//oAtcXFxcXFx9fX1x48fP3fu3KJFi3Cf+Ph4kiTFYrFMJouNjd2+fXtTU9O///3vtrY2X1/fH3/8ESG0YcMGkiR5PB418uuvv06SpLu7O9WCx+HxeK+88gq+pyGXy6mlvr6+1tbWrDxjfuXKFYSQg4PDgEuvXbsWGxu7bNkyKysrfDt+NGLYvn27QCDw8vIyNDTMzc2dPn26QgeRSESFqhGQNwHQgMjISIlEwuPx5s6dGxgYWFZWdv/+fXqHrq6u/fv34z4eHh5ZWVm9vb2xsbEa2Xp/fz9OphoZjZHGxkaEkMJ5McXV1TU7O3vlypVXrlyZOXPmKMWwYcOGnp6e3377zcXFxc3Nbdu2bQod+Hw+QRA4VI3QiUN9APQdPSk4OjoihBoaGqizbIQQj8fDZ4vYjBkz7O3tKysrGxsb7ezsRrj1wsLCEY4wbPiShbGx8WAdzp075+LiMtphcDgcFxeXzz//vLm5edOmTRKJZO7cufQORkZGjx8/1tTm4HgTAA2gH3BxOByEkMJ0JUtLS4VV8J1lRlNzdJCpqSlCSOG+NouCgoKQ0g19hJBcLh/GjabBQN4EQBtaW1sVzqNxxqTm5RgYGPT29tI7yGQyhUFG6frgSOCD5fb2drYD+S88/aitrY3e2NHRQZLkyI/rKZA3AdCG7u7usrIy6uOvv/7a0NAgFoupH7OdnV19fT3Voamp6c6dOwqDmJmZUbn1+eefP3To0ChHPTR8E6aurm7ApXK5fPRO0uPj4yMiIhQaT58+jf582QQhhHes8v2iYYO8CYA2CASC9evXl5SUdHV1lZeXR0REcDic1NRUqoO/v39DQ8PevXs7OztrampiY2OVp4i/9NJL1dXVd+/eLSkpqa2t9fb2xu0s3k8Xi8U2NjaVlZXKi9LS0ng83tq1a5UXRUREEARx8+bNEW79q6++2rp1661bt3p6em7durVu3bqsrCx3d/fIyEh6t4qKCoSQv7//CDdHgbwJgFrwbM1vvvkGIcTlciMiIkpLS+ktGzZsQAgRBLFz506EkJubG/1JdnNz8//93//dsmWLnZ3dq6++amVlde7cOR8fH6rD9u3bIyMjP/74Yxsbm/fee2/NmjVCobC1tZUgCOrJ7pSUFFdX1xdeeCE8PDw1NfWFF17A7XK5nK376QRBREZG/vTTTw0NDQqLVNzlb2xsNDc3nzBhgoqR8/Pz8UzV+vr6J0+e4H+np6dTHTZt2pSWlnbhwoU5c+bw+fwZM2YUFBTs2LHjP//5j8KlzNzcXJFIFBgYOIIv+mckDS4cQgIwpmn/71wsFotEIm1ukZHQ0NDQ0NAhux09ehT9UdeDTiaTiUSi6OhoNTf34MEDLpcbGRnJONBhqaioIAji2LFjyosMDQ09PT2HHEF5/8DxJgBgRAQCQV5eXk5Ozr59+4bsTJJkTEwMn89XnmU5Gmpra6VSaWJi4sKFCzU47HDyprm5OUGTnJyswYBGSJdjY0SXv4guxwZG2wcffKBcf9PNza28vPz06dO4/qYKzc3NtbW1BQUFQqFwNMP8r4MHDyYlJSUlJdEbqfqbT548Gea49INP9c9ffvnlF4TQ/Pnz1emsZbocGyO6/EV0ObYhafM8/dNPP6X/3D766CPtbJcRNc/Tn1pj6jxdN2sRjjGwk0cIP1dO2b59O9sRAQ3Q47wJAACsgLwJAADMaCxv6lctQrlcfvz48ddee00oFHK53BkzZqSmpuIHimUyGf2mBz6xksvlVEtoaCge5N69ezExMU5OThwOZ/z48VKpFE+vVdgb169fX7BggbW1Nf6oUCYHdrKu7WQAhka/+DLy+0K4FuH8+fMvXLjQ2dl59uxZLpc7c+ZMeh+xWMzj8SQSCe5TVlbm6urK4XAKCwupPvQ6g5i7u7u1tTW9RbmP6tjo8vLyEEIff/xxW1vbvXv3/vGPfxgYGNAvRQUEBBgYGPz+++/0tSQSyZdffon/3dDQMHHiRFtb21OnTj18+PDKlSs+Pj6mpqYXLlxQ2Bs+Pj7nz5/v6uoqLS01NDS8d+8eSZJz5swZN25cSUmJiiBhJ49wJw8G5ikrgPtCqinvn1HJm3l5efRNIoTof8e4NPQvv/xCtVy+fBkhJBaLqRYt/KRnz55Nb4mIiDA2Nm5vb8cfcWno5cuXUx2KiopEIlFvby/++O677yKEqF84SZKNjY0mJibu7u4Ke+O7775TDsDHx8fKyor++1f/i8BOVnMnDwbypgLIm6pp6X76gLUI6R1U1CIcjXiUzZs37/z58/QWsVjc19d39epV/NHf33/GjBkZGRmtra245dNPP/3b3/5G1Rk8efKkgYEB/UE6oVA4bdq0S5cuKdQ4+H//7/8pB1BYWNjW1iaRSIb9FWAn00cecCerRoA/5OTk5OTksB2F7srJyVH44xmVusXDq0XY0NDQ0tKiwVpPKrS3t+/evTs3N7euro5erevRo0fUv+Pi4v7617/u379/48aN1dXV586d++KLL/Cinp4eXDhrwDLXN27coL82gP7+Aw2CnTzCnYyPOgFCaM+ePQihDz/8kO1AdBTeP3Ts1HvHtQgJWjFBLdciDAoK+s9//pOamrpo0aJnnnmGIIiUlJQPP/yQpNUgWLx48fr16/fu3bt27drdu3e/++67VlZWeJGJiYmlpWVnZ+fjx4915PVYymAnq7ZgwQKNj6mnsrOzEeyQweH9Q8fOPCS2ahEaGRlVVVU9efKkuLhYKBTGxMSMHz8epwblGvomJibLly9vaWnZvXv3l19+qfAqGKlUKpfLqTvU2M6dOydMmEB/YRaLYCcDMErYyZujWotwSIaGhrNnz25qavr000/v37//+PHj8+fPHzhwQLnn8uXLcX2wuXPnPvvss/RFO3bsmDJlyrJly06fPt3e3t7W1nbw4MGtW7cmJyerc3CkhYKJsJMBGC30m0Rq3mdUuJb06aefkiRZUlJCb8TP4dJbAgMD8eq4pta1a9cCAgIsLCy4XK6Pj09RURF9EzKZLDIy0s7Ojsvlenl5lZWVUe9EXbduHe5TVVXl7e3N4/EcHR337ds3YGzKfvvtN5Ik7927Fx0d7ejoaGxsbGtr+95771ElDun3akmSjIqKQgj9+OOPyvuhtbV11apVkydPNjY2Hj9+vL+//9mzZ/Eihb2hvFe9vb1V30+HnTzynTwYuJ+uAO6nq6axeUgjoeO1CBUcPnxY4UeuF2AnqwB5UwHkTdXGVF0P7Thw4MCqVavYjmKMg52sF7KysqipOQp15BBCt2/fDg4OxnXkGhsbk5KSPDw8+Hy+UCj08fHJzc0d3ka/++47Z2fnAS/LkCRZXFy8YsUKZ2dnExMTGxsbLy+vrKwsknYSlpCQoDxxgqojRxDEyy+/PIyoIG8OID09PSQkpLOz88CBAw8ePID7jKMBdrKewvXeOzs76Y0VFRUeHh7+/v58Ph8hFBUVlZKSsmXLlsbGxtLSUgcHB6lUSl2lUVNNTU1wcHBiYmJzc/OAHa5fv+7l5VVdXZ2Tk9Pe3l5aWjphwoQlS5asWbOG6hMVFZWYmLhx40b6ip988gk+bDQ0NGQU0v+hH3yO9vmLXtQiJEkyLS0NIWRkZOTq6nrp0iW2w2EGdvKQtHyePtgzV7oz/gjfk9He3u7g4EB/T0ZgYGBGRgb1saenRyQSGRoaNjc3qx/VokWLduzY0dfXh9dV7vDbb78ZGRm1tbXRN2RtbW1iYtLd3U014vdkHD9+XHmEYb8nA94vBJ46kDcVjDBvfvTRR0ZGRvX19SrWfe211xBC//73v9WP6tGjR/gfg+XNAeFn5GQyGb0xLCzMwcGhr69PoTO8XwgAwAKSJNPT0z09Pe3t7VV0q62tRQiNGzdO/ZEV3kmpDplMduPGDTc3N4VnzEJCQurq6k6dOsV0wMFA3gRgUHgW1JQpUzgcjpWV1RtvvEE9cT+SWny6U+tv5CorK5ubm3EdmcFkZmbW1NQ4OztPnTp1lMLo6OgoLi4ODg4WCoVHjhxRWIoPQnEdGY2AvAnAwJqammbOnPnVV1+lpqbev3//p59+MjMz8/Pzw6/w3rBhA/nnqayvv/46SZLUHFj0x0sy6OfR+DEn3C4Wi2UyWWxs7Pbt25uamv7973+3tbX5+vr++OOPIxwf08KzFQihK1euIITotQLorl27Fhsbu2zZMisrK3w7fjRi2L59u0Ag8PLyMjQ0zM3NnT59ukIHkUhEhaoRkDcBGFhiYuLNmzdTUlLmzZvH5/OdnZ2/+uorOzu7mJiYwe7wMtXV1bV//36JRMLj8Tw8PLKysnp7exUeNh22/v5+nEw1MtpgcHmtAWuvIIRcXV2zs7NXrlx55coVegUvzdqwYUNPT89vv/3m4uLi5uam/IZhPp9PEIQGK4FB3gRgYHjKYWBgINViYmLi5+f3+PFjTZ3xjWqtv5HXKlRHd3c3Qogq/afs3Llzqampqq9+jhyHw3Fxcfn888+Dg4M3bdr0r3/9S6GDkZGRcnmEYYO8CcAAcBU7U1NTCwsLerutrS1CqKmpSSNbGbDWH/qjcpVeMDU1RQj19fWxHch/BQUFIYTy8/MV2uVy+TBuNA0G8iYAAzAxMREIBN3d3Q8fPqS34zN0oVCIP46wFh+u9Udv0XKtv5HD5bVwpVRdYGJighBqa2ujN3Z0dJAkqcGys5A3ARhYSEgIQog+eaWnp6egoIDL5QYEBOCWEdbiY6vWnwbhmzAK5fcpcrncxcVllDYdHx8fERGh0Hj69Gn057chIITwPlS+XzRskDcBGNiOHTsmTZoUFxeXn5//8OHD6urqd955p7GxMTU1FZ+toxHX4hvVWn/auZ8uFottbGwqKyuVF6WlpfF4vLVr1yovioiIIAji5s2bI9z6V199tXXr1lu3bvX09Ny6dWvdunVZWVnu7u6RkZH0bvgdqP7+/iPc3P+hT4KH54XA00D9v/P79+/HxcVNmjTJ2NhYIBAEBAQUFBTQOwy7Fh85yrX+SDVqFVJG+LzQ+vXrB3xe6MCBA1wul/4GU4qvr6+5ublcLlexOfw+VAVpaWlUh/b29vT09ICAAPyaaHNzc3d39x07dlAPGlHCwsLo7/ujwHOWAKhLR/7OdafW3wjzpkwmE4lE9OfTVXvw4AGXy42MjGQc6LDg59OPHTumvAieswQAsEMgEOTl5eXk5Ozbt2/IziRJxsTE8Pl85VmWo6G2tlYqlSYmJi5cuFCDw0LeBAAw8MEHHyjX33RzcysvLz99+jSuv6lCc3NzbW1tQUEBNSdhVB08eDApKSkpKYneSNXffPLkyfCGhbwJgLbh58orKyvr6+sJgtiwYQPbEaklIiKCOlFVqL+JEHJycsrPz8f1N1UQCoVFRUXTpk0btTD/ZOfOncpHmlT9TZIkh3ffDF5uBYC2xcfHx8fHsx0FGD443gQAAGYgbwIAADOQNwEAgBnImwAAwMwA94VOnDih/TgA0JqSkhIEf+c0+Oly2CGDqaurUyzMTJ8Er/yiYQAAAArPCxHkKJeDBmB48Ltb4b3qQAfB9U0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYIYgSZLtGABACKHo6Ojr169TH3/++edJkyZZWVnhj4aGhpmZmQ4ODixFB8D/MWI7AAD+y9bW9tChQ/SWy5cvU/+ePHkyJE2gI+A8HeiKd955Z7BFHA7nvffe02IsAKgC5+lAh0yfPv3atWsD/k1ev37d2dlZ+yEBoAyON4EOWbp0qaGhoUIjQRBisRiSJtAdkDeBDlm0aNGTJ08UGg0NDd99911W4gFgQHCeDnTLrFmzfvrpp/7+fqqFIIi7d++KRCIWowKADo43gW5ZsmQJQRDURwMDAy8vL0iaQKdA3gS6JSwsjP6RIIilS5eyFQwAA4K8CXTLM8884+fnR90dIggiJCSE3ZAAUAB5E+iciIgIfNnd0NAwICDA2tqa7YgA+BPIm0DnSKVSDoeDECJJMiIigu1wAFAEeRPoHB6PN2/ePIQQh8MJCgpiOxwAFEHeBLpo8eLFCKGQkBAej8d2LAAoIVnF9rcHAOil48ePs5i42K+HFBcXJ5FI2I4C6JysrKyFCxcaGf3fn2hJSUlKSsrx48dZjEqn7NmzByH04Ycfsh2ItoWHh7MbAPt5UyKRLFiwgO0ogM4JDg42NTVVaExJSYG/Fkp2djZC6CncIaznTbi+CXSUctIEQEdA3gQAAGYgbwIAADOQNwEAgBnImwA8LW7fvh0cHNzR0YEQamxsTEpK8vDw4PP5QqHQx8cnNzd3eMN+9913zs7O9JkPFJIki4uLV6xY4ezsbGJiYmNj4+XllZWVRZ+DmJCQoHdzJCBvgrGvs7Pzueeew88gPbUqKio8PDz8/f35fD5CKCoqKiUlZcuWLY2NjaWlpQ4ODlKpNCEhgdGYNTU1wcHBiYmJzc3NA3a4fv26l5dXdXV1Tk5Oe3t7aWnphAkTlixZsmbNGqpPVFRUYmLixo0bR/LttAzyJhj7SJLs7++n10LWMnNzcy8vL7a2jhDq6OgICgp6++23V65cSTUmJycHBgbyeDwnJ6cvvvhCJBIlJye3tLSoP+zGjRtnzZp16dIlCwuLwfoYGRmdOHHC1dXV1NR08uTJGRkZ1tbWe/fu7enpwR2mTJmSm5ublJR04sSJYX9BLWN//iYAo83CwqKmpobtKNi0a9eupqamTZs2US35+fn0DhwOZ+rUqfX19devX7exsVFz2H/+859cLldFBxcXl76+PoUNOTo6VlRUdHd3m5iY4EaxWBwaGrp69WqpVDrg+b6ugeNNAMY4kiTT09M9PT3t7e1VdKutrUUIjRs3Tv2RVSfNAclkshs3bri5uQkEAnp7SEhIXV3dqVOnmA7ICsibYIw7efIk8Yfu7m6Fllu3boWHh1taWlpbW8+bN486LE1OTsYdHBwcysrK/Pz8LCwszMzM5syZU1xcjPts374d96HOwc+cOYNbnnnmGfo4XV1dxcXFeJH2j6cqKyubm5vFYrGKPpmZmTU1Nc7OzlOnTh2lMDo6OoqLi4ODg4VC4ZEjRxSWvvjiiwih77//fpS2rmEsPhuP76mx+3w+0CP4ruvw1p0/fz5C6PHjxwot8+fPv3DhQmdn59mzZ7lc7syZM+lricViHo8nkUhwn7KyMldXVw6HU1hYSPXh8XivvPIKfS13d3dra2t6i3IfbM6cOePGjSspKRnelwoNDQ0NDR2y29GjRxFCH3/88YBLr169GhMTY2BgYGVldfHixeFFIhKJDA0NVXTYtm0bTjizZ8++fPmycof29naEkLe3tzqbYz1vwPEmeKpFRkZKJBIejzd37tzAwMCysrL79+/TO3R1de3fvx/38fDwyMrK6u3tjY2N1cjW+/v7qUQwehobGxFCCufFFFdX1+zs7JUrV165cmXmzJmjFMOGDRt6enp+++03FxcXNzc3Ko1S+Hw+QRA4VN2nB5dgARg99Ezh6OiIEGpoaKDOshFCPB4Pn0JiM2bMsLe3r6ysbGxstLOzG+HWCwsLRziCOvDVCWNj48E6nDt3zsXFZbTD4HA4Li4un3/+eXNz86ZNmyQSydy5c+kdjIyMHj9+PNphaAQcb4KnGv0oDL+cQ2G6kqWlpcIq+HYzo/k67MIVUhTua7MI1/BXuKGPEJLL5cO40cQKyJsAqNLa2qpwHo0zJjVZx8DAoLe3l95BJpMpDEJ/I7z24eNifAFRF+DpR21tbfTGjo4OkiRHfgivHZA3AVClu7u7rKyM+vjrr782NDSIxWLqF25nZ1dfX091aGpqunPnjsIgZmZmVG59/vnnDx06NMpR/8n06dMRQnV1dQMulcvlo3eSHh8fr/xmvdOnT6M/XyFBCOF9iEPVfZA3AVBFIBCsX7++pKSkq6urvLw8IiKCw+GkpqZSHfz9/RsaGvbu3dvZ2VlTUxMbG6s8b/yll16qrq6+e/duSUlJbW2tt7c3bvf19bW2ti4tLR3VryAWi21sbCorK5UXpaWl8Xi8tWvXKi+KiIggCOLmzZsj3PpXX321devWW7du9fT03Lp1a926dVlZWe7u7pGRkfRuFRUVCCF/f/8Rbk5LWLyXT+rAfAKgR4Y3D0mhXMXixYtLSkroLR999BH55zPxwMBAvK5YLBaJRNeuXQsICLCwsOByuT4+PkVFRfTxZTJZZGSknZ0dl8v18vIqKytzd3fH46xbtw73qaqq8vb25vF4jo6O+/bto9b19va2srK6cOHC8HaImvOQSJJcv369kZFRfX29QvuBAwe4XG58fLzyKr6+vubm5nK5XMWweXl5yiklLS2N6tDe3p6enh4QEODk5MThcMzNzd3d3Xfs2PHo0SOFocLCwkQiUW9vrzpfh/W8AXkT6I2RzN8cHpw3tblFRtTPmzKZTCQSRUdHqznygwcPuFxuZGTkCKJjoKKigiCIY8eOqdmf9byhB+fp5ubmBA2eoCsWi5cvX37p0iW2oxtdKip0qeNp3nWATiAQ5OXl5eTk7Nu3b8jOJEnGxMTw+XzlWZajoba2ViqVJiYmLly4UAub0wg9yJudnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5R84as0KWOp3PXgQG5ubmVl5efPn0a199Uobm5uba2tqCgQCgUaiGwgwcPJiUlJSUlaWFbmqIHeVOBoaGhra3t/Pnzz507t3bt2oyMjEWLFpFj7lXs6lToYuop2XUagZ8rr6ysrK+vJwhiw4YNbEekAU5OTvn5+bj+pgpCobCoqGjatGnaiWrnzp16dKSJ6V/epPvkk088PT2//fbbr7/+mu1YNOyf//xnQkLC6NWAGMO7TiMUbpVs376d7YiADtHvvEkQBK7Dun//frZj0bDRfnBiDO86AEabfudNhBAu4VVaWko9Rnbv3r2YmBg872H8+PFSqRRPDUPqFRBDCPX09GzatMnFxcXMzGzcuHFBQUHffvvtkydPqA4qNqGamgFoh37tOgB0CAv38GmQevMJ6Dc3FFCFABoaGkiSbGhomDhxoq2t7alTpx4+fHjlyhUfHx9TU1P6FLkhC4hFRkYKBIIffvjh0aNHTU1N8fHxCKHz58/jpepsQjV1KphRVFToUqcK2Vjaddqfh6Tj1J+HNMaomTdGMQAWt01qIm9Sd4Txj//dd99FCH355ZdUh8bGRhMTE3d3d6oF//jz8vKoltDQUITQvXv38MdJkybNmjWLvhVnZ2fqx6/OJlQbMgA6FXnTx8dnyFnTY2nXQd5UAHmTLXpfRw4X7DM2Nsa1v06ePGlgYEB/c6FQKJw2bdqlS5fq6uocHByodhUFxF5//fXPP//8/fffX7Zs2cyZMw0NDa9fv051Vn8Tqg1ZwWxII6xCpqe7To/e3jXa8CPnsEO0T+/zZlFREUJIIjcOHrUAACAASURBVJEYGxv39PTgoi8Dlmi9ceMG/ZepooDYvn37JBJJZmamn58fQsjb2zs6OjokJAQhxGgTqg1ZwWy06emuCw8PV/cbPh1gh2ifft8X6u/vx88/rFixAiFkYmJiaWlpZGTU19enfGg9Z84cNYclCGLJkiX/+te/ZDLZyZMnSZKUSqWfffaZBjfBOv3ddSM9xRpDnubzdHbpd95MTEy8ePFiSEhIWFgYbpFKpXK5nHpzFrZz584JEybI5XI1h7W0tKyqqkIIGRsbv/baa/hWMvWmPY1sgnWw6wAYNv3Lm/39/S0tLd98842fn9+uXbuWLVv25ZdfUnVhd+zYMWXKlGXLlp0+fbq9vb2tre3gwYNbt25NTk5mNIf8f/7nfy5fvtzT09PS0rJr1y6SJH19fTW7iZFjWoUMdh0AmsH68faQ98V4PB49YIIgBALBjBkzPvjgg0uXLin3b21tXbVq1eTJk42NjcePH+/v73/27Fm8SM0CYhUVFdHR0S+88AKehPjyyy+npaVRr9BSvQnV1K9gNmSFLlKNKmRjadeRcD9dydN8ns7u/XSCZPViAUEQx48fX7BgAYsxAH1x4sSJ8PBwdv9idQq+xpKdnc12INrGet7Qv/N0AABgF+RNAJ4Wt2/fDg4OxnXkGhsbk5KSPDw8+Hy+UCj08fFRKIyvpr6+vj179ri7u1tYWNjY2Lzxxhv4sYgBOwcHBxMEoVAkJSEhAV+B0SOQNzWMGNzmzZvZjg48vSoqKjw8PPz9/XEduaioqJSUlC1btjQ2NpaWljo4OEil0oSEBEZjdnV1+fr6ZmRk7Nmzp6Wlpby83NzcPDg4+OrVq8qdjxw5MuBV+6ioqMTExI0bNw7ve7GDxWurpA5c3wV6RMv3hXg83iuvvKLL46t/X6i9vd3BwYH+nozAwMCMjAzqY09PD36it7m5Wf0APvjgAz6f39TURLV0dnaamJj8+uuvCj3r6+utrKyWLFmCENq2bZvCUvyeDPVTAet5A443ARj7du3a1dTUtGnTJqolPz8flwvAOBzO1KlTnzx5Qn8uVrXm5uZDhw4tXrzY1taWauTxeN3d3cqv842KigoLCxvsdZVisTg0NHT16tX6Mo0X8iYAYxxJkunp6Z6envb29iq61dbWIoTGjRun5rC4QiCuRqja4cOHr169mpycrKJPSEhIXV0d9YiEjoO8CcYgPEt0ypQpHA7HysrqjTfeOH/+PF60fft2fLmZ+sGfOXMGt1BFVfBLMrq6uoqLi/EiPC0ftxME4eDgUFZW5ufnZ2FhYWZmNmfOHOohqJGMP0oqKyubm5vFYrGKPpmZmTU1Nc7OzlOnTlVz2J9//hkhZGVltXr1akdHRw6HM3HixJiYmLa2Nnq3urq61atXHz58WPUbX1588UWE0Pfff6/m1lnG4jUCUgeuUwA9oub1zcbGxkmTJtna2ubl5bW3t1+/fl0qlRIEQX9qQPnaoru7u7W1Nb1lsOuPYrGYx+NJJBJchLSsrMzV1ZXD4RQWFmpkfHXKqmJqXt88evQoQujjjz8ecOnVq1djYmLwu04vXrw45GgUXFRQKBQuXry4pqbmwYMHmZmZPB7P2dlZJpNR3QICApYvX06PRPn6JkmSuOaLt7e3OptmPW/A8SYYaxITE2/evJmSkjJv3jw+n+/s7PzVV1/Z2dnFxMSM5OWgdF1dXfv375dIJDwez8PDIysrq7e3NzY2ViODU49XaWQ09EfBwAHLUCGEXF1ds7OzV65ceeXKFXqFwCF1d3cjhLhcbkZGxuTJky0tLZcuXZqYmFhdXb17927cJy0t7caNG7t27RpyND6fTxAEDlX3Qd4EYw2ehxgYGEi1mJiY+Pn5PX78WFOngTweD59XYjNmzLC3t6+srNTIz76wsLCtrU0ikYx8KAwnOGNj48E6nDt3LjU1VfXVT2X4Kd65c+fSLzIEBQWhP06379y5s2bNmsOHDys87zsYIyMj6h0EOg7yJhhTcJVPU1NThatp+J5vU1OTRrZiaWmp0GJjY4MQamlp0cj4mmVqaooQot4ipSlOTk4IIWtra3oj3g/37t1DCOHrJLNnz6amMON5SBs3bsQff//9d/q6crl8tF9HqCmQN8GYYmJiIhAIuru7Hz58SG/HZ+hCoRB/NDAw6O3tpXeQyWQKQ1GVopS1trYqnEfjjImzxsjH1yw7OzuEEL6AqEH4xpfCITbeD/j/UitWrFC4LKhwffPZZ5+lVuzo6CBJEoeq+yBvgrEGl5enz2jp6ekpKCjgcrkBAQG4xc7Orr6+nurQ1NR0584dhXHMzMyo3Pf8888fOnSIWtTd3V1WVkZ9/PXXXxsaGsRiMfWzH+H4moVnU+KXaiiTy+UuLi7DGPbNN98UiURnzpzB1wEw/ETQW2+9xXQ0vLuUJ37qJsibYKzZsWPHpEmT4uLi8vPzHz58WF1d/c477zQ2NqamplIztP39/RsaGvbu3dvZ2VlTUxMbG0sdKlJeeuml6urqu3fvlpSU1NbWent7U4sEAsH69etLSkq6urrKy8sjIiI4HE5qairVYSTjMy2rOiSxWGxjY1NZWam8KC0tjcfjrV27VnlRREQEQRA3b94cbFgTE5P09PTW1taFCxfeuHFDJpMdPXp0x44dnp6eMTExTIPEr4MebGK8ztHivfsBILbnEwA9ov5zlvfv34+Li5s0aZKxsbFAIAgICCgoKKB3kMlkkZGRdnZ2XC7Xy8urrKzM3d0d/yLWrVuH+1RVVXl7e/N4PEdHx3379lHrisVikUh07dq1gIAACwsLLpfr4+NTVFSkqfGHLKtKUf85y/Xr1xsZGdXX1yu0HzhwgMvlxsfHK6/i6+trbm4ul8tVj3zhwoWAgACBQMDhcFxcXDZv3vzo0SPlbtHR0QqZJyAggN4hLCxMJBL19vaq83VYzxuQN4He0JG6xThvsh0FSTLJmzKZTCQS0Z9PV+3BgwdcLjcyMnIE0TGAn08/duyYmv1Zzxtwng7A2CcQCPLy8nJycvDL+FQjSTImJobP52/btk0LsdXW1kql0sTExIULF2phcxoBeROAp4Kbm1t5efnp06dx/U0Vmpuba2trCwoKqOkHo+rgwYNJSUlJSUla2JamQN4EQF34ufLKysr6+nqCIDZs2MB2RMw4OTnl5+fj+psqCIXCoqKiadOmaSeqnTt36tGRJgYvEQRAXfHx8fHx8WxHAdgHx5sAAMAM5E0AAGAG8iYAADADeRMAAJhh/77Qnj17srOz2Y4C6AH8hHVYWBjbgegK/Cwm7BDtI0jNlUcdBvhPDgZz+vRpNzc37UwhBHpn1apVGixRyhTLeROAweAXwy5YsIDtQABQBNc3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzRmwHAMB/yWQykiTpLV1dXQ8ePKA+mpubGxsbaz0uABQRCn+pALDF19f3/Pnzgy01NDSsr6+3tbXVZkgADAjO04GuWLRoEUEQAy4yMDB49dVXIWkCHQF5E+iK0NBQI6OBLxwRBLF06VItxwPAYCBvAl1hZWXl7+9vaGiovMjAwCAkJET7IQEwIMibQIdERET09/crNBoZGQUGBgoEAlZCAkAZ5E2gQ4KDg01MTBQanzx5EhERwUo8AAwI8ibQIWZmZiEhIQqTjbhc7ptvvslWSAAog7wJdMs777zT19dHfTQ2Ng4NDeVyuSyGBIACyJtAtwQEBNAvZfb19b3zzjssxgOAMsibQLcYGxsvXLiQw+Hgj5aWln5+fuyGBIACyJtA5yxatKi3txchZGxsHBERMdikTgDYAs9ZAp3T399vb2/f3NyMECoqKnrllVfYjgiAP4HjTaBzDAwMlixZghCys7ObNWsW2+EAoIjlM6ATJ06wGwDQTc888wxCyNPTMzs7m+1YgC6aNWuWg4MDa5snWcXa1wYA6LPjx4+zmLjYv+J+/PjxBQsWsB0F0Dk5OTmhoaH0lhMnToSHh8P/bilhYWEIoafwkHywullaA9c3gY5SSJoA6A7ImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CcDT4vbt28HBwR0dHQihxsbGpKQkDw8PPp8vFAp9fHxyc3OHMWZfX9+ePXvc3d0tLCxsbGzeeOONvLy8weY8BAcHEwSxfft2emNCQsLx48eHsWkWQd4EY19nZ+dzzz03b948tgNhU0VFhYeHh7+/P5/PRwhFRUWlpKRs2bKlsbGxtLTUwcFBKpUmJCQwGrOrq8vX1zcjI2PPnj0tLS3l5eXm5ubBwcFXr15V7nzkyJG8vDzl9qioqMTExI0bNw7ve7EC8iYY+0iS7O/vV34Dh9aYm5t7eXmxtXWEUEdHR1BQ0Ntvv71y5UqqMTk5OTAwkMfjOTk5ffHFFyKRKDk5uaWlRf1h16xZc/ny5R9++OHVV1/lcrkTJkzIyMhQrtiPEGpoaIiLi8OPzyqYMmVKbm5uUlKSHj09CHkTjH0WFhY1NTXfffcd24GwZteuXU1NTZs2baJa8vPz3333Xeojh8OZOnXqkydPrl+/ruaYzc3Nhw4dWrx4Mf39zDwer7u7e/r06Qqdo6KiwsLC/P39BxxKLBaHhoauXr1aLper+5VYBXkTgDGOJMn09HRPT097e3sV3WpraxFC48aNU3PYb7/99smTJ+ocRx8+fPjq1avJyckq+oSEhNTV1Z06dUrNrbML8iYY406ePEn8obu7W6Hl1q1b4eHhlpaW1tbW8+bNq6mpwWslJyfjDg4ODmVlZX5+fhYWFmZmZnPmzCkuLsZ9tm/fjvtQuePMmTO4Bdclocbp6uoqLi7Gi7RfTrSysrK5uVksFqvok5mZWVNT4+zsPHXqVDWH/fnnnxFCVlZWq1evdnR05HA4EydOjImJaWtro3erq6tbvXr14cOHLSwsVIz24osvIoS+//57NbfOMhafjcc33dh9Ph/oEXzXdXjrzp8/HyH0+PFjhZb58+dfuHChs7Pz7NmzXC535syZ9LXEYjGPx5NIJLhPWVmZq6srh8MpLCyk+vB4vFdeeYW+lru7u7W1Nb1FuQ82Z86ccePGlZSUDO9LhYaGhoaGDtnt6NGjCKGPP/54wKVXr16NiYkxMDCwsrK6ePGi+lvHO1AoFC5evLimpubBgweZmZk8Hs/Z2Vkmk1HdAgICli9fTo9k27ZtyqO1t7cjhLy9vdXZNOt5A443wVMtMjJSIpHweLy5c+cGBgaWlZXdv3+f3qGrq2v//v24j4eHR1ZWVm9vb2xsrEa23t/fTyWC0dPY2IgQGuwF9K6urtnZ2StXrrxy5crMmTPVHxYfvHO53IyMjMmTJ1taWi5dujQxMbG6unr37t24T1pa2o0bN3bt2jXkaHw+nyAIHKrug7wJnmr0TOHo6IgQamhooHfg8Xj4FBKbMWOGvb19ZWWlRn7hhYWFbW1tEolk5EOpgBOcwtuV6c6dO5eamqr66qcyHo+HEJo7dy79ykNQUBD643T7zp07a9asOXz4MO45JCMjo8ePHzOKgS2QN8FTjX4Uhl8GpzBdydLSUmEVGxsbhBCj+TrsMjU1RQjR366sEU5OTggha2treiPeOffu3UMI5eXltbe3z549m7qajOchbdy4EX/8/fff6evK5XJ9eeEz5E0AVGltbVU4j8YZEycIhJCBgQF+ixxFJpMpDMJuvUg7OzuEEL6AqEH4bpjCcTfeOXhm0ooVKxQuCypc33z22WepFTs6OkiSxKHqPsibAKjS3d1dVlZGffz1118bGhrEYjH1C7ezs6uvr6c6NDU13blzR2EQMzMzKrc+//zzhw4dGuWo/wTPpqyrqxtwqVwud3FxGcawb775pkgkOnPmDL4OgOEngt566y2mo+F9qDzxUzdB3gRAFYFAsH79+pKSkq6urvLy8oiICA6Hk5qaSnXw9/dvaGjYu3dvZ2dnTU1NbGwsdShKeemll6qrq+/evVtSUlJbW+vt7Y3bfX19ra2tS0tLR/UriMViGxubyspK5UVpaWk8Hm/t2rXKiyIiIgiCuHnz5mDDmpiYpKent7a2Lly48MaNGzKZ7OjRozt27PD09IyJiWEaZEVFBUJosInxOkeL9+4HgNieTwD0yPDmISmUq1i8eHFJSQm95aOPPiL/fCYeGBiI1xWLxSKR6Nq1awEBARYWFlwu18fHp6ioiD6+TCaLjIy0s7PjcrleXl5lZWXu7u54nHXr1uE+VVVV3t7ePB7P0dFx37591Lre3t5WVlYXLlwY3g5Rcx4SSZLr1683MjKqr69XaD9w4ACXy42Pj1dexdfX19zcXC6Xqx75woULAQEBAoGAw+G4uLhs3rz50aNHyt2io6MVMk9AQAC9Q1hYmEgk6u3tVefrsJ43IG8CvTGS+ZvDg/OmNrfIiPp5UyaTiUSi6OhoNUd+8OABl8uNjIwcQXQMVFRUEARx7NgxNfuznjf04Dzd3NycoMETdMVi8fLlyy9dusR2dKPiwYMHBw4c8PX1HTduHJfLfe655xYvXjzgeZZqT+GuAwMSCAR5eXk5OTn79u0bsjNJkjExMXw+f9u2bVqIrba2ViqVJiYmLly4UAub0wg9yJudnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5Rw9asWfO3v/1t/vz5165da21tPXz4cEVFhbu7+8mTJxmN8xTuOjAYNze38vLy06dP4/qbKjQ3N9fW1hYUFAiFQi0EdvDgwaSkpKSkJC1sS2NYPNYl1T7epv/46fD17ODgYOq5i7Hhr3/96/vvv09vwVfNn3vuOaZDjaVdp83z9E8//ZT+M8HXQHWN+ufpY4yaeWP06MHxpgqffPKJp6fnt99++/XXX7Mdiyalp6cfPHiQ3iIWi7lcbk1NDamhZ/LG6q7TFIVbJQolysFTTr/zJkEQuA7r/v372Y5ldHV1dT1+/Hj69OmamkH99Ow6ADROv/Mm+uOhhdLSUuoxsnv37sXExDg5OXE4nPHjx0ulUnySi9QrIIYQ6unp2bRpk4uLi5mZ2bhx44KCgnCpQaqDik2opmYAyrKzsxFCH330EcPdo4p+7ToAdAhL1wf+C43s+iZJklQhgIaGBpIkGxoaJk6caGtre+rUqYcPH165csXHx8fU1JQ+RW7IAmKRkZECgeCHH3549OhRU1NTfHw8Quj8+fN4qTqbUE2dCmZ0TU1Ntra2ypNC1KlCNpZ2nfbnIek4uL7JWgAsbpvURN6k7gjjHz8u/f/ll19SHRobG01MTNzd3akW/OPHb93DQkNDEUL37t3DHydNmjRr1iz6VpydnakfvzqbUG3IAOju37//4osvhoeHK89A9vHxGXLW9FjadZA3FUDeZIu2S09rHC4rYGxsjCtsnzx50sDAgP7mQqFQOG3atEuXLtXV1Tk4OFDtAxYQw4O8/vrrn3/++fvvv79s2bKZM2caGhrSX7qi/iZUUxEApaurKyAgYOrUqUeOHDE0NFQYobCwUM1tDUhPd11YWNiwv/IYgx/QhB2ifXp/fbOoqAghJJFIjI2Ne3p62tvb+/v7BQIBfb43Luh/48YN+ooqCojt27fvyJEjtbW1fn5+fD7/9ddfp57VY7QJ1YasYCaXy/HDZ5mZmcpJc+T0d9cBwC79Pt7s7+/Hzz+sWLECIWRiYmJpadnZ2fn48eORvMUFFwpcsmRJX19fYWFhcnKyVCrdvXv3qlWrNLUJdURHR/f09OTm5lIbevbZZ7Oysl5++eWRD66/uw7fIgPojyPNp3CHsFuXD+n78WZiYuLFixdDQkKoUxWpVCqXy6k3Z2E7d+6cMGGC+q8YtbS0rKqqQggZGxu/9tpr+FYy9aY9jWxiSJs3b7569eo333wz4NuoR24M7zoARpv+5c3+/v6WlpZvvvnGz89v165dy5Yt+/LLL6n//+zYsWPKlCnLli07ffp0e3t7W1vbwYMHt27dmpyczOgY53/+538uX77c09PT0tKya9cukiR9fX01uwkVMjIytmzZ8tNPP1lYWNBPaRXmKjGtQvY07DoAtIHFe1KkevfFFF5OQhCEQCCYMWPGBx98cOnSJeX+ra2tq1atmjx5srGx8fjx4/39/c+ePYsXqVlArKKiIjo6+oUXXsCTEF9++eW0tDT684gqNqGamgEEBgYO9t+LPutoyCpkY2nXkXA/XQncT2cLQY7yu/RUIwji+PHjCxYsYDEGoC9OnDgRHh7O7l+sTnmar2+ymzf07zwdADA8t2/fDg4OxvWQGhsbk5KSPDw8+Hy+UCj08fFRKPCspr6+vj179ri7u1tYWNjY2Lzxxht4eu+AnYODgwmCUHjYPyEhAZ9J6BHImwA8FSoqKjw8PPz9/fl8PkIoKioqJSVly5YtjY2NpaWlDg4OUqk0ISGB0ZhdXV2+vr4ZGRl79uxpaWkpLy83NzcPDg6+evWqcucjR47gtw8piIqKSkxM3Lhx4/C+Fysgb2oYMbjNmzezHR1gwNzcHD/Cr6fj03V0dAQFBb399tu4mAuWnJwcGBjI4/GcnJy++OILkUiUnJzM6P3Ga9asuXz58g8//PDqq69yudwJEyZkZGQMOAOkoaEhLi4OvwdYwZQpU3Jzc5OSkk6cODGMr8YKuImpYXD1DeigXbt2NTU1bdq0iWrJz8+nd+BwOFOnTq2vr79+/brye+UG1NzcfOjQoffffx+/9Rfj8Xj011tSoqKiwsLCvL298auAFYjF4tDQ0NWrV0ulUr2YWQHHmwCMcSRJpqene3p62tvbq+hWW1uLEBo3bpyaw+JKV+ocMh8+fPjq1avJyckq+oSEhNTV1VFTfXUc5E0wBuHZTlOmTOFwOFZWVm+88cb58+fxou3bt+PLJtQP/syZM7iFKg6QnJxMEERXV1dxcTFehA+CcDtBEA4ODmVlZX5+fhYWFmZmZnPmzKEm849k/FFSWVnZ3NwsFotV9MnMzKypqXF2dp46daqaw+IHZK2srFavXu3o6MjhcCZOnBgTE9PW1kbvVldXt3r16sOHD1tYWKgY7cUXX0QIff/992punWUszoEidWAeFtAjas7fbGxsnDRpkq2tbV5eXnt7+/Xr16VSKUEQaWlpVB8ej/fKK6/Q13J3d7e2tqa3KPfBxGIxj8eTSCS4mF5ZWZmrqyuHwyksLNTI+OqUB8TUnL+JT40//vjjAZdevXo1JiYGv7Pv4sWLQ45GwcWxhELh4sWLa2pqHjx4kJmZyePxnJ2dZTIZ1S0gIGD58uX0SLZt26Y8Wnt7O0LI29tbnU2znjfgeBOMNYmJiTdv3kxJSZk3bx6fz3d2dv7qq6/s7OxiYmKam5s1somurq79+/dLJBIej+fh4ZGVldXb2xsbG6uRwanHBDQyGvqj8BW9Ggudq6trdnb2ypUrr1y5Qq90NSR8HZPL5WZkZEyePNnS0nLp0qWJiYnV1dW7d+/GfdLS0m7cuLFr164hR+Pz+QRB4FB1H+RNMNbgeYj0Z65MTEz8/PweP36sqdNAHo+HzyuxGTNm2NvbV1ZWauRnX1hY2NbWJpFIRj4UhhOcsbHxYB3OnTuXmpqq+uqnMvw02ty5c+kXGYKCgtAfp9t37txZs2bN4cOHFZ5bG4yRkRFVS1vHQd4EYwquVmdqaqpwNQ3f821qatLIViwtLRVa8D1oRpN4tMbU1BQhRL0NRVOcnJwQQtbW1vRGvB/u3buHEMLXSWbPnk1NxcPzkDZu3Ig//v777/R15XI5l8vVbJCjBPImGFNMTEwEAkF3d/fDhw/p7fgMnXohuIGBQW9vL72DTCZTGEpFsbLW1laF82icMakZPCMcX7Ps7OwQQvgCogbhG18Kh9h4P+D/S61YsULhsqDC9c1nn32WWrGjo4MkSRyq7oO8CcaakJAQhBB9RktPT09BQQGXyw0ICMAtdnZ29fX1VIempqY7d+4ojGNmZkblvueff/7QoUPUou7u7rKyMurjr7/+2tDQIBaLqZ/9CMfXrOnTpyOE6urqBlwql8tdXFyGMeybb74pEonOnDlDn7CJnwh66623mI6GdxcOVfdB3gRjzY4dOyZNmhQXF5efn//w4cPq6up33nmnsbExNTWVmqHt7+/f0NCwd+/ezs7Ompqa2NhY5cneL730UnV19d27d0tKSmpra729valFAoFg/fr1JSUlXV1d5eXlERERHA4nNTWV6jCS8ZmWBxySWCy2sbGprKxUXpSWlsbj8dauXau8KCIigiCImzdvDjasiYlJenp6a2vrwoULb9y4IZPJjh49umPHDk9Pz5iYGKZB4tea+vv7M12RHVq8dz8AxPZ8AqBH1K8jd//+/bi4uEmTJhkbGwsEgoCAgIKCAnoHmUwWGRlpZ2fH5XK9vLzKysrc3d3xL2LdunW4T1VVlbe3N4/Hc3R03LdvH7WuWCwWiUTXrl0LCAiwsLDgcrk+Pj5FRUWaGn/I8oAU9evIrV+/3sjIqL6+XqH9wIEDXC43Pj5eeRVfX19zc3PltwEquHDhQkBAgEAg4HA4Li4umzdvfvTokXK36OhohcwTEBBA74BfCdPb26vO12E9b0DeBHpDR+pv4rzJdhQkySRvymQykUgUHR2t5sgPHjzgcrnKr54eJRUVFQRBHDt2TM3+rOcNOE8HYOwTCAR5eXk5OTn4pVKqkSQZExPD5/O3bdumhdhqa2ulUmliYuLChQu1sDmNgLwJwFPBzc2tvLz89OnTuP6mCs3NzbW1tQUFBdT0g4kfVAAAFiBJREFUg1F18ODBpKSkpKQkLWxLUyBvAqAu/Fx5ZWVlfX09QRAbNmxgOyJmnJyc8vPzcf1NFYRCYVFR0bRp07QT1c6dO/XoSBPTg5JNAOiI+Pj4+Ph4tqMA7IPjTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAhlicc0/CK8wAAMPC7vNCLM9D0rv3zQOtCQ8Pj4uL02D5XjCWzJo1i8WtE3DQB3QTQRDHjx9fsGAB24EAoAiubwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZozYDgCA/zp27NjDhw/pLf/6179kMhn1MSQkZPz48VqPCwBFBEmSbMcAAEIIvffee5mZmcbGxvgj/sskCAIh9OTJE3Nz85aWFhMTEzZDBAAhBOfpQHcsWrQIIdT3B7lcLpfL8b8NDQ3DwsIgaQIdAcebQFfI5XJbW9u2trYBlxYUFPj6+mo5JAAGBMebQFcYGRktWrSIOk+ne+aZZ3x8fLQfEgADgrwJdMiiRYv6+voUGo2NjZcsWWJoaMhKSAAog/N0oENIkpwwYUJdXZ1C+8WLF2fOnMlKSAAog+NNoEMIgoiIiFA4VXd0dPTw8GArJACUQd4EukXhVN3Y2Pi9997Ds5EA0BFwng50jouLy/Xr16mPV65cmTZtGovxAKAAjjeBzlmyZAl1qj516lRImkDXQN4EOiciIkIulyOEjI2N3333XbbDAUARnKcDXeTh4XHp0iWCIG7dujVhwgS2wwHgT+B4E+iipUuXIoQ8PT0haQIdpAf1kEpKSj777DO2owBa1d3dTRBET09PWFgY27EArZJIJKtWrWI7iiHowfHm3bt3c3Jy2I4CjK6cnBz6dHdTU1NbW1sHBwcWQ2JRXV3d0/k3X1paWlJSwnYUQ9OD400sOzub7RDAKCII4sMPP1ywYAHV8vvvvz/77LMshsSiEydOhIeHP4V/8/pyeqEHx5vg6fTUJk2g+yBvAgAAM5A3AQCAGcibAADADORNAPTe7du3g4ODOzo6EEKNjY1JSUkeHh58Pl8oFPr4+OTm5g5jzL6+vj179ri7u1tYWNjY2Lzxxht5eXmDPSYTHBxMEMT27dvpjQkJCcePHx/GpnUf5E2gxzo7O5977rl58+axHQibKioqPDw8/P39+Xw+QigqKiolJWXLli2NjY2lpaUODg5SqTQhIYHRmF1dXb6+vhkZGXv27GlpaSkvLzc3Nw8ODr569apy5yNHjuTl5Sm3R0VFJSYmbty4cXjfS5dB3gR6jCTJ/v7+/v5+tgIwNzf38vJia+sIoY6OjqCgoLfffnvlypVUY3JycmBgII/Hc3Jy+uKLL0QiUXJycktLi/rDrlmz5vLlyz/88MOrr77K5XInTJiQkZEx4HvxGhoa4uLilixZorxoypQpubm5SUlJJ06cGMZX02WQN4Ees7CwqKmp+e6779gOhDW7du1qamratGkT1ZKfn08vhsLhcKZOnfrkyRN6aT7VmpubDx06tHjxYltbW6qRx+N1d3dPnz5doXNUVFRYWJi/v/+AQ4nF4tDQ0NWrV+NCLWMG5E0A9BVJkunp6Z6envb29iq61dbWIoTGjRun5rDffvvtkydP1DmOPnz48NWrV5OTk1X0CQkJqaurO3XqlJpb1wuQN4G+OnnyJPGH7u5uhZZbt26Fh4dbWlpaW1vPmzevpqYGr5WcnIw7ODg4lJWV+fn5WVhYmJmZzZkzp7i4GPfZvn077kPljjNnzuCWZ555hj5OV1dXcXExXmRkpO2n7yorK5ubm8VisYo+mZmZNTU1zs7OU6dOVXPYn3/+GSFkZWW1evVqR0dHDoczceLEmJgYhVc019XVrV69+vDhwxYWFipGe/HFFxFC33//vZpb1w+kzsO35NiOAowuhNDx48eHseL8+fMRQo8fP1ZomT9//oULFzo7O8+ePcvlcmfOnElfSywW83g8iUSC+5SVlbm6unI4nMLCQqoPj8d75ZVX6Gu5u7tbW1vTW5T7YHPmzBk3blxJSckwvhGp9t/80aNHEUIff/zxgEuvXr0aExNjYGBgZWV18eJF9beOd6BQKFy8eHFNTc2DBw8yMzN5PJ6zs7NMJqO6BQQELF++nB7Jtm3blEdrb29HCHl7e6uz6dDQ0NDQUPVDZQscb4KxKTIyUiKR8Hi8uXPnBgYGlpWV3b9/n96hq6tr//79uI+Hh0dWVlZvb29sbKxGtt7f349/YBoZbTCNjY0IIYFAMOBSV1fX7OzslStXXrlyhdHbQPHBO5fLzcjImDx5sqWl5dKlSxMTE6urq3fv3o37pKWl3bhxY9euXUOOxufzCYLAoY4ZkDfB2ETPFI6OjgihhoYGegcej4dPIbEZM2bY29tXVlZq5BdeWFjY1tYmkUhGPpQKOMEpvP6T7ty5c6mpqaqvfirj8XgIoblz59KvPAQFBaE/Trfv3LmzZs2aw4cP455DMjIyevz4MaMYdBzkTTA20Y/COBwOQkhhupKlpaXCKjY2NgghRvN12GVqaooQor/+UyOcnJwQQtbW1vRGvHPu3buHEMrLy2tvb589ezZ1NRnPQ9q4cSP++Pvvv9PXlcvlXC5Xs0GyC/ImeEq1trYqnEfjjIkTBELIwMCgt7eX3kEmkykMwu4Liu3s7BBC+AKiBuG7YQrH3Xjn4JlJK1asULjep3B9k17LqqOjgyRJHOqYAXkTPKW6u7vLysqoj7/++mtDQ4NYLKZ+4XZ2dvX19VSHpqamO3fuKAxiZmZG5dbnn3/+0KFDoxz1n+DZlPR6z3RyudzFxWUYw7755psikejMmTP4OgCGnwh66623mI6G96HyxE+9BnkTPKUEAsH69etLSkq6urrKy8sjIiI4HE5qairVwd/fv6GhYe/evZ2dnTU1NbGxsdShKOWll16qrq6+e/duSUlJbW2tt7c3bvf19bW2ti4tLR3VryAWi21sbCorK5UXpaWl8Xi8tWvXKi+KiIggCOLmzZuDDWtiYpKent7a2rpw4cIbN27IZLKjR4/u2LHD09MzJiaGaZAVFRUIocEmxusrLd67HyaYh/Q0QMznISmUq1i8eLHCKxY++ugj8s9n4oGBgXhdsVgsEomuXbsWEBBgYWHB5XJ9fHyKioro48tkssjISDs7Oy6X6+XlVVZW5u7ujsdZt24d7lNVVeXt7c3j8RwdHfft20et6+3tbWVldeHCheHtDfX/5tevX29kZFRfX6/QfuDAAS6XGx8fr7yKr6+vubm5XC5XPfKFCxcCAgIEAgGHw3Fxcdm8efOjR4+Uu0VHRyuklICAAHqHsLAwkUjU29urztfRl3lIepCPIG8+DYaRN0cC502tbY4p9f/mZTKZSCSKjo5Wc+QHDx5wudzIyMgRRMdARUUFQRDHjh1Ts7++5E04TwdAjwkEgry8vJycnH379g3ZmSTJmJgYPp+/bds2LcRWW1srlUoTExMXLlyohc1p0xjMm+Xl5e+9956Tk5OpqamlpeXMmTO3bt2qfCdU35mbmxM0+LEQsVi8fPnyS5cusR0d0B43N7fy8vLTp0/j+psqNDc319bWFhQUCIVCLQR28ODBpKSkpKQkLWxLy8Za3kxMTHz55ZetrKzy8/NlMtnNmzf//ve/5+bmOjs7U08fjw2dnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5RF+HnyisrK+vr6wmC2LBhA9sRaYCTk1N+fj6uv6mCUCgsKiqaNm2adqLauXPn2DvS/C+2LxQMTf1rPfjs48CBAwrtXV1duGz1b7/9xnTrgz2ArCkjGZ+eN+nwXdTg4GDqaT/dh7R7fVPHPbXX9OH6prb9/vvvW7Zseemll5Rv8JmZme3Zs+fhw4fDmEWhjz755BNPT89vv/3266+/ZjsWAMagsZM3Dxw4IJfLB3tvvbe3t729/dmzZ3EtwrGNIAhc/Xv//v1sxwLAGDR28uaPP/6IEFJRixAv+s9//oNGVmBRLwo44u2WlpZSDy/fu3cvJibGycmJw+GMHz9eKpXiCclIvbKVCKGenp5Nmza5uLiYmZmNGzcuKCgIF7ilOqjYBABjCtsXCoam5rUe/HjcTz/9NFiHiIgI9OdihSMpsKgLBRwHu75JkiRVfqahoYEkyYaGhokTJ9ra2p46derhw4dXrlzx8fExNTWlT8wesmxlZGSkQCD44YcfHj161NTUFB8fjxA6f/48XqrOJlRAcH2TBq5v6rixc7yJDVlnQYOFGHS5gKPCiomJibdv3/7ss8/efPNNc3PzadOmff311yRJ/u1vf1NYUUXZyoKCgmnTpr322mtcLtfW1vbTTz91dnYexiYA0Hfaruw/euzt7RsbG1tbWwfrgBcxrUWogooCjiOv/lJYWDiS1XExG2NjY3xZ4OTJkwYGBvT35QqFwmnTpl26dKmurs7BwYFqH7BsJR7k9ddf//zzz99///1ly5bNnDnT0NCQ/qov9TcxmPDw8PDw8JF86zGG3WJLbAkNDWU7hKGNnbzp4+Nz6dKlioqK119/fcAOuPzB7NmzNbXFAQs4NjQ0tLS0sF41q6ioCCEkkUiMjY17enpwqbEBC4PfuHGDntRUlK3ct2+fRCLJzMz08/NDCHl7e0dHR4eEhCCEGG1iMHFxcaNd6FdflJSUpKSk4LP1p8qePXvYDkEtYydvRkdH/+Mf/8jOzk5ISFBeWlRU1NDQEBQUNGHCBKpxhAUWcQFHegcdKeDY39+Pn7pbsWIFQsjExMTS0rKzs/Px48cjufWEy9MuWbKkr6+vsLAwOTlZKpXu3r171apVGtmERCJZsGDBsMMbY1JSUp7CvZGdnc12CGoZO9c3nZ2d//73v//8888HDx5UWPTo0aO4uDhra+uUlBR6+wgLLOpsAcfExMSLFy+GhIRQs7KkUqlcLld4Ymrnzp0TJkxQ/8XWlpaWVVVVCCFjY+PXXnsN34Wn3u+qkU0AoB/YuyWlLkb3FhMTEw0NDT/88MMrV650d3c/ePAgLy/Pzc1NJBKVl5crdMaTHP/3f/9/e/cf0sQbxwH8OdqmS91RUS5OyDkYZT9WMigCESbMwhJavyQEIRIJYklJNcEockThH45vfxgrIoIiCwo2jIhVf0STVJpggdImlTYPtMwVLVmsPx467uvmdbeb7e72ef3n3eNzj/P4sN3z7P38F41G3717d+DAAYqi5s1379ixgyTJDx8+vHz5UqVSvX37Fh83m80kSVZXV3PMp4vpX+h8+q9fv2iafvjwodVqRQgdPnyYnfpF07TRaCwrK+vt7Z2ZmZmenu7u7l66dCl7Cjt5Y8jTp08jhF6/fo1/JEmyqqpqaGgoFovRNH3u3DmEUEdHB/9LcEAwn84C8+kSJ4P/jdB7qL+/v7Gxcc2aNRqNpqioyGKxdHR0sPcvZYgJWMx6gOO8LbEIgiBJcuPGjUePHh0cHExuPz09feLEibKyMrVavXLlSpvN9uTJE3yKZ2xlMBhsbm5et24dXr+5bds2j8fD/ionxyX+CuomG9RNiSMSi7xVqXg9PT0HDx6U2jg3b948NTW10BYFQCiCIO7evZuDT/RSkuY9/w/gJ0vSf8qpnOebAADG+/fv6+rqcLJcJBJxuVwWi0Wn0+n1+qqqqnlR+fz19vaaTKaUU39nzpzJnQUAUDcBUJpgMGixWGw2G06Wa2pq6urqOn/+fCQS6evrKykpsdvtKZedcAiFQnV1dU6nk6bplA2ampqcTmd7e3sG/gDJg7opmCIDHHNKYWEhkxsgx/65zc7O7t69e+/evXhaEuvs7KytrS0oKCgtLb1x4wZFUZ2dnYJ2im9vb9++ffvg4GBRUVHKBkaj8cGDBy6Xq6enR+zfIHnKWb/5z7S2tuKvZgMgQZcvX56cnDx79ixzxOfzsRtoNJry8vKJiYmRkZHkHToXcv36da1Wy93GbDbv27fv5MmTdrs9gyE1EgTvNwFQjkQice3ata1bt3J/nxinKS5fvpx/z38tmtiePXvGx8eZVb1KBXUTyAle6mQ0GjUazbJly3bu3Pns2TN8SvHZgHwMDQ3RNM2RpogQunnzZigUMplM5eXlGR8ATmx4/PhxxnuWluwug+IjZ9ey5RTEY/1mJBIxGAzFxcVer/fr168jIyN2u50gCI/Hw7SRezYglvY9f+vWLfT/sES2N2/eOBwOvIXfq1ev0ug/kUhQFLVkyZKFzuKYgsrKyvQ6l8v6TXi/CWTD6XSOjY11dXXt2rVLp9OZTKbbt2+vXr3a4XAsNMkrlJSzAfnAOVgp01UQQps2bbp3796xY8eGh4fZwVcZpNPpCILAw1AwqJtANvCqw9raWuZIXl5edXX1jx8/MvXBkCMbUHznz58///z586JmPsViMYSQWq1eqMHTp0/dbncG0xSTqVQqJjZbqaBuAnnAUXX5+fnz1sEUFxcjhCYnJzNylZTZgOhP0pX05efnI4SYzVGyIh6P85xEki+om0Ae8vLySJKMxWLRaJR9HH9C1+v1+MeMZAOyj0gkG5AnnMWFHzJmxezsbOLPpjUKBnUTyAbOSGavcfn586ff79dqtTU1NfiIUrMBedqwYQNCaKHYhHg8vnbt2kUdAH5x8DAUDOomkI2LFy8aDIaWlhafzxeNRkdHRw8dOhSJRNxuN/60jhCy2WyfPn26cuXKt2/fQqHQ8ePHk5d2V1RUjI6Ofvz4MRAIhMPhyspK5hRJkm1tbYFA4Pv37wMDAw0NDRqNxu12Mw3E9G+1WlesWNHX15f5l+YPs9m8atUqvLXBPB6Pp6Cg4NSpU8mnGhoaCIIYGxsTPwC8g6nNZhPflaRlczKfH1iHlAsQvxy5qamplpYWg8GgVqtJkqypqfH7/ewGss4GZIi559va2lQq1cTExLzj3d3dWq22tbU1+VesVmthYWE8Hufo1uv1JlcP9gowbP/+/RRFzc3NpTd4uaxDkkE9grqZC3jWzUWF62Z2x4CJuednZmYoimpububZ/suXL1qt9siRI+ldji0YDBIEcefOnbR7kEvdhM/pACgKSZJer/f+/ft4jyluiUTC4XDodLoLFy6IvG44HLbb7U6ns76+XmRX0gd1EwCl2bJly8DAwKNHj3D+JgeapsPhsN/vZxYkpO3q1asul8vlconsRxagbgKgwGzA0tJSn8+H8zc56PX6Fy9erF+/XvwVL126lAvvNDElZz0BwBNkAwJB4P0mAAAIA3UTAACEgboJAADCQN0EAABhZDMvlAubPeW4QCCQ7SFIBX4pcvCeHx8fLykpyfYoeMj2wvu/y51NmQEAsvi+EJFYzPRpAABQHni+CQAAwkDdBAAAYaBuAgCAMFA3AQBAmN/I1Q74MRFjcwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model=get_model_v1( (13,) )\n",
"\n",
"model.summary()\n",
"keras.utils.plot_model( model, to_file='./run/model.png', show_shapes=True, show_layer_names=True, dpi=96)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"metadata": {},
"outputs": [],
"source": [
"os.makedirs('./run/models', mode=0o750, exist_ok=True)\n",
"save_dir = \"./run/models/best_model.h5\"\n",
"savemodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, save_best_only=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train on 354 samples, validate on 152 samples\n",
"Epoch 1/100\n",
"354/354 [==============================] - 1s 3ms/sample - loss: 446.5069 - mae: 19.1690 - mse: 446.5069 - val_loss: 328.7387 - val_mae: 16.4455 - val_mse: 328.7387\n",
"Epoch 2/100\n",
"354/354 [==============================] - 0s 301us/sample - loss: 206.7491 - mae: 12.2281 - mse: 206.7491 - val_loss: 102.8150 - val_mae: 8.6449 - val_mse: 102.8150\n",
"Epoch 3/100\n",
"354/354 [==============================] - 0s 302us/sample - loss: 65.8724 - mae: 6.2331 - mse: 65.8724 - val_loss: 33.7508 - val_mae: 4.5848 - val_mse: 33.7508\n",
"Epoch 4/100\n",
"354/354 [==============================] - 0s 318us/sample - loss: 33.4179 - mae: 4.2331 - mse: 33.4179 - val_loss: 27.0058 - val_mae: 3.9154 - val_mse: 27.0058\n",
"Epoch 5/100\n",
"354/354 [==============================] - 0s 312us/sample - loss: 24.9602 - mae: 3.5624 - mse: 24.9602 - val_loss: 23.2470 - val_mae: 3.5429 - val_mse: 23.2470\n",
"Epoch 6/100\n",
"354/354 [==============================] - 0s 316us/sample - loss: 21.4080 - mae: 3.2530 - mse: 21.4080 - val_loss: 22.1707 - val_mae: 3.4498 - val_mse: 22.1707\n",
"Epoch 7/100\n",
"354/354 [==============================] - 0s 262us/sample - loss: 18.3586 - mae: 3.0399 - mse: 18.3586 - val_loss: 24.4102 - val_mae: 3.4754 - val_mse: 24.4102\n",
"Epoch 8/100\n",
"354/354 [==============================] - 0s 307us/sample - loss: 16.9126 - mae: 2.8925 - mse: 16.9126 - val_loss: 20.1919 - val_mae: 3.2138 - val_mse: 20.1919\n",
"Epoch 9/100\n",
"354/354 [==============================] - 0s 312us/sample - loss: 15.5047 - mae: 2.7532 - mse: 15.5047 - val_loss: 19.0378 - val_mae: 3.0763 - val_mse: 19.0378\n",
"Epoch 10/100\n",
"354/354 [==============================] - 0s 273us/sample - loss: 14.5763 - mae: 2.6404 - mse: 14.5763 - val_loss: 19.9752 - val_mae: 3.0986 - val_mse: 19.9752\n",
"Epoch 11/100\n",
"354/354 [==============================] - 0s 310us/sample - loss: 13.5901 - mae: 2.5801 - mse: 13.5901 - val_loss: 18.9675 - val_mae: 3.0192 - val_mse: 18.9675\n",
"Epoch 12/100\n",
"354/354 [==============================] - 0s 270us/sample - loss: 12.9341 - mae: 2.5158 - mse: 12.9341 - val_loss: 20.6757 - val_mae: 3.1029 - val_mse: 20.6757\n",
"Epoch 13/100\n",
"354/354 [==============================] - 0s 311us/sample - loss: 12.4520 - mae: 2.5061 - mse: 12.4520 - val_loss: 17.6596 - val_mae: 2.8839 - val_mse: 17.6596\n",
"Epoch 14/100\n",
"354/354 [==============================] - 0s 311us/sample - loss: 11.9484 - mae: 2.4710 - mse: 11.9484 - val_loss: 16.7645 - val_mae: 2.8083 - val_mse: 16.7645\n",
"Epoch 15/100\n",
"354/354 [==============================] - 0s 269us/sample - loss: 11.6260 - mae: 2.3959 - mse: 11.6260 - val_loss: 17.5048 - val_mae: 2.8007 - val_mse: 17.5048\n",
"Epoch 16/100\n",
"354/354 [==============================] - 0s 267us/sample - loss: 11.2504 - mae: 2.3567 - mse: 11.2504 - val_loss: 18.6748 - val_mae: 2.8771 - val_mse: 18.6748\n",
"Epoch 17/100\n",
"354/354 [==============================] - 0s 269us/sample - loss: 10.8352 - mae: 2.3051 - mse: 10.8352 - val_loss: 19.4796 - val_mae: 3.0041 - val_mse: 19.4796\n",
"Epoch 18/100\n",
"354/354 [==============================] - 0s 267us/sample - loss: 10.6488 - mae: 2.3377 - mse: 10.6488 - val_loss: 17.0329 - val_mae: 2.7640 - val_mse: 17.0329\n",
"Epoch 19/100\n",
"354/354 [==============================] - 0s 273us/sample - loss: 10.2134 - mae: 2.2439 - mse: 10.2134 - val_loss: 18.0589 - val_mae: 2.8565 - val_mse: 18.0589\n",
"Epoch 20/100\n",
"354/354 [==============================] - 0s 315us/sample - loss: 10.1024 - mae: 2.2432 - mse: 10.1024 - val_loss: 16.5968 - val_mae: 2.7402 - val_mse: 16.5968\n",
"Epoch 21/100\n",
"354/354 [==============================] - 0s 277us/sample - loss: 10.0576 - mae: 2.2401 - mse: 10.0576 - val_loss: 18.4496 - val_mae: 2.8156 - val_mse: 18.4496\n",
"Epoch 22/100\n",
"354/354 [==============================] - 0s 269us/sample - loss: 9.6590 - mae: 2.1500 - mse: 9.6590 - val_loss: 18.7084 - val_mae: 2.8309 - val_mse: 18.7084\n",
"Epoch 23/100\n",
"354/354 [==============================] - 0s 277us/sample - loss: 9.4596 - mae: 2.1967 - mse: 9.4596 - val_loss: 18.0308 - val_mae: 2.7595 - val_mse: 18.0308\n",
"Epoch 24/100\n",
"354/354 [==============================] - 0s 272us/sample - loss: 9.2778 - mae: 2.1680 - mse: 9.2778 - val_loss: 18.9343 - val_mae: 2.9152 - val_mse: 18.9343\n",
"Epoch 25/100\n",
"354/354 [==============================] - 0s 267us/sample - loss: 9.1075 - mae: 2.1451 - mse: 9.1076 - val_loss: 18.0646 - val_mae: 2.8202 - val_mse: 18.0646\n",
"Epoch 26/100\n",
"354/354 [==============================] - 0s 273us/sample - loss: 9.2196 - mae: 2.1282 - mse: 9.2196 - val_loss: 18.7244 - val_mae: 2.8288 - val_mse: 18.7244\n",
"Epoch 27/100\n",
"354/354 [==============================] - 0s 267us/sample - loss: 8.5733 - mae: 2.0703 - mse: 8.5733 - val_loss: 16.9568 - val_mae: 2.8123 - val_mse: 16.9568\n",
"Epoch 28/100\n",
"354/354 [==============================] - 0s 309us/sample - loss: 8.6252 - mae: 2.0821 - mse: 8.6252 - val_loss: 16.4984 - val_mae: 2.7069 - val_mse: 16.4984\n",
"Epoch 29/100\n",
"354/354 [==============================] - 0s 307us/sample - loss: 8.6336 - mae: 2.0822 - mse: 8.6336 - val_loss: 16.0498 - val_mae: 2.6532 - val_mse: 16.0498\n",
"Epoch 30/100\n",
"354/354 [==============================] - 0s 321us/sample - loss: 8.5071 - mae: 2.0379 - mse: 8.5071 - val_loss: 15.1042 - val_mae: 2.6004 - val_mse: 15.1042\n",
"Epoch 31/100\n",
"354/354 [==============================] - 0s 273us/sample - loss: 8.2888 - mae: 2.0627 - mse: 8.2888 - val_loss: 16.2730 - val_mae: 2.7019 - val_mse: 16.2730\n",
"Epoch 32/100\n",
"354/354 [==============================] - 0s 271us/sample - loss: 8.2021 - mae: 2.0000 - mse: 8.2021 - val_loss: 17.2852 - val_mae: 2.7962 - val_mse: 17.2852\n",
"Epoch 33/100\n",
"354/354 [==============================] - 0s 272us/sample - loss: 8.2973 - mae: 2.0336 - mse: 8.2973 - val_loss: 16.8973 - val_mae: 2.7318 - val_mse: 16.8973\n",
"Epoch 34/100\n",
"354/354 [==============================] - 0s 257us/sample - loss: 8.1033 - mae: 2.0105 - mse: 8.1033 - val_loss: 16.6509 - val_mae: 2.8218 - val_mse: 16.6509\n",
"Epoch 35/100\n",
"354/354 [==============================] - 0s 272us/sample - loss: 8.0724 - mae: 2.0170 - mse: 8.0724 - val_loss: 16.0802 - val_mae: 2.6733 - val_mse: 16.0802\n",
"Epoch 36/100\n",
"354/354 [==============================] - 0s 257us/sample - loss: 7.7939 - mae: 1.9606 - mse: 7.7939 - val_loss: 17.1008 - val_mae: 2.7384 - val_mse: 17.1008\n",
"Epoch 37/100\n",
"354/354 [==============================] - 0s 269us/sample - loss: 7.7812 - mae: 1.9719 - mse: 7.7812 - val_loss: 16.3472 - val_mae: 2.6939 - val_mse: 16.3472\n",
"Epoch 38/100\n",
"354/354 [==============================] - 0s 276us/sample - loss: 7.4494 - mae: 1.9224 - mse: 7.4494 - val_loss: 19.3916 - val_mae: 2.9414 - val_mse: 19.3916\n",
"Epoch 39/100\n",
"354/354 [==============================] - 0s 271us/sample - loss: 7.8023 - mae: 1.9978 - mse: 7.8023 - val_loss: 16.3499 - val_mae: 2.7018 - val_mse: 16.3499\n",
"Epoch 40/100\n",
"354/354 [==============================] - 0s 270us/sample - loss: 7.3681 - mae: 1.9293 - mse: 7.3681 - val_loss: 16.0445 - val_mae: 2.6872 - val_mse: 16.0445\n",
"Epoch 41/100\n",
"354/354 [==============================] - 0s 267us/sample - loss: 7.3013 - mae: 1.8820 - mse: 7.3013 - val_loss: 16.5657 - val_mae: 2.7222 - val_mse: 16.5657\n",
"Epoch 42/100\n",
"354/354 [==============================] - 0s 274us/sample - loss: 7.3978 - mae: 1.9154 - mse: 7.3978 - val_loss: 15.9821 - val_mae: 2.6576 - val_mse: 15.9821\n",
"Epoch 43/100\n",
"354/354 [==============================] - 0s 319us/sample - loss: 6.9832 - mae: 1.9037 - mse: 6.9832 - val_loss: 14.4977 - val_mae: 2.5418 - val_mse: 14.4977\n",
"Epoch 44/100\n",
"354/354 [==============================] - 0s 269us/sample - loss: 7.2307 - mae: 1.8968 - mse: 7.2307 - val_loss: 15.0962 - val_mae: 2.6188 - val_mse: 15.0962\n",
"Epoch 45/100\n",
"354/354 [==============================] - 0s 256us/sample - loss: 7.0289 - mae: 1.8685 - mse: 7.0289 - val_loss: 17.0531 - val_mae: 2.8123 - val_mse: 17.0531\n",
"Epoch 46/100\n",
"354/354 [==============================] - 0s 270us/sample - loss: 6.9010 - mae: 1.8537 - mse: 6.9010 - val_loss: 16.7469 - val_mae: 2.7081 - val_mse: 16.7469\n",
"Epoch 47/100\n",
"354/354 [==============================] - 0s 268us/sample - loss: 6.9256 - mae: 1.8664 - mse: 6.9256 - val_loss: 16.1227 - val_mae: 2.7760 - val_mse: 16.1227\n",
"Epoch 48/100\n",
"354/354 [==============================] - 0s 273us/sample - loss: 6.8333 - mae: 1.8552 - mse: 6.8333 - val_loss: 14.9262 - val_mae: 2.6213 - val_mse: 14.9262\n",
"Epoch 49/100\n",
"354/354 [==============================] - 0s 313us/sample - loss: 6.7351 - mae: 1.8375 - mse: 6.7351 - val_loss: 14.2252 - val_mae: 2.5309 - val_mse: 14.2252\n",
"Epoch 50/100\n",
"354/354 [==============================] - 0s 276us/sample - loss: 6.6672 - mae: 1.7913 - mse: 6.6672 - val_loss: 16.5652 - val_mae: 2.7693 - val_mse: 16.5652\n",
"Epoch 51/100\n",
"354/354 [==============================] - 0s 271us/sample - loss: 6.6222 - mae: 1.8325 - mse: 6.6222 - val_loss: 14.8928 - val_mae: 2.5921 - val_mse: 14.8928\n",
"Epoch 52/100\n",
"354/354 [==============================] - 0s 271us/sample - loss: 6.5606 - mae: 1.8150 - mse: 6.5606 - val_loss: 14.7382 - val_mae: 2.6124 - val_mse: 14.7382\n",
"Epoch 53/100\n",
"354/354 [==============================] - 0s 273us/sample - loss: 6.5737 - mae: 1.7757 - mse: 6.5737 - val_loss: 14.8866 - val_mae: 2.6357 - val_mse: 14.8866\n",
"Epoch 54/100\n",
"354/354 [==============================] - 0s 264us/sample - loss: 6.3009 - mae: 1.7569 - mse: 6.3009 - val_loss: 14.6100 - val_mae: 2.6115 - val_mse: 14.6100\n",
"Epoch 55/100\n",
"354/354 [==============================] - 0s 272us/sample - loss: 6.2524 - mae: 1.7679 - mse: 6.2524 - val_loss: 17.4939 - val_mae: 2.8652 - val_mse: 17.4939\n",
"Epoch 56/100\n",
"354/354 [==============================] - 0s 319us/sample - loss: 6.2461 - mae: 1.7830 - mse: 6.2461 - val_loss: 14.0397 - val_mae: 2.5829 - val_mse: 14.0397\n",
"Epoch 57/100\n",
"354/354 [==============================] - 0s 267us/sample - loss: 6.3124 - mae: 1.7788 - mse: 6.3124 - val_loss: 15.4946 - val_mae: 2.7133 - val_mse: 15.4946\n",
"Epoch 58/100\n",
"354/354 [==============================] - 0s 269us/sample - loss: 6.1133 - mae: 1.7282 - mse: 6.1133 - val_loss: 14.5244 - val_mae: 2.5982 - val_mse: 14.5244\n",
"Epoch 59/100\n",
"354/354 [==============================] - 0s 259us/sample - loss: 6.2866 - mae: 1.7860 - mse: 6.2866 - val_loss: 15.8915 - val_mae: 2.7331 - val_mse: 15.8915\n",
"Epoch 60/100\n",
"354/354 [==============================] - 0s 311us/sample - loss: 5.9945 - mae: 1.7178 - mse: 5.9945 - val_loss: 13.2656 - val_mae: 2.5189 - val_mse: 13.2656\n",
"Epoch 61/100\n",
"354/354 [==============================] - 0s 263us/sample - loss: 6.0649 - mae: 1.7064 - mse: 6.0649 - val_loss: 15.4134 - val_mae: 2.7351 - val_mse: 15.4134\n",
"Epoch 62/100\n",
"354/354 [==============================] - 0s 268us/sample - loss: 5.9954 - mae: 1.6767 - mse: 5.9954 - val_loss: 13.8741 - val_mae: 2.5721 - val_mse: 13.8741\n",
"Epoch 63/100\n",
"354/354 [==============================] - 0s 254us/sample - loss: 5.9648 - mae: 1.7023 - mse: 5.9648 - val_loss: 15.1974 - val_mae: 2.6602 - val_mse: 15.1974\n",
"Epoch 64/100\n",
"354/354 [==============================] - 0s 272us/sample - loss: 5.7276 - mae: 1.7202 - mse: 5.7276 - val_loss: 14.5766 - val_mae: 2.6508 - val_mse: 14.5766\n",
"Epoch 65/100\n",
"354/354 [==============================] - 0s 266us/sample - loss: 5.8443 - mae: 1.6907 - mse: 5.8443 - val_loss: 15.5797 - val_mae: 2.6848 - val_mse: 15.5797\n",
"Epoch 66/100\n",
"354/354 [==============================] - 0s 273us/sample - loss: 5.8195 - mae: 1.7295 - mse: 5.8195 - val_loss: 14.5484 - val_mae: 2.6527 - val_mse: 14.5484\n",
"Epoch 67/100\n",
"354/354 [==============================] - 0s 266us/sample - loss: 5.8216 - mae: 1.6966 - mse: 5.8216 - val_loss: 14.3616 - val_mae: 2.5733 - val_mse: 14.3616\n",
"Epoch 68/100\n",
"354/354 [==============================] - 0s 271us/sample - loss: 5.6572 - mae: 1.6543 - mse: 5.6572 - val_loss: 16.1438 - val_mae: 2.8151 - val_mse: 16.1438\n",
"Epoch 69/100\n",
"354/354 [==============================] - 0s 259us/sample - loss: 5.5142 - mae: 1.6657 - mse: 5.5142 - val_loss: 14.2295 - val_mae: 2.5796 - val_mse: 14.2295\n",
"Epoch 70/100\n",
"354/354 [==============================] - 0s 273us/sample - loss: 5.4965 - mae: 1.6313 - mse: 5.4965 - val_loss: 15.2662 - val_mae: 2.6980 - val_mse: 15.2662\n",
"Epoch 71/100\n",
"354/354 [==============================] - 0s 270us/sample - loss: 5.4534 - mae: 1.6717 - mse: 5.4534 - val_loss: 14.5025 - val_mae: 2.6441 - val_mse: 14.5025\n",
"Epoch 72/100\n",
"354/354 [==============================] - 0s 253us/sample - loss: 5.5146 - mae: 1.6526 - mse: 5.5146 - val_loss: 13.7906 - val_mae: 2.5753 - val_mse: 13.7906\n",
"Epoch 73/100\n",
"354/354 [==============================] - 0s 272us/sample - loss: 5.4499 - mae: 1.6130 - mse: 5.4499 - val_loss: 15.1649 - val_mae: 2.7624 - val_mse: 15.1649\n",
"Epoch 74/100\n",
"354/354 [==============================] - 0s 309us/sample - loss: 5.3808 - mae: 1.6297 - mse: 5.3808 - val_loss: 12.9326 - val_mae: 2.5007 - val_mse: 12.9326\n",
"Epoch 75/100\n",
"354/354 [==============================] - 0s 258us/sample - loss: 5.3546 - mae: 1.6313 - mse: 5.3546 - val_loss: 13.6397 - val_mae: 2.5810 - val_mse: 13.6397\n",
"Epoch 76/100\n",
"354/354 [==============================] - 0s 265us/sample - loss: 5.1666 - mae: 1.5998 - mse: 5.1666 - val_loss: 15.6069 - val_mae: 2.7630 - val_mse: 15.6069\n",
"Epoch 77/100\n",
"354/354 [==============================] - 0s 272us/sample - loss: 5.2465 - mae: 1.6192 - mse: 5.2465 - val_loss: 14.8084 - val_mae: 2.6388 - val_mse: 14.8084\n",
"Epoch 78/100\n",
"354/354 [==============================] - 0s 265us/sample - loss: 5.1107 - mae: 1.5772 - mse: 5.1107 - val_loss: 13.6319 - val_mae: 2.5756 - val_mse: 13.6319\n",
"Epoch 79/100\n",
"354/354 [==============================] - 0s 272us/sample - loss: 5.2677 - mae: 1.5989 - mse: 5.2677 - val_loss: 15.0306 - val_mae: 2.7715 - val_mse: 15.0306\n",
"Epoch 80/100\n",
"354/354 [==============================] - 0s 274us/sample - loss: 5.0534 - mae: 1.5504 - mse: 5.0534 - val_loss: 13.3917 - val_mae: 2.5352 - val_mse: 13.3917\n",
"Epoch 81/100\n",
"354/354 [==============================] - 0s 272us/sample - loss: 5.1013 - mae: 1.5826 - mse: 5.1013 - val_loss: 14.6761 - val_mae: 2.7158 - val_mse: 14.6761\n",
"Epoch 82/100\n",
"354/354 [==============================] - 0s 258us/sample - loss: 5.1137 - mae: 1.5984 - mse: 5.1137 - val_loss: 14.7063 - val_mae: 2.6576 - val_mse: 14.7063\n",
"Epoch 83/100\n",
"354/354 [==============================] - 0s 269us/sample - loss: 4.9343 - mae: 1.5545 - mse: 4.9343 - val_loss: 13.6205 - val_mae: 2.5494 - val_mse: 13.6205\n",
"Epoch 84/100\n",
"354/354 [==============================] - 0s 277us/sample - loss: 4.9839 - mae: 1.5815 - mse: 4.9839 - val_loss: 13.3857 - val_mae: 2.6047 - val_mse: 13.3857\n",
"Epoch 85/100\n",
"354/354 [==============================] - 0s 277us/sample - loss: 4.9946 - mae: 1.5818 - mse: 4.9946 - val_loss: 14.1012 - val_mae: 2.6176 - val_mse: 14.1012\n",
"Epoch 86/100\n",
"354/354 [==============================] - 0s 273us/sample - loss: 4.7884 - mae: 1.5321 - mse: 4.7884 - val_loss: 14.5182 - val_mae: 2.6687 - val_mse: 14.5182\n",
"Epoch 87/100\n",
"354/354 [==============================] - 0s 311us/sample - loss: 4.8134 - mae: 1.5660 - mse: 4.8134 - val_loss: 12.7966 - val_mae: 2.5734 - val_mse: 12.7966\n",
"Epoch 88/100\n",
"354/354 [==============================] - 0s 273us/sample - loss: 4.7923 - mae: 1.5483 - mse: 4.7923 - val_loss: 14.4001 - val_mae: 2.6707 - val_mse: 14.4001\n",
"Epoch 89/100\n",
"354/354 [==============================] - 0s 274us/sample - loss: 4.6705 - mae: 1.5086 - mse: 4.6705 - val_loss: 15.3677 - val_mae: 2.7359 - val_mse: 15.3677\n",
"Epoch 90/100\n",
"354/354 [==============================] - 0s 280us/sample - loss: 4.8776 - mae: 1.5806 - mse: 4.8776 - val_loss: 14.4442 - val_mae: 2.6343 - val_mse: 14.4442\n",
"Epoch 91/100\n",
"354/354 [==============================] - 0s 260us/sample - loss: 4.6349 - mae: 1.5300 - mse: 4.6349 - val_loss: 14.2969 - val_mae: 2.7718 - val_mse: 14.2969\n",
"Epoch 92/100\n",
"354/354 [==============================] - 0s 273us/sample - loss: 4.7835 - mae: 1.5637 - mse: 4.7835 - val_loss: 13.1123 - val_mae: 2.5578 - val_mse: 13.1123\n",
"Epoch 93/100\n",
"354/354 [==============================] - 0s 277us/sample - loss: 4.6759 - mae: 1.5259 - mse: 4.6759 - val_loss: 14.3508 - val_mae: 2.6888 - val_mse: 14.3507\n",
"Epoch 94/100\n",
"354/354 [==============================] - 0s 273us/sample - loss: 4.7856 - mae: 1.5560 - mse: 4.7856 - val_loss: 14.5237 - val_mae: 2.6956 - val_mse: 14.5237\n",
"Epoch 95/100\n",
"354/354 [==============================] - 0s 313us/sample - loss: 4.7038 - mae: 1.5331 - mse: 4.7038 - val_loss: 12.7707 - val_mae: 2.5393 - val_mse: 12.7707\n",
"Epoch 96/100\n",
"354/354 [==============================] - 0s 277us/sample - loss: 4.6006 - mae: 1.5331 - mse: 4.6006 - val_loss: 13.8540 - val_mae: 2.6720 - val_mse: 13.8540\n",
"Epoch 97/100\n",
"354/354 [==============================] - 0s 269us/sample - loss: 4.4720 - mae: 1.4912 - mse: 4.4720 - val_loss: 13.1524 - val_mae: 2.6311 - val_mse: 13.1524\n",
"Epoch 98/100\n",
"354/354 [==============================] - 0s 309us/sample - loss: 4.4242 - mae: 1.4854 - mse: 4.4242 - val_loss: 11.7020 - val_mae: 2.4886 - val_mse: 11.7020\n",
"Epoch 99/100\n",
"354/354 [==============================] - 0s 280us/sample - loss: 4.5642 - mae: 1.4920 - mse: 4.5642 - val_loss: 12.6523 - val_mae: 2.5232 - val_mse: 12.6523\n",
"Epoch 100/100\n",
"354/354 [==============================] - 0s 274us/sample - loss: 4.1971 - mae: 1.4564 - mse: 4.1971 - val_loss: 18.7164 - val_mae: 3.0774 - val_mse: 18.7164\n"
]
}
],
"source": [
"history = model.fit(x_train,\n",
" y_train,\n",
" epochs = 100,\n",
" batch_size = 10,\n",
" validation_data = (x_test, y_test),\n",
" callbacks = [savemodel_callback])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 6 - Evaluate\n",
"### 6.1 - Model evaluation\n",
"MAE = Mean Absolute Error (between the labels and predictions) \n",
"A mae equal to 3 represents an average error in prediction of $3k."
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"x_test / loss : 18.7164\n",
"x_test / mae : 3.0774\n",
"x_test / mse : 18.7164\n"
]
}
],
"source": [
"score = model.evaluate(x_test, y_test, verbose=0)\n",
"\n",
"print('x_test / loss : {:5.4f}'.format(score[0]))\n",
"print('x_test / mae : {:5.4f}'.format(score[1]))\n",
"print('x_test / mse : {:5.4f}'.format(score[2]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"What was the best result during our training ?"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"min( val_mae ) : 2.4886\n"
]
}
],
"source": [
"print(\"min( val_mae ) : {:.4f}\".format( min(history.history[\"val_mae\"]) ) )"