Skip to content
Snippets Groups Projects
01-DNN-Regression.ipynb 12.6 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
    "\n",
    "\n",
    "# <!-- TITLE --> [BHPD1] - Regression with a Dense Network (DNN)\n",
    "<!-- DESC --> Simple example of a regression with the dataset Boston Housing Prices Dataset (BHPD)\n",
    "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
    "\n",
    "## Objectives :\n",
    " - Predicts **housing prices** from a set of house features. \n",
    " - Understanding the **principle** and the **architecture** of a regression with a **dense neural network**  \n",
    "\n",
    "\n",
    "The **[Boston Housing Prices Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html)** consists of price of houses in various places in Boston.  \n",
    "Alongside with price, the dataset also provide theses informations : \n",
    "\n",
    " - CRIM: This is the per capita crime rate by town\n",
    " - ZN: This is the proportion of residential land zoned for lots larger than 25,000 sq.ft\n",
    " - INDUS: This is the proportion of non-retail business acres per town\n",
    " - CHAS: This is the Charles River dummy variable (this is equal to 1 if tract bounds river; 0 otherwise)\n",
    " - NOX: This is the nitric oxides concentration (parts per 10 million)\n",
    " - RM: This is the average number of rooms per dwelling\n",
    " - AGE: This is the proportion of owner-occupied units built prior to 1940\n",
    " - DIS: This is the weighted distances to five Boston employment centers\n",
    " - RAD: This is the index of accessibility to radial highways\n",
    " - TAX: This is the full-value property-tax rate per 10,000 dollars\n",
    " - PTRATIO: This is the pupil-teacher ratio by town\n",
    " - B: This is calculated as 1000(Bk — 0.63)^2, where Bk is the proportion of people of African American descent by town\n",
    " - LSTAT: This is the percentage lower status of the population\n",
    " - MEDV: This is the median value of owner-occupied homes in 1000 dollars\n",
    "## What we're going to do :\n",
    "\n",
    " - Retrieve data\n",
    " - Preparing the data\n",
    " - Build a model\n",
    " - Train the model\n",
    " - Evaluate the result\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "## Step 1 - Import and init\n",
    "\n",
    "You can also adjust the verbosity by changing the value of TF_CPP_MIN_LOG_LEVEL :\n",
    "- 0 = all messages are logged (default)\n",
    "- 1 = INFO messages are not printed.\n",
    "- 2 = INFO and WARNING messages are not printed.\n",
    "- 3 = INFO , WARNING and ERROR messages are not printed."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# import os\n",
    "# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'\n",
    "\n",
    "import tensorflow as tf\n",
    "from tensorflow import keras\n",
    "\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import pandas as pd\n",
    "import os,sys\n",
    "\n",
    "sys.path.append('..')\n",
    "import fidle.pwk as pwk\n",
    "\n",
    "datasets_dir = pwk.init('BHPD1')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Verbosity during training : \n",
    "- 0 = silent\n",
    "- 1 = progress bar\n",
    "- 2 = one line per epoch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fit_verbosity = 1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Override parameters (batch mode) - Just forget this cell"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pwk.override('fit_verbosity')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 2 - Retrieve data\n",
    "\n",
    "### 2.1 - Option 1  : From Keras\n",
    "Boston housing is a famous historic dataset, so we can get it directly from [Keras datasets](https://www.tensorflow.org/api_docs/python/tf/keras/datasets)  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# (x_train, y_train), (x_test, y_test) = keras.datasets.boston_housing.load_data(test_split=0.2, seed=113)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.2 - Option 2 : From a csv file\n",
    "More fun !"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = pd.read_csv(f'{datasets_dir}/BHPD/origine/BostonHousing.csv', header=0)\n",
    "\n",
    "display(data.head(5).style.format(\"{0:.2f}\").set_caption(\"Few lines of the dataset :\"))\n",
    "print('Missing Data : ',data.isna().sum().sum(), '  Shape is : ', data.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 3 - Preparing the data\n",
    "### 3.1 - Split data\n",
    "We will use 70% of the data for training and 30% for validation.  \n",
    "The dataset is **shuffled** and shared between **learning** and **testing**.  \n",
    "x will be input data and y the expected output"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ---- Suffle and Split => train, test\n",
    "#\n",
    "data       = data.sample(frac=1., axis=0)\n",
    "data_train = data.sample(frac=0.7, axis=0)\n",
    "data_test  = data.drop(data_train.index)\n",
    "\n",
    "# ---- Split => x,y (medv is price)\n",
    "#\n",
    "x_train = data_train.drop('medv',  axis=1)\n",
    "y_train = data_train['medv']\n",
    "x_test  = data_test.drop('medv',   axis=1)\n",
    "y_test  = data_test['medv']\n",
    "\n",
    "print('Original data shape was : ',data.shape)\n",
    "print('x_train : ',x_train.shape, 'y_train : ',y_train.shape)\n",
    "print('x_test  : ',x_test.shape,  'y_test  : ',y_test.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "### 3.2 - Data normalization\n",
    "**Note :** \n",
    " - All input data must be normalized, train and test.  \n",
    " - To do this we will **subtract the mean** and **divide by the standard deviation**.  \n",
    " - But test data should not be used in any way, even for normalization.  \n",
    " - The mean and the standard deviation will therefore only be calculated with the train data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n",
    "\n",
    "mean = x_train.mean()\n",
    "std  = x_train.std()\n",
    "x_train = (x_train - mean) / std\n",
    "x_test  = (x_test  - mean) / std\n",
    "\n",
    "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"After normalization :\"))\n",
    "display(x_train.head(5).style.format(\"{0:.2f}\").set_caption(\"Few lines of the dataset :\"))\n",
    "\n",
    "x_train, y_train = np.array(x_train), np.array(y_train)\n",
    "x_test,  y_test  = np.array(x_test),  np.array(y_test)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 4 - Build a model\n",
    "About informations about : \n",
    " - [Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)\n",
    " - [Activation](https://www.tensorflow.org/api_docs/python/tf/keras/activations)\n",
    " - [Loss](https://www.tensorflow.org/api_docs/python/tf/keras/losses)\n",
    " - [Metrics](https://www.tensorflow.org/api_docs/python/tf/keras/metrics)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "  def get_model_v1(shape):\n",
    "    \n",
    "    model = keras.models.Sequential()\n",
    "    model.add(keras.layers.Input(shape, name=\"InputLayer\"))\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "    model.add(keras.layers.Dense(32, activation='relu', name='Dense_n1'))\n",
    "    model.add(keras.layers.Dense(64, activation='relu', name='Dense_n2'))\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "    model.add(keras.layers.Dense(32, activation='relu', name='Dense_n3'))\n",
    "    model.add(keras.layers.Dense(1, name='Output'))\n",
    "    \n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "    model.compile(optimizer = 'adam',\n",
    "                  loss      = 'mse',\n",
    "                  metrics   = ['mae', 'mse'] )\n",
    "    return model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 5 - Train the model\n",
    "### 5.1 - Get it"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model=get_model_v1( (13,) )\n",
    "\n",
    "model.summary()\n",
    "\n",
    "# img=keras.utils.plot_model( model, to_file='./run/model.png', show_shapes=True, show_layer_names=True, dpi=96)\n",
    "# display(img)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 5.2 - Train it"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [],
   "source": [
    "history = model.fit(x_train,\n",
    "                    y_train,\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "                    epochs          = 60,\n",
    "                    batch_size      = 10,\n",
    "                    verbose         = fit_verbosity,\n",
    "                    validation_data = (x_test, y_test))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "## Step 6 - Evaluate\n",
    "### 6.1 - Model evaluation\n",
    "MAE =  Mean Absolute Error (between the labels and predictions)  \n",
    "A mae equal to 3 represents an average error in prediction of $3k."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "score = model.evaluate(x_test, y_test, verbose=0)\n",
    "\n",
    "print('x_test / loss      : {:5.4f}'.format(score[0]))\n",
    "print('x_test / mae       : {:5.4f}'.format(score[1]))\n",
    "print('x_test / mse       : {:5.4f}'.format(score[2]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 6.2 - Training history\n",
    "What was the best result during our training ?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df=pd.DataFrame(data=history.history)\n",
    "display(df)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(\"min( val_mae ) : {:.4f}\".format( min(history.history[\"val_mae\"]) ) )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pwk.plot_history(history, plot={'MSE' :['mse', 'val_mse'],\n",
    "                                'MAE' :['mae', 'val_mae'],\n",
    "                                'LOSS':['loss','val_loss']}, save_as='01-history')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 7 - Make a prediction\n",
    "The data must be normalized with the parameters (mean, std) previously used."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "my_data = [ 1.26425925, -0.48522739,  1.0436489 , -0.23112788,  1.37120745,\n",
    "       -2.14308942,  1.13489104, -1.06802005,  1.71189006,  1.57042287,\n",
    "        0.77859951,  0.14769795,  2.7585581 ]\n",
    "real_price = 10.4\n",
    "\n",
    "my_data=np.array(my_data).reshape(1,13)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "predictions = model.predict( my_data )\n",
    "print(\"Prediction : {:.2f} K$\".format(predictions[0][0]))\n",
    "print(\"Reality    : {:.2f} K$\".format(real_price))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pwk.end()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "---\n",
    "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}