Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
"# <!-- TITLE --> [GTS2] - CNN with GTSRB dataset - First convolutions\n",
"<!-- DESC --> Episode 2 : First convolutions and first results\n",
"<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
"\n",
"## Objectives :\n",
" - Recognizing traffic signs \n",
" - Understand the **principles** and **architecture** of a **convolutional neural network** for image classification\n",
" \n",
"The German Traffic Sign Recognition Benchmark (GTSRB) is a dataset with more than 50,000 photos of road signs from about 40 classes. \n",
"The final aim is to recognise them ! \n",
"Description is available there : http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset\n",
" - Read H5 dataset\n",
" - Evaluate the model\n",
"source": [
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"from tensorflow.keras.callbacks import TensorBoard\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"sys.path.append('..')\n",
"import fidle.pwk as ooo\n",
"\n",
"ooo.init()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We're going to retrieve a previously recorded dataset. \n",
"For example: set-24x24-L"
"def read_dataset(name):\n",
" '''Reads h5 dataset from ./data\n",
"\n",
" Arguments: dataset name, without .h5\n",
" Returns: x_train,y_train,x_test,y_test data'''\n",
" # ---- Read dataset\n",
" filename='./data/'+name+'.h5'\n",
" with h5py.File(filename) as f:\n",
" x_train = f['x_train'][:]\n",
" y_train = f['y_train'][:]\n",
" x_test = f['x_test'][:]\n",
" y_test = f['y_test'][:]\n",
" # ---- done\n",
" print('Dataset \"{}\" is loaded. ({:.1f} Mo)\\n'.format(name,os.path.getsize(filename)/(1024*1024)))\n",
" return x_train,y_train,x_test,y_test\n",
"\n",
"x_train,y_train,x_test,y_test = read_dataset('set-24x24-L')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We take a quick look as we go by..."
"print(\"x_train : \", x_train.shape)\n",
"print(\"y_train : \", y_train.shape)\n",
"print(\"x_test : \", x_test.shape)\n",
"print(\"y_test : \", y_test.shape)\n",
"ooo.plot_images(x_train, y_train, range(12), columns=6, x_size=2, y_size=2)\n",
"ooo.plot_images(x_train, y_train, range(36), columns=12, x_size=1, y_size=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will now build a model and train it...\n",
"def get_model_v1(lx,ly,lz):\n",
" \n",
" model = keras.models.Sequential()\n",
" model.add( keras.layers.Conv2D(96, (3,3), activation='relu', input_shape=(lx,ly,lz)))\n",
" model.add( keras.layers.MaxPooling2D((2, 2)))\n",
" model.add( keras.layers.Conv2D(192, (3, 3), activation='relu'))\n",
" model.add( keras.layers.MaxPooling2D((2, 2)))\n",
" model.add( keras.layers.Flatten()) \n",
" model.add( keras.layers.Dense(1500, activation='relu'))\n",
" model.add( keras.layers.Dropout(0.5))\n",
"\n",
" model.add( keras.layers.Dense(43, activation='softmax'))\n",
" return model\n",
" \n",
"# A more sophisticated model\n",
"#\n",
"def get_model_v2(lx,ly,lz):\n",
" model = keras.models.Sequential()\n",
"\n",
" model.add( keras.layers.Conv2D(64, (3, 3), padding='same', input_shape=(lx,ly,lz), activation='relu'))\n",
" model.add( keras.layers.Conv2D(64, (3, 3), activation='relu'))\n",
" model.add( keras.layers.MaxPooling2D(pool_size=(2, 2)))\n",
" model.add( keras.layers.Dropout(0.2))\n",
"\n",
" model.add( keras.layers.Conv2D(128, (3, 3), padding='same', activation='relu'))\n",
" model.add( keras.layers.Conv2D(128, (3, 3), activation='relu'))\n",
" model.add( keras.layers.MaxPooling2D(pool_size=(2, 2)))\n",
" model.add( keras.layers.Dropout(0.2))\n",
"\n",
" model.add( keras.layers.Conv2D(256, (3, 3), padding='same',activation='relu'))\n",
" model.add( keras.layers.Conv2D(256, (3, 3), activation='relu'))\n",
" model.add( keras.layers.MaxPooling2D(pool_size=(2, 2)))\n",
" model.add( keras.layers.Dropout(0.2))\n",
"\n",
" model.add( keras.layers.Flatten())\n",
" model.add( keras.layers.Dense(512, activation='relu'))\n",
" model.add( keras.layers.Dropout(0.5))\n",
" model.add( keras.layers.Dense(43, activation='softmax'))\n",
" return model\n",
"\n",
"# My sphisticated model, but small and fast\n",
"#\n",
"def get_model_v3(lx,ly,lz):\n",
" model = keras.models.Sequential()\n",
" model.add( keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(lx,ly,lz)))\n",
" model.add( keras.layers.MaxPooling2D((2, 2)))\n",
" model.add( keras.layers.Dropout(0.5))\n",
" model.add( keras.layers.Conv2D(64, (3, 3), activation='relu'))\n",
" model.add( keras.layers.MaxPooling2D((2, 2)))\n",
" model.add( keras.layers.Dropout(0.5))\n",
" model.add( keras.layers.Conv2D(128, (3, 3), activation='relu'))\n",
" model.add( keras.layers.MaxPooling2D((2, 2)))\n",
" model.add( keras.layers.Dropout(0.5))\n",
" model.add( keras.layers.Conv2D(256, (3, 3), activation='relu'))\n",
" model.add( keras.layers.MaxPooling2D((2, 2)))\n",
" model.add( keras.layers.Dropout(0.5))\n",
" model.add( keras.layers.Flatten()) \n",
" model.add( keras.layers.Dense(1152, activation='relu'))\n",
" model.add( keras.layers.Dropout(0.5))\n",
"\n",
" model.add( keras.layers.Dense(43, activation='softmax'))\n",
" return model\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Get the shape of my data :**"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"(n,lx,ly,lz) = x_train.shape\n",
"print(\"Images of the dataset have this folowing shape : \",(lx,ly,lz))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Get and compile a model, with the data shape :**"
]
},
{
"cell_type": "code",
"source": [
"model = get_model_v1(lx,ly,lz)\n",
"\n",
"model.compile(optimizer = 'adam',\n",
" loss = 'sparse_categorical_crossentropy',\n",
" metrics = ['accuracy'])"
{
"cell_type": "markdown",
"metadata": {},
"source": [
"batch_size = 64\n",
"epochs = 5\n",
"\n",
"# ---- Shuffle train data\n",
"x_train,y_train=ooo.shuffle_np_dataset(x_train,y_train)\n",
"\n",
"# ---- Train\n",
" batch_size = batch_size,\n",
" epochs = epochs,\n",
" verbose = 1,\n",
" validation_data = (x_test, y_test))"
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Evaluate it :**"
"source": [
"max_val_accuracy = max(history.history[\"val_accuracy\"])\n",
"print(\"Max validation accuracy is : {:.4f}\".format(max_val_accuracy))"
]
},
{
"cell_type": "code",
"\n",
"print('Test loss : {:5.4f}'.format(score[0]))\n",
"print('Test accuracy : {:5.4f}'.format(score[1]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 4
}