Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"# <!-- TITLE --> Text embedding/LSTM model with IMDB\n",
"<!-- DESC --> Still the same problem, but with a network combining embedding and LSTM\n",
"<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
"## Objectives :\n",
" - The objective is to guess whether film reviews are **positive or negative** based on the analysis of the text. \n",
" - Use of a model combining embedding and LSTM\n",
"\n",
"Original dataset can be find **[there](http://ai.stanford.edu/~amaas/data/sentiment/)** \n",
"Note that [IMDb.com](https://imdb.com) offers several easy-to-use [datasets](https://www.imdb.com/interfaces/) \n",
"For simplicity's sake, we'll use the dataset directly [embedded in Keras](https://www.tensorflow.org/api_docs/python/tf/keras/datasets)\n",
"\n",
"## What we're going to do :\n",
"\n",
" - Retrieve data\n",
" - Preparing the data\n",
" - Build a Embedding/LSTM model\n",
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
" - Train the model\n",
" - Evaluate the result\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 1 - Init python stuff"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"import tensorflow as tf\n",
"import tensorflow.keras as keras\n",
"import tensorflow.keras.datasets.imdb as imdb\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib\n",
"import seaborn as sns\n",
"\n",
"import os,sys,h5py,json\n",
"\n",
"from importlib import reload\n",
"\n",
"sys.path.append('..')\n",
"import fidle.pwk as ooo\n",
"\n",
"ooo.init()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2 - Retrieve data\n",
"\n",
"**From Keras :**\n",
"This IMDb dataset can bet get directly from [Keras datasets](https://www.tensorflow.org/api_docs/python/tf/keras/datasets) \n",
"\n",
"Due to their nature, textual data can be somewhat complex.\n",
"\n",
"### 2.1 - Data structure : \n",
"The dataset is composed of 2 parts: **reviews** and **opinions** (positive/negative), with a **dictionary**\n",
"\n",
" - dataset = (reviews, opinions)\n",
" - reviews = \\[ review_0, review_1, ...\\]\n",
" - review_i = [ int1, int2, ...] where int_i is the index of the word in the dictionary.\n",
" - opinions = \\[ int0, int1, ...\\] where int_j == 0 if opinion is negative or 1 if opinion is positive.\n",
" - dictionary = \\[ mot1:int1, mot2:int2, ... ]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.2 - Get dataset\n",
"For simplicity, we will use a pre-formatted dataset. \n",
"See : https://www.tensorflow.org/api_docs/python/tf/keras/datasets/imdb/load_data \n",
"\n",
"However, Keras offers some usefull tools for formatting textual data. \n",
"See : https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vocab_size = 10000\n",
"\n",
"# ----- Retrieve x,y\n",
"#\n",
"(x_train, y_train), (x_test, y_test) = imdb.load_data( num_words = vocab_size,\n",
" skip_top = 0,\n",
" maxlen = None,\n",
" seed = 42,\n",
" start_char = 1,\n",
" oov_char = 2,\n",
" index_from = 3, )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\" Max(x_train,x_test) : \", ooo.rmax([x_train,x_test]) )\n",
"print(\" x_train : {} y_train : {}\".format(x_train.shape, y_train.shape))\n",
"print(\" x_test : {} y_test : {}\".format(x_test.shape, y_test.shape))\n",
"\n",
"print('\\nReview example (x_train[12]) :\\n\\n',x_train[12])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.3 - Have a look for humans (optional)\n",
"When we loaded the dataset, we asked for using \\<start\\> as 1, \\<unknown word\\> as 2 \n",
"So, we shifted the dataset by 3 with the parameter index_from=3"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# ---- Retrieve dictionary {word:index}, and encode it in ascii\n",
"\n",
"word_index = imdb.get_word_index()\n",
"\n",
"# ---- Shift the dictionary from +3\n",
"\n",
"word_index = {w:(i+3) for w,i in word_index.items()}\n",
"\n",
"# ---- Add <pad>, <start> and unknown tags\n",
"\n",
"word_index.update( {'<pad>':0, '<start>':1, '<unknown>':2} )\n",
"\n",
"# ---- Create a reverse dictionary : {index:word}\n",
"\n",
"index_word = {index:word for word,index in word_index.items()} \n",
"\n",
"# ---- Add a nice function to transpose :\n",
"#\n",
"def dataset2text(review):\n",
" return ' '.join([index_word.get(i, '?') for i in review])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('\\nDictionary size : ', len(word_index))\n",
"print('\\nReview example (x_train[12]) :\\n\\n',x_train[12])\n",
"print('\\nIn real words :\\n\\n', dataset2text(x_train[12]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.4 - Have a look for neurons"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(12, 6))\n",
"ax=sns.distplot([len(i) for i in x_train],bins=60)\n",
"ax.set_title('Distribution of reviews by size')\n",
"plt.xlabel(\"Review's sizes\")\n",
"plt.ylabel('Density')\n",
"ax.set_xlim(0, 1500)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 3 - Preprocess the data\n",
"In order to be processed by an NN, all entries must have the same length. \n",
"We chose a review length of **review_len** \n",
"We will therefore complete them with a padding (of \\<pad\\>\\) "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"review_len = 256\n",
"\n",
"x_train = keras.preprocessing.sequence.pad_sequences(x_train,\n",
" value = 0,\n",
" padding = 'post',\n",
" maxlen = review_len)\n",
"\n",
"x_test = keras.preprocessing.sequence.pad_sequences(x_test,\n",
" value = 0 ,\n",
" padding = 'post',\n",
" maxlen = review_len)\n",
"\n",
"print('\\nReview example (x_train[12]) :\\n\\n',x_train[12])\n",
"print('\\nIn real words :\\n\\n', dataset2text(x_train[12]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Save dataset and dictionary (can be usefull)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"os.makedirs('./data', mode=0o750, exist_ok=True)\n",
"\n",
"with h5py.File('./data/dataset_imdb.h5', 'w') as f:\n",
" f.create_dataset(\"x_train\", data=x_train)\n",
" f.create_dataset(\"y_train\", data=y_train)\n",
" f.create_dataset(\"x_test\", data=x_test)\n",
" f.create_dataset(\"y_test\", data=y_test)\n",
"\n",
"with open('./data/word_index.json', 'w') as fp:\n",
" json.dump(word_index, fp)\n",
"\n",
"with open('./data/index_word.json', 'w') as fp:\n",
" json.dump(index_word, fp)\n",
"\n",
"print('Saved.')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 4 - Build the model\n",
"Few remarks :\n",
"1. We'll choose a dense vector size for the embedding output with **dense_vector_size**\n",
"2. **GlobalAveragePooling1D** do a pooling on the last dimension : (None, lx, ly) -> (None, ly) \n",
"In other words: we average the set of vectors/words of a sentence\n",
"3. L'embedding de Keras fonctionne de manière supervisée. Il s'agit d'une couche de *vocab_size* neurones vers *n_neurons* permettant de maintenir une table de vecteurs (les poids constituent les vecteurs). Cette couche ne calcule pas de sortie a la façon des couches normales, mais renvois la valeur des vecteurs. n mots => n vecteurs (ensuite empilés par le pooling) \n",
"Voir : https://stats.stackexchange.com/questions/324992/how-the-embedding-layer-is-trained-in-keras-embedding-layer\n",
"\n",
"A SUIVRE : https://www.liip.ch/en/blog/sentiment-detection-with-keras-word-embeddings-and-lstm-deep-learning-networks\n",
"### 4.1 - Build\n",
"More documentation about :\n",
" - [Embedding](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding)\n",
" - [GlobalAveragePooling1D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalAveragePooling1D)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_model(dense_vector_size=128):\n",
" \n",
" model = keras.Sequential()\n",
" model.add(keras.layers.Embedding(input_dim = vocab_size, \n",
" output_dim = dense_vector_size, \n",
" input_length = review_len))\n",
" model.add(keras.layers.LSTM(128, dropout=0.2, recurrent_dropout=0.2))\n",
" model.add(keras.layers.Dense(1, activation='sigmoid'))\n",
"\n",
" model.compile(optimizer = 'adam',\n",
" loss = 'binary_crossentropy',\n",
" metrics = ['accuracy'])\n",
" return model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 5 - Train the model\n",
"### 5.1 - Get it"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = get_model()\n",
"\n",
"model.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5.2 - Add callback"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"os.makedirs('./run/models', mode=0o750, exist_ok=True)\n",
"save_dir = \"./run/models/best_model.h5\"\n",
"savemodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, save_best_only=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5.1 - Train it\n",
"GPU : batch_size=512 : 305s"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"\n",
"n_epochs = 10\n",
"batch_size = 32\n",
"\n",
"history = model.fit(x_train,\n",
" y_train,\n",
" epochs = n_epochs,\n",
" batch_size = batch_size,\n",
" validation_data = (x_test, y_test),\n",
" verbose = 1,\n",
" callbacks = [savemodel_callback])\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 6 - Evaluate\n",
"### 6.1 - Training history"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ooo.plot_history(history)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6.2 - Reload and evaluate best model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = keras.models.load_model('./run/models/best_model.h5')\n",
"\n",
"# ---- Evaluate\n",
"reload(ooo)\n",
"score = model.evaluate(x_test, y_test, verbose=0)\n",
"\n",
"print('x_test / loss : {:5.4f}'.format(score[0]))\n",
"print('x_test / accuracy : {:5.4f}'.format(score[1]))\n",
"\n",
"values=[score[1], 1-score[1]]\n",
"ooo.plot_donut(values,[\"Accuracy\",\"Errors\"], title=\"#### Accuracy donut is :\")\n",
"\n",
"# ---- Confusion matrix\n",
"\n",
"y_pred = model.predict_classes(x_test)\n",
"\n",
"ooo.display_confusion_matrix(y_test,y_pred,labels=range(2),color='orange',font_size='20pt')\n"
]
},
{
"source": [
"---\n",
""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 4
}