Skip to content
Snippets Groups Projects
02-First-convolutions.ipynb 9.71 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![Fidle](../fidle/img/00-Fidle-header-01.png)\n",
    "\n",
    "# <!-- TITLE --> CNN with GTSRB dataset - First convolutions\n",
    "<!-- DESC --> Episode 2 : First convolutions and first results\n",
    "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
    "\n",
    "## Objectives :\n",
    "  - Recognizing traffic signs \n",
    "  - Understand the **principles** and **architecture** of a **convolutional neural network** for image classification\n",
    "  \n",
    "The German Traffic Sign Recognition Benchmark (GTSRB) is a dataset with more than 50,000 photos of road signs from about 40 classes.  \n",
    "The final aim is to recognise them !  \n",
    "Description is available there : http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "\n",
    "\n",
    "## What we're going to do :\n",
    "\n",
    " - Read H5 dataset\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    " - Build a model\n",
    " - Train the model\n",
    " - Evaluate the model\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "\n",
    "## Step 1 - Import and init"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": null,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [],
   "source": [
    "import tensorflow as tf\n",
    "from tensorflow import keras\n",
    "from tensorflow.keras.callbacks import TensorBoard\n",
    "\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import h5py\n",
    "import os,time,sys\n",
    "\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "from importlib import reload\n",
    "\n",
    "sys.path.append('..')\n",
    "import fidle.pwk as ooo\n",
    "\n",
    "ooo.init()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 2 - Load dataset\n",
    "We're going to retrieve a previously recorded dataset.  \n",
    "For example: set-24x24-L"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": null,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [],
   "source": [
    "%%time\n",
    "\n",
    "def read_dataset(name):\n",
    "    '''Reads h5 dataset from ./data\n",
    "\n",
    "    Arguments:  dataset name, without .h5\n",
    "    Returns:    x_train,y_train,x_test,y_test data'''\n",
    "    # ---- Read dataset\n",
    "    filename='./data/'+name+'.h5'\n",
    "    with  h5py.File(filename) as f:\n",
    "        x_train = f['x_train'][:]\n",
    "        y_train = f['y_train'][:]\n",
    "        x_test  = f['x_test'][:]\n",
    "        y_test  = f['y_test'][:]\n",
    "    # ---- done\n",
    "    print('Dataset \"{}\" is loaded. ({:.1f} Mo)\\n'.format(name,os.path.getsize(filename)/(1024*1024)))\n",
    "    return x_train,y_train,x_test,y_test\n",
    "\n",
    "x_train,y_train,x_test,y_test = read_dataset('set-24x24-L')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 3 - Have a look to the dataset\n",
    "We take a quick look as we go by..."
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": null,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [],
   "source": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "print(\"x_train : \", x_train.shape)\n",
    "print(\"y_train : \", y_train.shape)\n",
    "print(\"x_test  : \", x_test.shape)\n",
    "print(\"y_test  : \", y_test.shape)\n",
    "\n",
    "ooo.plot_images(x_train, y_train, range(12), columns=6,  x_size=2, y_size=2)\n",
    "ooo.plot_images(x_train, y_train, range(36), columns=12, x_size=1, y_size=1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 4 - Create model\n",
    "We will now build a model and train it...\n",
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": null,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [],
   "source": [
    "# A basic model\n",
    "#\n",
    "def get_model_v1(lx,ly,lz):\n",
    "    \n",
    "    model = keras.models.Sequential()\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "    \n",
    "    model.add( keras.layers.Conv2D(96, (3,3), activation='relu', input_shape=(lx,ly,lz)))\n",
    "    model.add( keras.layers.MaxPooling2D((2, 2)))\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "    model.add( keras.layers.Dropout(0.2))\n",
    "\n",
    "    model.add( keras.layers.Conv2D(192, (3, 3), activation='relu'))\n",
    "    model.add( keras.layers.MaxPooling2D((2, 2)))\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "    model.add( keras.layers.Dropout(0.2))\n",
    "\n",
    "    model.add( keras.layers.Flatten()) \n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "    model.add( keras.layers.Dense(1500, activation='relu'))\n",
    "    model.add( keras.layers.Dropout(0.5))\n",
    "\n",
    "    model.add( keras.layers.Dense(43, activation='softmax'))\n",
    "    return model\n",
    "    \n",
    "# A more sophisticated model\n",
    "#\n",
    "def get_model_v2(lx,ly,lz):\n",
    "    model = keras.models.Sequential()\n",
    "\n",
    "    model.add( keras.layers.Conv2D(64, (3, 3), padding='same', input_shape=(lx,ly,lz), activation='relu'))\n",
    "    model.add( keras.layers.Conv2D(64, (3, 3), activation='relu'))\n",
    "    model.add( keras.layers.MaxPooling2D(pool_size=(2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.2))\n",
    "\n",
    "    model.add( keras.layers.Conv2D(128, (3, 3), padding='same', activation='relu'))\n",
    "    model.add( keras.layers.Conv2D(128, (3, 3), activation='relu'))\n",
    "    model.add( keras.layers.MaxPooling2D(pool_size=(2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.2))\n",
    "\n",
    "    model.add( keras.layers.Conv2D(256, (3, 3), padding='same',activation='relu'))\n",
    "    model.add( keras.layers.Conv2D(256, (3, 3), activation='relu'))\n",
    "    model.add( keras.layers.MaxPooling2D(pool_size=(2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.2))\n",
    "\n",
    "    model.add( keras.layers.Flatten())\n",
    "    model.add( keras.layers.Dense(512, activation='relu'))\n",
    "    model.add( keras.layers.Dropout(0.5))\n",
    "    model.add( keras.layers.Dense(43, activation='softmax'))\n",
    "    return model\n",
    "\n",
    "# My sphisticated model, but small and fast\n",
    "#\n",
    "def get_model_v3(lx,ly,lz):\n",
    "    model = keras.models.Sequential()\n",
    "    model.add( keras.layers.Conv2D(32, (3,3),   activation='relu', input_shape=(lx,ly,lz)))\n",
    "    model.add( keras.layers.MaxPooling2D((2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.5))\n",
    "    model.add( keras.layers.Conv2D(64, (3, 3), activation='relu'))\n",
    "    model.add( keras.layers.MaxPooling2D((2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.5))\n",
    "    model.add( keras.layers.Conv2D(128, (3, 3), activation='relu'))\n",
    "    model.add( keras.layers.MaxPooling2D((2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.5))\n",
    "    model.add( keras.layers.Conv2D(256, (3, 3), activation='relu'))\n",
    "    model.add( keras.layers.MaxPooling2D((2, 2)))\n",
    "    model.add( keras.layers.Dropout(0.5))\n",
    "    model.add( keras.layers.Flatten()) \n",
    "    model.add( keras.layers.Dense(1152, activation='relu'))\n",
    "    model.add( keras.layers.Dropout(0.5))\n",
    "\n",
    "    model.add( keras.layers.Dense(43, activation='softmax'))\n",
    "    return model\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 5 - Train the model\n",
    "**Get the shape of my data :**"
   ]
  },
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": null,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [],
    "(n,lx,ly,lz) = x_train.shape\n",
    "print(\"Images of the dataset have this folowing shape : \",(lx,ly,lz))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Get and compile a model, with the data shape :**"
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": null,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [],
   "source": [
    "model = get_model_v1(lx,ly,lz)\n",
    "\n",
    "model.summary()\n",
    "model.compile(optimizer = 'adam',\n",
    "              loss      = 'sparse_categorical_crossentropy',\n",
    "              metrics   = ['accuracy'])"
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": null,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [],
   "source": [
    "%%time\n",
    "\n",
    "batch_size = 64\n",
    "epochs     = 5\n",
    "\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "# ---- Shuffle train data\n",
    "x_train,y_train=ooo.shuffle_np_dataset(x_train,y_train)\n",
    "\n",
    "# ---- Train\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "history = model.fit(  x_train, y_train,\n",
    "                      batch_size      = batch_size,\n",
    "                      epochs          = epochs,\n",
    "                      verbose         = 1,\n",
    "                      validation_data = (x_test, y_test))"
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": null,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [],
   "source": [
    "max_val_accuracy = max(history.history[\"val_accuracy\"])\n",
    "print(\"Max validation accuracy is : {:.4f}\".format(max_val_accuracy))"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": null,
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [],
   "source": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "score = model.evaluate(x_test, y_test, verbose=0)\n",
    "\n",
    "print('Test loss      : {:5.4f}'.format(score[0]))\n",
    "print('Test accuracy  : {:5.4f}'.format(score[1]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "---\n",
    "![](../fidle/img/00-Fidle-logo-01_s.png)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}