Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"[<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>](#)\n",
"\n",
"<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
"\n",
"# <!-- TITLE --> Regression with a Dense Network (DNN)\n",
"<!-- DESC --> A Simple regression with a Dense Neural Network (DNN) - BHPD dataset\n",
"<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
" - Predicts **housing prices** from a set of house features. \n",
" - Understanding the **principle** and the **architecture** of a regression with a **dense neural network** \n",
"\n",
"The **[Boston Housing Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html)** consists of price of houses in various places in Boston. \n",
"Alongside with price, the dataset also provide information such as Crime, areas of non-retail business in the town, \n",
"age of people who own the house and many other attributes...\n",
"\n",
"\n",
" - Retrieve data\n",
" - Preparing the data\n",
" - Build a model\n",
" - Train the model\n",
" - Evaluate the result\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
]
},
{
"cell_type": "code",
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
{
"data": {
"text/html": [
"<style>\n",
"\n",
"div.warn { \n",
" background-color: #fcf2f2;\n",
" border-color: #dFb5b4;\n",
" border-left: 5px solid #dfb5b4;\n",
" padding: 0.5em;\n",
" font-weight: bold;\n",
" font-size: 1.1em;;\n",
" }\n",
"\n",
"\n",
"\n",
"div.nota { \n",
" background-color: #DAFFDE;\n",
" border-left: 5px solid #92CC99;\n",
" padding: 0.5em;\n",
" }\n",
"\n",
"\n",
"\n",
"</style>\n",
"\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"FIDLE 2020 - Practical Work Module\n",
"Run time : Wednesday 19 February 2020, 09:49:10\n",
"TensorFlow version : 2.0.0\n",
"Keras version : 2.2.4-tf\n"
"source": [
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"\n",
"from importlib import reload\n",
"\n",
"sys.path.append('..')\n",
"import fidle.pwk as ooo\n",
"\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Boston housing is a famous historic dataset, so we can get it directly from [Keras datasets](https://www.tensorflow.org/api_docs/python/tf/keras/datasets) "
]
},
{
"metadata": {},
"source": [
"(x_train, y_train), (x_test, y_test) = keras.datasets.boston_housing.load_data(test_split=0.2, seed=113)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.2 - Option 2 : From a csv file\n",
"More fun !"
]
},
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/html": [
"<style type=\"text/css\" >\n",
"</style><table id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0\" ><thead> <tr> <th class=\"blank level0\" ></th> <th class=\"col_heading level0 col0\" >crim</th> <th class=\"col_heading level0 col1\" >zn</th> <th class=\"col_heading level0 col2\" >indus</th> <th class=\"col_heading level0 col3\" >chas</th> <th class=\"col_heading level0 col4\" >nox</th> <th class=\"col_heading level0 col5\" >rm</th> <th class=\"col_heading level0 col6\" >age</th> <th class=\"col_heading level0 col7\" >dis</th> <th class=\"col_heading level0 col8\" >rad</th> <th class=\"col_heading level0 col9\" >tax</th> <th class=\"col_heading level0 col10\" >ptratio</th> <th class=\"col_heading level0 col11\" >b</th> <th class=\"col_heading level0 col12\" >lstat</th> <th class=\"col_heading level0 col13\" >medv</th> </tr></thead><tbody>\n",
" <th id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0level0_row0\" class=\"row_heading level0 row0\" >0</th>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row0_col0\" class=\"data row0 col0\" >0.01</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row0_col1\" class=\"data row0 col1\" >18.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row0_col2\" class=\"data row0 col2\" >2.31</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row0_col3\" class=\"data row0 col3\" >0.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row0_col4\" class=\"data row0 col4\" >0.54</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row0_col5\" class=\"data row0 col5\" >6.58</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row0_col6\" class=\"data row0 col6\" >65.20</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row0_col7\" class=\"data row0 col7\" >4.09</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row0_col8\" class=\"data row0 col8\" >1.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row0_col9\" class=\"data row0 col9\" >296.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row0_col10\" class=\"data row0 col10\" >15.30</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row0_col11\" class=\"data row0 col11\" >396.90</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row0_col12\" class=\"data row0 col12\" >4.98</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row0_col13\" class=\"data row0 col13\" >24.00</td>\n",
" <th id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0level0_row1\" class=\"row_heading level0 row1\" >1</th>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row1_col0\" class=\"data row1 col0\" >0.03</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row1_col1\" class=\"data row1 col1\" >0.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row1_col2\" class=\"data row1 col2\" >7.07</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row1_col3\" class=\"data row1 col3\" >0.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row1_col4\" class=\"data row1 col4\" >0.47</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row1_col5\" class=\"data row1 col5\" >6.42</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row1_col6\" class=\"data row1 col6\" >78.90</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row1_col7\" class=\"data row1 col7\" >4.97</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row1_col8\" class=\"data row1 col8\" >2.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row1_col9\" class=\"data row1 col9\" >242.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row1_col10\" class=\"data row1 col10\" >17.80</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row1_col11\" class=\"data row1 col11\" >396.90</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row1_col12\" class=\"data row1 col12\" >9.14</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row1_col13\" class=\"data row1 col13\" >21.60</td>\n",
" <th id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0level0_row2\" class=\"row_heading level0 row2\" >2</th>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row2_col0\" class=\"data row2 col0\" >0.03</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row2_col1\" class=\"data row2 col1\" >0.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row2_col2\" class=\"data row2 col2\" >7.07</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row2_col3\" class=\"data row2 col3\" >0.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row2_col4\" class=\"data row2 col4\" >0.47</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row2_col5\" class=\"data row2 col5\" >7.18</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row2_col6\" class=\"data row2 col6\" >61.10</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row2_col7\" class=\"data row2 col7\" >4.97</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row2_col8\" class=\"data row2 col8\" >2.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row2_col9\" class=\"data row2 col9\" >242.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row2_col10\" class=\"data row2 col10\" >17.80</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row2_col11\" class=\"data row2 col11\" >392.83</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row2_col12\" class=\"data row2 col12\" >4.03</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row2_col13\" class=\"data row2 col13\" >34.70</td>\n",
" <th id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0level0_row3\" class=\"row_heading level0 row3\" >3</th>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row3_col0\" class=\"data row3 col0\" >0.03</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row3_col1\" class=\"data row3 col1\" >0.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row3_col2\" class=\"data row3 col2\" >2.18</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row3_col3\" class=\"data row3 col3\" >0.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row3_col4\" class=\"data row3 col4\" >0.46</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row3_col5\" class=\"data row3 col5\" >7.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row3_col6\" class=\"data row3 col6\" >45.80</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row3_col7\" class=\"data row3 col7\" >6.06</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row3_col8\" class=\"data row3 col8\" >3.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row3_col9\" class=\"data row3 col9\" >222.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row3_col10\" class=\"data row3 col10\" >18.70</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row3_col11\" class=\"data row3 col11\" >394.63</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row3_col12\" class=\"data row3 col12\" >2.94</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row3_col13\" class=\"data row3 col13\" >33.40</td>\n",
" <th id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0level0_row4\" class=\"row_heading level0 row4\" >4</th>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row4_col0\" class=\"data row4 col0\" >0.07</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row4_col1\" class=\"data row4 col1\" >0.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row4_col2\" class=\"data row4 col2\" >2.18</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row4_col3\" class=\"data row4 col3\" >0.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row4_col4\" class=\"data row4 col4\" >0.46</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row4_col5\" class=\"data row4 col5\" >7.15</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row4_col6\" class=\"data row4 col6\" >54.20</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row4_col7\" class=\"data row4 col7\" >6.06</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row4_col8\" class=\"data row4 col8\" >3.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row4_col9\" class=\"data row4 col9\" >222.00</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row4_col10\" class=\"data row4 col10\" >18.70</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row4_col11\" class=\"data row4 col11\" >396.90</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row4_col12\" class=\"data row4 col12\" >5.33</td>\n",
" <td id=\"T_b21e4e08_52f4_11ea_be4c_af031994fcb0row4_col13\" class=\"data row4 col13\" >36.20</td>\n",
" </tr>\n",
" </tbody></table>"
],
"text/plain": [
"<pandas.io.formats.style.Styler at 0x7f1b92065150>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Données manquantes : 0 Shape is : (506, 14)\n"
]
}
],
"source": [
"data = pd.read_csv('./data/BostonHousing.csv', header=0)\n",
"\n",
"display(data.head(5).style.format(\"{0:.2f}\"))\n",
"print('Données manquantes : ',data.isna().sum().sum(), ' Shape is : ', data.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 3 - Preparing the data\n",
"### 3.1 - Split data\n",
"We will use 70% of the data for training and 30% for validation. \n",
"x will be input data and y the expected output"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Original data shape was : (506, 14)\n",
"x_train : (354, 13) y_train : (354,)\n",
"x_test : (152, 13) y_test : (152,)\n"
]
}
],
"source": [
"# ---- Split => train, test\n",
"#\n",
"data_train = data.sample(frac=0.7, axis=0)\n",
"data_test = data.drop(data_train.index)\n",
"\n",
"# ---- Split => x,y (medv is price)\n",
"#\n",
"x_train = data_train.drop('medv', axis=1)\n",
"y_train = data_train['medv']\n",
"x_test = data_test.drop('medv', axis=1)\n",
"y_test = data_test['medv']\n",
"\n",
"print('Original data shape was : ',data.shape)\n",
"print('x_train : ',x_train.shape, 'y_train : ',y_train.shape)\n",
"print('x_test : ',x_test.shape, 'y_test : ',y_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note :** \n",
" - All input data must be normalized, train and test. \n",
" - To do this we will **subtract the mean** and **divide by the standard deviation**. \n",
" - But test data should not be used in any way, even for normalization. \n",
" - The mean and the standard deviation will therefore only be calculated with the train data."
]
},
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/html": [
"<style type=\"text/css\" >\n",
"</style><table id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0\" ><caption>Before normalization :</caption><thead> <tr> <th class=\"blank level0\" ></th> <th class=\"col_heading level0 col0\" >crim</th> <th class=\"col_heading level0 col1\" >zn</th> <th class=\"col_heading level0 col2\" >indus</th> <th class=\"col_heading level0 col3\" >chas</th> <th class=\"col_heading level0 col4\" >nox</th> <th class=\"col_heading level0 col5\" >rm</th> <th class=\"col_heading level0 col6\" >age</th> <th class=\"col_heading level0 col7\" >dis</th> <th class=\"col_heading level0 col8\" >rad</th> <th class=\"col_heading level0 col9\" >tax</th> <th class=\"col_heading level0 col10\" >ptratio</th> <th class=\"col_heading level0 col11\" >b</th> <th class=\"col_heading level0 col12\" >lstat</th> </tr></thead><tbody>\n",
" <th id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0level0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row0_col0\" class=\"data row0 col0\" >354.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row0_col1\" class=\"data row0 col1\" >354.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row0_col2\" class=\"data row0 col2\" >354.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row0_col3\" class=\"data row0 col3\" >354.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row0_col4\" class=\"data row0 col4\" >354.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row0_col5\" class=\"data row0 col5\" >354.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row0_col6\" class=\"data row0 col6\" >354.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row0_col7\" class=\"data row0 col7\" >354.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row0_col8\" class=\"data row0 col8\" >354.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row0_col9\" class=\"data row0 col9\" >354.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row0_col10\" class=\"data row0 col10\" >354.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row0_col11\" class=\"data row0 col11\" >354.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row0_col12\" class=\"data row0 col12\" >354.00</td>\n",
" <th id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0level0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row1_col0\" class=\"data row1 col0\" >3.45</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row1_col1\" class=\"data row1 col1\" >11.62</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row1_col2\" class=\"data row1 col2\" >11.13</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row1_col3\" class=\"data row1 col3\" >0.06</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row1_col4\" class=\"data row1 col4\" >0.56</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row1_col5\" class=\"data row1 col5\" >6.30</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row1_col6\" class=\"data row1 col6\" >69.31</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row1_col7\" class=\"data row1 col7\" >3.87</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row1_col8\" class=\"data row1 col8\" >9.27</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row1_col9\" class=\"data row1 col9\" >403.18</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row1_col10\" class=\"data row1 col10\" >18.44</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row1_col11\" class=\"data row1 col11\" >360.95</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row1_col12\" class=\"data row1 col12\" >12.53</td>\n",
" <th id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0level0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row2_col0\" class=\"data row2 col0\" >8.66</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row2_col1\" class=\"data row2 col1\" >23.54</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row2_col2\" class=\"data row2 col2\" >6.86</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row2_col3\" class=\"data row2 col3\" >0.25</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row2_col4\" class=\"data row2 col4\" >0.11</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row2_col5\" class=\"data row2 col5\" >0.71</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row2_col6\" class=\"data row2 col6\" >27.60</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row2_col7\" class=\"data row2 col7\" >2.19</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row2_col8\" class=\"data row2 col8\" >8.53</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row2_col9\" class=\"data row2 col9\" >165.86</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row2_col10\" class=\"data row2 col10\" >2.18</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row2_col11\" class=\"data row2 col11\" >84.83</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row2_col12\" class=\"data row2 col12\" >7.04</td>\n",
" <th id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0level0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row3_col0\" class=\"data row3 col0\" >0.01</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row3_col1\" class=\"data row3 col1\" >0.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row3_col2\" class=\"data row3 col2\" >0.46</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row3_col3\" class=\"data row3 col3\" >0.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row3_col4\" class=\"data row3 col4\" >0.39</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row3_col5\" class=\"data row3 col5\" >3.56</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row3_col6\" class=\"data row3 col6\" >2.90</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row3_col7\" class=\"data row3 col7\" >1.13</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row3_col8\" class=\"data row3 col8\" >1.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row3_col9\" class=\"data row3 col9\" >187.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row3_col10\" class=\"data row3 col10\" >12.60</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row3_col11\" class=\"data row3 col11\" >2.52</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row3_col12\" class=\"data row3 col12\" >1.73</td>\n",
" <th id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0level0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row4_col0\" class=\"data row4 col0\" >0.08</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row4_col1\" class=\"data row4 col1\" >0.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row4_col2\" class=\"data row4 col2\" >5.19</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row4_col3\" class=\"data row4 col3\" >0.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row4_col4\" class=\"data row4 col4\" >0.45</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row4_col5\" class=\"data row4 col5\" >5.88</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row4_col6\" class=\"data row4 col6\" >45.73</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row4_col7\" class=\"data row4 col7\" >2.09</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row4_col8\" class=\"data row4 col8\" >4.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row4_col9\" class=\"data row4 col9\" >277.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row4_col10\" class=\"data row4 col10\" >17.10</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row4_col11\" class=\"data row4 col11\" >375.91</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row4_col12\" class=\"data row4 col12\" >6.78</td>\n",
" <th id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0level0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row5_col0\" class=\"data row5 col0\" >0.23</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row5_col1\" class=\"data row5 col1\" >0.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row5_col2\" class=\"data row5 col2\" >9.69</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row5_col3\" class=\"data row5 col3\" >0.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row5_col4\" class=\"data row5 col4\" >0.54</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row5_col5\" class=\"data row5 col5\" >6.22</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row5_col6\" class=\"data row5 col6\" >78.50</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row5_col7\" class=\"data row5 col7\" >3.22</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row5_col8\" class=\"data row5 col8\" >5.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row5_col9\" class=\"data row5 col9\" >330.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row5_col10\" class=\"data row5 col10\" >19.10</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row5_col11\" class=\"data row5 col11\" >391.38</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row5_col12\" class=\"data row5 col12\" >11.35</td>\n",
" <th id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0level0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row6_col0\" class=\"data row6 col0\" >2.77</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row6_col1\" class=\"data row6 col1\" >12.50</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row6_col2\" class=\"data row6 col2\" >18.10</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row6_col3\" class=\"data row6 col3\" >0.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row6_col4\" class=\"data row6 col4\" >0.62</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row6_col5\" class=\"data row6 col5\" >6.62</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row6_col6\" class=\"data row6 col6\" >94.10</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row6_col7\" class=\"data row6 col7\" >5.23</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row6_col8\" class=\"data row6 col8\" >8.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row6_col9\" class=\"data row6 col9\" >666.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row6_col10\" class=\"data row6 col10\" >20.20</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row6_col11\" class=\"data row6 col11\" >396.27</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row6_col12\" class=\"data row6 col12\" >16.93</td>\n",
" <th id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0level0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row7_col0\" class=\"data row7 col0\" >88.98</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row7_col1\" class=\"data row7 col1\" >100.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row7_col2\" class=\"data row7 col2\" >27.74</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row7_col3\" class=\"data row7 col3\" >1.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row7_col4\" class=\"data row7 col4\" >0.87</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row7_col5\" class=\"data row7 col5\" >8.78</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row7_col6\" class=\"data row7 col6\" >100.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row7_col7\" class=\"data row7 col7\" >12.13</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row7_col8\" class=\"data row7 col8\" >24.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row7_col9\" class=\"data row7 col9\" >711.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row7_col10\" class=\"data row7 col10\" >22.00</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row7_col11\" class=\"data row7 col11\" >396.90</td>\n",
" <td id=\"T_b227e0e4_52f4_11ea_be4c_af031994fcb0row7_col12\" class=\"data row7 col12\" >36.98</td>\n",
" </tr>\n",
" </tbody></table>"
],
"text/plain": [
"<pandas.io.formats.style.Styler at 0x7f1b8fb9bfd0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<style type=\"text/css\" >\n",
"</style><table id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0\" ><caption>After normalization :</caption><thead> <tr> <th class=\"blank level0\" ></th> <th class=\"col_heading level0 col0\" >crim</th> <th class=\"col_heading level0 col1\" >zn</th> <th class=\"col_heading level0 col2\" >indus</th> <th class=\"col_heading level0 col3\" >chas</th> <th class=\"col_heading level0 col4\" >nox</th> <th class=\"col_heading level0 col5\" >rm</th> <th class=\"col_heading level0 col6\" >age</th> <th class=\"col_heading level0 col7\" >dis</th> <th class=\"col_heading level0 col8\" >rad</th> <th class=\"col_heading level0 col9\" >tax</th> <th class=\"col_heading level0 col10\" >ptratio</th> <th class=\"col_heading level0 col11\" >b</th> <th class=\"col_heading level0 col12\" >lstat</th> </tr></thead><tbody>\n",
" <th id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0level0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row0_col0\" class=\"data row0 col0\" >354.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row0_col1\" class=\"data row0 col1\" >354.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row0_col2\" class=\"data row0 col2\" >354.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row0_col3\" class=\"data row0 col3\" >354.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row0_col4\" class=\"data row0 col4\" >354.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row0_col5\" class=\"data row0 col5\" >354.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row0_col6\" class=\"data row0 col6\" >354.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row0_col7\" class=\"data row0 col7\" >354.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row0_col8\" class=\"data row0 col8\" >354.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row0_col9\" class=\"data row0 col9\" >354.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row0_col10\" class=\"data row0 col10\" >354.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row0_col11\" class=\"data row0 col11\" >354.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row0_col12\" class=\"data row0 col12\" >354.00</td>\n",
" <th id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0level0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row1_col0\" class=\"data row1 col0\" >0.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row1_col1\" class=\"data row1 col1\" >-0.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row1_col2\" class=\"data row1 col2\" >0.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row1_col3\" class=\"data row1 col3\" >0.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row1_col4\" class=\"data row1 col4\" >0.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row1_col5\" class=\"data row1 col5\" >0.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row1_col6\" class=\"data row1 col6\" >0.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row1_col7\" class=\"data row1 col7\" >0.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row1_col8\" class=\"data row1 col8\" >0.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row1_col9\" class=\"data row1 col9\" >0.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row1_col10\" class=\"data row1 col10\" >0.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row1_col11\" class=\"data row1 col11\" >0.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row1_col12\" class=\"data row1 col12\" >0.00</td>\n",
" <th id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0level0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row2_col0\" class=\"data row2 col0\" >1.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row2_col1\" class=\"data row2 col1\" >1.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row2_col2\" class=\"data row2 col2\" >1.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row2_col3\" class=\"data row2 col3\" >1.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row2_col4\" class=\"data row2 col4\" >1.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row2_col5\" class=\"data row2 col5\" >1.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row2_col6\" class=\"data row2 col6\" >1.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row2_col7\" class=\"data row2 col7\" >1.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row2_col8\" class=\"data row2 col8\" >1.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row2_col9\" class=\"data row2 col9\" >1.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row2_col10\" class=\"data row2 col10\" >1.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row2_col11\" class=\"data row2 col11\" >1.00</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row2_col12\" class=\"data row2 col12\" >1.00</td>\n",
" <th id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0level0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row3_col0\" class=\"data row3 col0\" >-0.40</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row3_col1\" class=\"data row3 col1\" >-0.49</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row3_col2\" class=\"data row3 col2\" >-1.56</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row3_col3\" class=\"data row3 col3\" >-0.26</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row3_col4\" class=\"data row3 col4\" >-1.49</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row3_col5\" class=\"data row3 col5\" >-3.84</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row3_col6\" class=\"data row3 col6\" >-2.41</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row3_col7\" class=\"data row3 col7\" >-1.25</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row3_col8\" class=\"data row3 col8\" >-0.97</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row3_col9\" class=\"data row3 col9\" >-1.30</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row3_col10\" class=\"data row3 col10\" >-2.68</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row3_col11\" class=\"data row3 col11\" >-4.23</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row3_col12\" class=\"data row3 col12\" >-1.53</td>\n",
" <th id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0level0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row4_col0\" class=\"data row4 col0\" >-0.39</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row4_col1\" class=\"data row4 col1\" >-0.49</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row4_col2\" class=\"data row4 col2\" >-0.87</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row4_col3\" class=\"data row4 col3\" >-0.26</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row4_col4\" class=\"data row4 col4\" >-0.90</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row4_col5\" class=\"data row4 col5\" >-0.58</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row4_col6\" class=\"data row4 col6\" >-0.85</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row4_col7\" class=\"data row4 col7\" >-0.81</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row4_col8\" class=\"data row4 col8\" >-0.62</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row4_col9\" class=\"data row4 col9\" >-0.76</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row4_col10\" class=\"data row4 col10\" >-0.62</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row4_col11\" class=\"data row4 col11\" >0.18</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row4_col12\" class=\"data row4 col12\" >-0.82</td>\n",
" <th id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0level0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row5_col0\" class=\"data row5 col0\" >-0.37</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row5_col1\" class=\"data row5 col1\" >-0.49</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row5_col2\" class=\"data row5 col2\" >-0.21</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row5_col3\" class=\"data row5 col3\" >-0.26</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row5_col4\" class=\"data row5 col4\" >-0.15</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row5_col5\" class=\"data row5 col5\" >-0.11</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row5_col6\" class=\"data row5 col6\" >0.33</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row5_col7\" class=\"data row5 col7\" >-0.30</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row5_col8\" class=\"data row5 col8\" >-0.50</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row5_col9\" class=\"data row5 col9\" >-0.44</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row5_col10\" class=\"data row5 col10\" >0.30</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row5_col11\" class=\"data row5 col11\" >0.36</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row5_col12\" class=\"data row5 col12\" >-0.17</td>\n",
" <th id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0level0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row6_col0\" class=\"data row6 col0\" >-0.08</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row6_col1\" class=\"data row6 col1\" >0.04</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row6_col2\" class=\"data row6 col2\" >1.02</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row6_col3\" class=\"data row6 col3\" >-0.26</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row6_col4\" class=\"data row6 col4\" >0.60</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row6_col5\" class=\"data row6 col5\" >0.46</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row6_col6\" class=\"data row6 col6\" >0.90</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row6_col7\" class=\"data row6 col7\" >0.62</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row6_col8\" class=\"data row6 col8\" >-0.15</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row6_col9\" class=\"data row6 col9\" >1.58</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row6_col10\" class=\"data row6 col10\" >0.81</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row6_col11\" class=\"data row6 col11\" >0.42</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row6_col12\" class=\"data row6 col12\" >0.63</td>\n",
" <th id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0level0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row7_col0\" class=\"data row7 col0\" >9.87</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row7_col1\" class=\"data row7 col1\" >3.75</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row7_col2\" class=\"data row7 col2\" >2.42</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row7_col3\" class=\"data row7 col3\" >3.79</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row7_col4\" class=\"data row7 col4\" >2.75</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row7_col5\" class=\"data row7 col5\" >3.49</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row7_col6\" class=\"data row7 col6\" >1.11</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row7_col7\" class=\"data row7 col7\" >3.76</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row7_col8\" class=\"data row7 col8\" >1.73</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row7_col9\" class=\"data row7 col9\" >1.86</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row7_col10\" class=\"data row7 col10\" >1.63</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row7_col11\" class=\"data row7 col11\" >0.42</td>\n",
" <td id=\"T_b236ee40_52f4_11ea_be4c_af031994fcb0row7_col12\" class=\"data row7 col12\" >3.47</td>\n",
" </tr>\n",
" </tbody></table>"
],
"text/plain": [
"<pandas.io.formats.style.Styler at 0x7f1b8fbb4c10>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n",
"\n",
"mean = x_train.mean()\n",
"std = x_train.std()\n",
"x_train = (x_train - mean) / std\n",
"x_test = (x_test - mean) / std\n",
"\n",
"display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"After normalization :\"))\n",
"\n",
"x_train, y_train = np.array(x_train), np.array(y_train)\n",
"x_test, y_test = np.array(x_test), np.array(y_test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"About informations about : \n",
" - [Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)\n",
" - [Activation](https://www.tensorflow.org/api_docs/python/tf/keras/activations)\n",
" - [Loss](https://www.tensorflow.org/api_docs/python/tf/keras/losses)\n",
" - [Metrics](https://www.tensorflow.org/api_docs/python/tf/keras/metrics)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
" def get_model_v1(shape):\n",
" \n",
" model = keras.models.Sequential()\n",
" model.add(keras.layers.Input(shape, name=\"InputLayer\"))\n",
" model.add(keras.layers.Dense(64, activation='relu', name='Dense_n1'))\n",
" model.add(keras.layers.Dense(64, activation='relu', name='Dense_n2'))\n",
" model.add(keras.layers.Dense(1, name='Output'))\n",
" \n",
" model.compile(optimizer = 'rmsprop',\n",
" loss = 'mse',\n",
" metrics = ['mae', 'mse'] )\n",
" return model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 5 - Train the model\n",
"### 5.1 - Get it"
]
},
{
"cell_type": "code",
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"sequential\"\n",
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"Dense_n1 (Dense) (None, 64) 896 \n",
"_________________________________________________________________\n",
"Dense_n2 (Dense) (None, 64) 4160 \n",
"_________________________________________________________________\n",
"Output (Dense) (None, 1) 65 \n",
"=================================================================\n",
"Total params: 5,121\n",
"Trainable params: 5,121\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAGVCAIAAADls7hIAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde1wU5f448Ge4LCwLuyAJCwuKWkRe2Aj80RqEgkGFYGwgmmgdD8Q39QApKph6vJFpmHC+aiocA6VM4fXCAtPyoHQOCAkWmBpi4I27gguCclmZ3x/Pab7TLiw7sOzs4uf9l/vMM898dmI/zeWZzxAkSSIAAABqM2A7AAAA0DOQNwEAgBnImwAAwAzkTQAAYMaI/qGkpOSzzz5jKxQAANBNEolk1apV1Mc/HW/evXs3JydH6yEBoFV1dXXwd05XWlpaWlrKdhS6q7S0tKSkhN5ipNwpOztbW/EAwIITJ06Eh4fD3zklLCwMwQ9/cHj/0MH1TQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBACoJSsri/iDubm5wtLbt28HBwd3dHQghBobG5OSkjw8PPh8vlAo9PHxyc3NHd5Gv/vuO2dnZyOjAe5gkyRZXFy8YsUKZ2dnExMTGxsbLy+vrKwses2NhISE48ePK6yYkJBAfZGXX355GFFB3gRAXZ2dnc8999y8efPYDoRNn3/+OUmSnZ2d9MaKigoPDw9/f38+n48QioqKSklJ2bJlS2NjY2lpqYODg1QqTUhIYLShmpqa4ODgxMTE5ubmATtcv37dy8ururo6Jyenvb29tLR0woQJS5YsWbNmDdUnKioqMTFx48aN9BU/+eQTkiRJkjQ0NGQUEgXyJgDqIkmyv7+/v7+frQDMzc29vLzY2vpgOjo6goKC3n777ZUrV1KNycnJgYGBPB7Pycnpiy++EIlEycnJLS0t6g+7cePGWbNmXbp0ycLCYrA+RkZGJ06ccHV1NTU1nTx5ckZGhrW19d69e3t6enCHKVOm5ObmJiUlnThxYthfcIDtanAsAMY2CwuLmpoatqPQObt27Wpqatq0aRPVkp+fT+/A4XCmTp1aX19//fp1GxsbNYf95z//yeVyVXRwcXHp6+tT2JCjo2NFRUV3d7eJiQluFIvFoaGhq1evlkqlA57vDwMcbwIAho8kyfT0dE9PT3t7exXdamtrEULjxo1Tf2TVSXNAMpnsxo0bbm5uAoGA3h4SElJXV3fq1CmmAw4G8iYAajl58iR1M6G7u1uh5datW+Hh4ZaWltbW1vPmzaMOS5OTk3EHBweHsrIyPz8/CwsLMzOzOXPmFBcX4z7bt2/Hfahz8DNnzuCWZ555hj5OV1dXcXExXqSpQ6cRqqysbG5uFovFKvpkZmbW1NQ4OztPnTp1lMLo6OgoLi4ODg4WCoVHjhxRWPriiy8ihL7//ntNbQ7yJgBqeeutt0iSnD9//oAtcXFxcXFx9fX1x48fP3fu3KJFi3Cf+Ph4kiTFYrFMJouNjd2+fXtTU9O///3vtrY2X1/fH3/8ESG0YcMGkiR5PB418uuvv06SpLu7O9WCx+HxeK+88gq+pyGXy6mlvr6+1tbWrDxjfuXKFYSQg4PDgEuvXbsWGxu7bNkyKysrfDt+NGLYvn27QCDw8vIyNDTMzc2dPn26QgeRSESFqhGQNwHQgMjISIlEwuPx5s6dGxgYWFZWdv/+fXqHrq6u/fv34z4eHh5ZWVm9vb2xsbEa2Xp/fz9OphoZjZHGxkaEkMJ5McXV1TU7O3vlypVXrlyZOXPmKMWwYcOGnp6e3377zcXFxc3Nbdu2bQod+Hw+QRA4VI3QiUN9APQdPSk4OjoihBoaGqizbIQQj8fDZ4vYjBkz7O3tKysrGxsb7ezsRrj1wsLCEY4wbPiShbGx8WAdzp075+LiMtphcDgcFxeXzz//vLm5edOmTRKJZO7cufQORkZGjx8/1tTm4HgTAA2gH3BxOByEkMJ0JUtLS4VV8J1lRlNzdJCpqSlCSOG+NouCgoKQ0g19hJBcLh/GjabBQN4EQBtaW1sVzqNxxqTm5RgYGPT29tI7yGQyhUFG6frgSOCD5fb2drYD+S88/aitrY3e2NHRQZLkyI/rKZA3AdCG7u7usrIy6uOvv/7a0NAgFoupH7OdnV19fT3Voamp6c6dOwqDmJmZUbn1+eefP3To0ChHPTR8E6aurm7ApXK5fPRO0uPj4yMiIhQaT58+jf582QQhhHes8v2iYYO8CYA2CASC9evXl5SUdHV1lZeXR0REcDic1NRUqoO/v39DQ8PevXs7OztrampiY2OVp4i/9NJL1dXVd+/eLSkpqa2t9fb2xu0s3k8Xi8U2NjaVlZXKi9LS0ng83tq1a5UXRUREEARx8+bNEW79q6++2rp1661bt3p6em7durVu3bqsrCx3d/fIyEh6t4qKCoSQv7//CDdHgbwJgFrwbM1vvvkGIcTlciMiIkpLS+ktGzZsQAgRBLFz506EkJubG/1JdnNz8//93//dsmWLnZ3dq6++amVlde7cOR8fH6rD9u3bIyMjP/74Yxsbm/fee2/NmjVCobC1tZUgCOrJ7pSUFFdX1xdeeCE8PDw1NfWFF17A7XK5nK376QRBREZG/vTTTw0NDQqLVNzlb2xsNDc3nzBhgoqR8/Pz8UzV+vr6J0+e4H+np6dTHTZt2pSWlnbhwoU5c+bw+fwZM2YUFBTs2LHjP//5j8KlzNzcXJFIFBgYOIIv+mckDS4cQgIwpmn/71wsFotEIm1ukZHQ0NDQ0NAhux09ehT9UdeDTiaTiUSi6OhoNTf34MEDLpcbGRnJONBhqaioIAji2LFjyosMDQ09PT2HHEF5/8DxJgBgRAQCQV5eXk5Ozr59+4bsTJJkTEwMn89XnmU5Gmpra6VSaWJi4sKFCzU47HDyprm5OUGTnJyswYBGSJdjY0SXv4guxwZG2wcffKBcf9PNza28vPz06dO4/qYKzc3NtbW1BQUFQqFwNMP8r4MHDyYlJSUlJdEbqfqbT548Gea49INP9c9ffvnlF4TQ/Pnz1emsZbocGyO6/EV0ObYhafM8/dNPP6X/3D766CPtbJcRNc/Tn1pj6jxdN2sRjjGwk0cIP1dO2b59O9sRAQ3Q47wJAACsgLwJAADMaCxv6lctQrlcfvz48ddee00oFHK53BkzZqSmpuIHimUyGf2mBz6xksvlVEtoaCge5N69ezExMU5OThwOZ/z48VKpFE+vVdgb169fX7BggbW1Nf6oUCYHdrKu7WQAhka/+DLy+0K4FuH8+fMvXLjQ2dl59uxZLpc7c+ZMeh+xWMzj8SQSCe5TVlbm6urK4XAKCwupPvQ6g5i7u7u1tTW9RbmP6tjo8vLyEEIff/xxW1vbvXv3/vGPfxgYGNAvRQUEBBgYGPz+++/0tSQSyZdffon/3dDQMHHiRFtb21OnTj18+PDKlSs+Pj6mpqYXLlxQ2Bs+Pj7nz5/v6uoqLS01NDS8d+8eSZJz5swZN25cSUmJiiBhJ49wJw8G5ikrgPtCqinvn1HJm3l5efRNIoTof8e4NPQvv/xCtVy+fBkhJBaLqRYt/KRnz55Nb4mIiDA2Nm5vb8cfcWno5cuXUx2KiopEIlFvby/++O677yKEqF84SZKNjY0mJibu7u4Ke+O7775TDsDHx8fKyor++1f/i8BOVnMnDwbypgLIm6pp6X76gLUI6R1U1CIcjXiUzZs37/z58/QWsVjc19d39epV/NHf33/GjBkZGRmtra245dNPP/3b3/5G1Rk8efKkgYEB/UE6oVA4bdq0S5cuKdQ4+H//7/8pB1BYWNjW1iaRSIb9FWAn00cecCerRoA/5OTk5OTksB2F7srJyVH44xmVusXDq0XY0NDQ0tKiwVpPKrS3t+/evTs3N7euro5erevRo0fUv+Pi4v7617/u379/48aN1dXV586d++KLL/Cinp4eXDhrwDLXN27coL82gP7+Aw2CnTzCnYyPOgFCaM+ePQihDz/8kO1AdBTeP3Ts1HvHtQgJWjFBLdciDAoK+s9//pOamrpo0aJnnnmGIIiUlJQPP/yQpNUgWLx48fr16/fu3bt27drdu3e/++67VlZWeJGJiYmlpWVnZ+fjx4915PVYymAnq7ZgwQKNj6mnsrOzEeyQweH9Q8fOPCS2ahEaGRlVVVU9efKkuLhYKBTGxMSMHz8epwblGvomJibLly9vaWnZvXv3l19+qfAqGKlUKpfLqTvU2M6dOydMmEB/YRaLYCcDMErYyZujWotwSIaGhrNnz25qavr000/v37//+PHj8+fPHzhwQLnn8uXLcX2wuXPnPvvss/RFO3bsmDJlyrJly06fPt3e3t7W1nbw4MGtW7cmJyerc3CkhYKJsJMBGC30m0Rq3mdUuJb06aefkiRZUlJCb8TP4dJbAgMD8eq4pta1a9cCAgIsLCy4XK6Pj09RURF9EzKZLDIy0s7Ojsvlenl5lZWVUe9EXbduHe5TVVXl7e3N4/EcHR337ds3YGzKfvvtN5Ik7927Fx0d7ejoaGxsbGtr+95771ElDun3akmSjIqKQgj9+OOPyvuhtbV11apVkydPNjY2Hj9+vL+//9mzZ/Eihb2hvFe9vb1V30+HnTzynTwYuJ+uAO6nq6axeUgjoeO1CBUcPnxY4UeuF2AnqwB5UwHkTdXGVF0P7Thw4MCqVavYjmKMg52sF7KysqipOQp15BBCt2/fDg4OxnXkGhsbk5KSPDw8+Hy+UCj08fHJzc0d3ka/++47Z2fnAS/LkCRZXFy8YsUKZ2dnExMTGxsbLy+vrKwsknYSlpCQoDxxgqojRxDEyy+/PIyoIG8OID09PSQkpLOz88CBAw8ePID7jKMBdrKewvXeOzs76Y0VFRUeHh7+/v58Ph8hFBUVlZKSsmXLlsbGxtLSUgcHB6lUSl2lUVNNTU1wcHBiYmJzc/OAHa5fv+7l5VVdXZ2Tk9Pe3l5aWjphwoQlS5asWbOG6hMVFZWYmLhx40b6ip988gk+bDQ0NGQU0v+hH3yO9vmLXtQiJEkyLS0NIWRkZOTq6nrp0iW2w2EGdvKQtHyePtgzV7oz/gjfk9He3u7g4EB/T0ZgYGBGRgb1saenRyQSGRoaNjc3qx/VokWLduzY0dfXh9dV7vDbb78ZGRm1tbXRN2RtbW1iYtLd3U014vdkHD9+XHmEYb8nA94vBJ46kDcVjDBvfvTRR0ZGRvX19SrWfe211xBC//73v9WP6tGjR/gfg+XNAeFn5GQyGb0xLCzMwcGhr69PoTO8XwgAwAKSJNPT0z09Pe3t7VV0q62tRQiNGzdO/ZEV3kmpDplMduPGDTc3N4VnzEJCQurq6k6dOsV0wMFA3gRgUHgW1JQpUzgcjpWV1RtvvEE9cT+SWny6U+tv5CorK5ubm3EdmcFkZmbW1NQ4OztPnTp1lMLo6OgoLi4ODg4WCoVHjhxRWIoPQnEdGY2AvAnAwJqammbOnPnVV1+lpqbev3//p59+MjMz8/Pzw6/w3rBhA/nnqayvv/46SZLUHFj0x0sy6OfR+DEn3C4Wi2UyWWxs7Pbt25uamv7973+3tbX5+vr++OOPIxwf08KzFQihK1euIITotQLorl27Fhsbu2zZMisrK3w7fjRi2L59u0Ag8PLyMjQ0zM3NnT59ukIHkUhEhaoRkDcBGFhiYuLNmzdTUlLmzZvH5/OdnZ2/+uorOzu7mJiYwe7wMtXV1bV//36JRMLj8Tw8PLKysnp7exUeNh22/v5+nEw1MtpgcHmtAWuvIIRcXV2zs7NXrlx55coVegUvzdqwYUNPT89vv/3m4uLi5uam/IZhPp9PEIQGK4FB3gRgYHjKYWBgINViYmLi5+f3+PFjTZ3xjWqtv5HXKlRHd3c3Qogq/afs3Llzqampqq9+jhyHw3Fxcfn888+Dg4M3bdr0r3/9S6GDkZGRcnmEYYO8CcAAcBU7U1NTCwsLerutrS1CqKmpSSNbGbDWH/qjcpVeMDU1RQj19fWxHch/BQUFIYTy8/MV2uVy+TBuNA0G8iYAAzAxMREIBN3d3Q8fPqS34zN0oVCIP46wFh+u9Udv0XKtv5HD5bVwpVRdYGJighBqa2ujN3Z0dJAkqcGys5A3ARhYSEgIQog+eaWnp6egoIDL5QYEBOCWEdbiY6vWnwbhmzAK5fcpcrncxcVllDYdHx8fERGh0Hj69Gn057chIITwPlS+XzRskDcBGNiOHTsmTZoUFxeXn5//8OHD6urqd955p7GxMTU1FZ+toxHX4hvVWn/auZ8uFottbGwqKyuVF6WlpfF4vLVr1yovioiIIAji5s2bI9z6V199tXXr1lu3bvX09Ny6dWvdunVZWVnu7u6RkZH0bvgdqP7+/iPc3P+hT4KH54XA00D9v/P79+/HxcVNmjTJ2NhYIBAEBAQUFBTQOwy7Fh85yrX+SDVqFVJG+LzQ+vXrB3xe6MCBA1wul/4GU4qvr6+5ublcLlexOfw+VAVpaWlUh/b29vT09ICAAPyaaHNzc3d39x07dlAPGlHCwsLo7/ujwHOWAKhLR/7OdafW3wjzpkwmE4lE9OfTVXvw4AGXy42MjGQc6LDg59OPHTumvAieswQAsEMgEOTl5eXk5Ozbt2/IziRJxsTE8Pl85VmWo6G2tlYqlSYmJi5cuFCDw0LeBAAw8MEHHyjX33RzcysvLz99+jSuv6lCc3NzbW1tQUEBNSdhVB08eDApKSkpKYneSNXffPLkyfCGhbwJgLbh58orKyvr6+sJgtiwYQPbEaklIiKCOlFVqL+JEHJycsrPz8f1N1UQCoVFRUXTpk0btTD/ZOfOncpHmlT9TZIkh3ffDF5uBYC2xcfHx8fHsx0FGD443gQAAGYgbwIAADOQNwEAgBnImwAAwMwA94VOnDih/TgA0JqSkhIEf+c0+Oly2CGDqaurUyzMTJ8Er/yiYQAAAArPCxHkKJeDBmB48Ltb4b3qQAfB9U0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYIYgSZLtGABACKHo6Ojr169TH3/++edJkyZZWVnhj4aGhpmZmQ4ODixFB8D/MWI7AAD+y9bW9tChQ/SWy5cvU/+ePHkyJE2gI+A8HeiKd955Z7BFHA7nvffe02IsAKgC5+lAh0yfPv3atWsD/k1ev37d2dlZ+yEBoAyON4EOWbp0qaGhoUIjQRBisRiSJtAdkDeBDlm0aNGTJ08UGg0NDd99911W4gFgQHCeDnTLrFmzfvrpp/7+fqqFIIi7d++KRCIWowKADo43gW5ZsmQJQRDURwMDAy8vL0iaQKdA3gS6JSwsjP6RIIilS5eyFQwAA4K8CXTLM8884+fnR90dIggiJCSE3ZAAUAB5E+iciIgIfNnd0NAwICDA2tqa7YgA+BPIm0DnSKVSDoeDECJJMiIigu1wAFAEeRPoHB6PN2/ePIQQh8MJCgpiOxwAFEHeBLpo8eLFCKGQkBAej8d2LAAoIVnF9rcHAOil48ePs5i42K+HFBcXJ5FI2I4C6JysrKyFCxcaGf3fn2hJSUlKSsrx48dZjEqn7NmzByH04Ycfsh2ItoWHh7MbAPt5UyKRLFiwgO0ogM4JDg42NTVVaExJSYG/Fkp2djZC6CncIaznTbi+CXSUctIEQEdA3gQAAGYgbwIAADOQNwEAgBnImwA8LW7fvh0cHNzR0YEQamxsTEpK8vDw4PP5QqHQx8cnNzd3eMN+9913zs7O9JkPFJIki4uLV6xY4ezsbGJiYmNj4+XllZWVRZ+DmJCQoHdzJCBvgrGvs7Pzueeew88gPbUqKio8PDz8/f35fD5CKCoqKiUlZcuWLY2NjaWlpQ4ODlKpNCEhgdGYNTU1wcHBiYmJzc3NA3a4fv26l5dXdXV1Tk5Oe3t7aWnphAkTlixZsmbNGqpPVFRUYmLixo0bR/LttAzyJhj7SJLs7++n10LWMnNzcy8vL7a2jhDq6OgICgp6++23V65cSTUmJycHBgbyeDwnJ6cvvvhCJBIlJye3tLSoP+zGjRtnzZp16dIlCwuLwfoYGRmdOHHC1dXV1NR08uTJGRkZ1tbWe/fu7enpwR2mTJmSm5ublJR04sSJYX9BLWN//iYAo83CwqKmpobtKNi0a9eupqamTZs2US35+fn0DhwOZ+rUqfX19devX7exsVFz2H/+859cLldFBxcXl76+PoUNOTo6VlRUdHd3m5iY4EaxWBwaGrp69WqpVDrg+b6ugeNNAMY4kiTT09M9PT3t7e1VdKutrUUIjRs3Tv2RVSfNAclkshs3bri5uQkEAnp7SEhIXV3dqVOnmA7ICsibYIw7efIk8Yfu7m6Fllu3boWHh1taWlpbW8+bN486LE1OTsYdHBwcysrK/Pz8LCwszMzM5syZU1xcjPts374d96HOwc+cOYNbnnnmGfo4XV1dxcXFeJH2j6cqKyubm5vFYrGKPpmZmTU1Nc7OzlOnTh2lMDo6OoqLi4ODg4VC4ZEjRxSWvvjiiwih77//fpS2rmEsPhuP76mx+3w+0CP4ruvw1p0/fz5C6PHjxwot8+fPv3DhQmdn59mzZ7lc7syZM+lricViHo8nkUhwn7KyMldXVw6HU1hYSPXh8XivvPIKfS13d3dra2t6i3IfbM6cOePGjSspKRnelwoNDQ0NDR2y29GjRxFCH3/88YBLr169GhMTY2BgYGVldfHixeFFIhKJDA0NVXTYtm0bTjizZ8++fPmycof29naEkLe3tzqbYz1vwPEmeKpFRkZKJBIejzd37tzAwMCysrL79+/TO3R1de3fvx/38fDwyMrK6u3tjY2N1cjW+/v7qUQwehobGxFCCufFFFdX1+zs7JUrV165cmXmzJmjFMOGDRt6enp+++03FxcXNzc3Ko1S+Hw+QRA4VN2nB5dgARg99Ezh6OiIEGpoaKDOshFCPB4Pn0JiM2bMsLe3r6ysbGxstLOzG+HWCwsLRziCOvDVCWNj48E6nDt3zsXFZbTD4HA4Li4un3/+eXNz86ZNmyQSydy5c+kdjIyMHj9+PNphaAQcb4KnGv0oDL+cQ2G6kqWlpcIq+HYzo/k67MIVUhTua7MI1/BXuKGPEJLL5cO40cQKyJsAqNLa2qpwHo0zJjVZx8DAoLe3l95BJpMpDEJ/I7z24eNifAFRF+DpR21tbfTGjo4OkiRHfgivHZA3AVClu7u7rKyM+vjrr782NDSIxWLqF25nZ1dfX091aGpqunPnjsIgZmZmVG59/vnnDx06NMpR/8n06dMRQnV1dQMulcvlo3eSHh8fr/xmvdOnT6M/XyFBCOF9iEPVfZA3AVBFIBCsX7++pKSkq6urvLw8IiKCw+GkpqZSHfz9/RsaGvbu3dvZ2VlTUxMbG6s8b/yll16qrq6+e/duSUlJbW2tt7c3bvf19bW2ti4tLR3VryAWi21sbCorK5UXpaWl8Xi8tWvXKi+KiIggCOLmzZsj3PpXX321devWW7du9fT03Lp1a926dVlZWe7u7pGRkfRuFRUVCCF/f/8Rbk5LWLyXT+rAfAKgR4Y3D0mhXMXixYtLSkroLR999BH55zPxwMBAvK5YLBaJRNeuXQsICLCwsOByuT4+PkVFRfTxZTJZZGSknZ0dl8v18vIqKytzd3fH46xbtw73qaqq8vb25vF4jo6O+/bto9b19va2srK6cOHC8HaImvOQSJJcv369kZFRfX29QvuBAwe4XG58fLzyKr6+vubm5nK5XMWweXl5yiklLS2N6tDe3p6enh4QEODk5MThcMzNzd3d3Xfs2PHo0SOFocLCwkQiUW9vrzpfh/W8AXkT6I2RzN8cHpw3tblFRtTPmzKZTCQSRUdHqznygwcPuFxuZGTkCKJjoKKigiCIY8eOqdmf9byhB+fp5ubmBA2eoCsWi5cvX37p0iW2oxtdKip0qeNp3nWATiAQ5OXl5eTk7Nu3b8jOJEnGxMTw+XzlWZajoba2ViqVJiYmLly4UAub0wg9yJudnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5R84as0KWOp3PXgQG5ubmVl5efPn0a199Uobm5uba2tqCgQCgUaiGwgwcPJiUlJSUlaWFbmqIHeVOBoaGhra3t/Pnzz507t3bt2oyMjEWLFpFj7lXs6lToYuop2XUagZ8rr6ysrK+vJwhiw4YNbEekAU5OTvn5+bj+pgpCobCoqGjatGnaiWrnzp16dKSJ6V/epPvkk088PT2//fbbr7/+mu1YNOyf//xnQkLC6NWAGMO7TiMUbpVs376d7YiADtHvvEkQBK7Dun//frZj0bDRfnBiDO86AEabfudNhBAu4VVaWko9Rnbv3r2YmBg872H8+PFSqRRPDUPqFRBDCPX09GzatMnFxcXMzGzcuHFBQUHffvvtkydPqA4qNqGamgFoh37tOgB0CAv38GmQevMJ6Dc3FFCFABoaGkiSbGhomDhxoq2t7alTpx4+fHjlyhUfHx9TU1P6FLkhC4hFRkYKBIIffvjh0aNHTU1N8fHxCKHz58/jpepsQjV1KphRVFToUqcK2Vjaddqfh6Tj1J+HNMaomTdGMQAWt01qIm9Sd4Txj//dd99FCH355ZdUh8bGRhMTE3d3d6oF//jz8vKoltDQUITQvXv38MdJkybNmjWLvhVnZ2fqx6/OJlQbMgA6FXnTx8dnyFnTY2nXQd5UAHmTLXpfRw4X7DM2Nsa1v06ePGlgYEB/c6FQKJw2bdqlS5fq6uocHByodhUFxF5//fXPP//8/fffX7Zs2cyZMw0NDa9fv051Vn8Tqg1ZwWxII6xCpqe7To/e3jXa8CPnsEO0T+/zZlFREUJIIjcOHrUAACAASURBVJEYGxv39PTgoi8Dlmi9ceMG/ZepooDYvn37JBJJZmamn58fQsjb2zs6OjokJAQhxGgTqg1ZwWy06emuCw8PV/cbPh1gh2ifft8X6u/vx88/rFixAiFkYmJiaWlpZGTU19enfGg9Z84cNYclCGLJkiX/+te/ZDLZyZMnSZKUSqWfffaZBjfBOv3ddSM9xRpDnubzdHbpd95MTEy8ePFiSEhIWFgYbpFKpXK5nHpzFrZz584JEybI5XI1h7W0tKyqqkIIGRsbv/baa/hWMvWmPY1sgnWw6wAYNv3Lm/39/S0tLd98842fn9+uXbuWLVv25ZdfUnVhd+zYMWXKlGXLlp0+fbq9vb2tre3gwYNbt25NTk5mNIf8f/7nfy5fvtzT09PS0rJr1y6SJH19fTW7iZFjWoUMdh0AmsH68faQ98V4PB49YIIgBALBjBkzPvjgg0uXLin3b21tXbVq1eTJk42NjcePH+/v73/27Fm8SM0CYhUVFdHR0S+88AKehPjyyy+npaVRr9BSvQnV1K9gNmSFLlKNKmRjadeRcD9dydN8ns7u/XSCZPViAUEQx48fX7BgAYsxAH1x4sSJ8PBwdv9idQq+xpKdnc12INrGet7Qv/N0AABgF+RNAJ4Wt2/fDg4OxnXkGhsbk5KSPDw8+Hy+UCj08fFRKIyvpr6+vj179ri7u1tYWNjY2Lzxxhv4sYgBOwcHBxMEoVAkJSEhAV+B0SOQNzWMGNzmzZvZjg48vSoqKjw8PPz9/XEduaioqJSUlC1btjQ2NpaWljo4OEil0oSEBEZjdnV1+fr6ZmRk7Nmzp6Wlpby83NzcPDg4+OrVq8qdjxw5MuBV+6ioqMTExI0bNw7ve7GDxWurpA5c3wV6RMv3hXg83iuvvKLL46t/X6i9vd3BwYH+nozAwMCMjAzqY09PD36it7m5Wf0APvjgAz6f39TURLV0dnaamJj8+uuvCj3r6+utrKyWLFmCENq2bZvCUvyeDPVTAet5A443ARj7du3a1dTUtGnTJqolPz8flwvAOBzO1KlTnzx5Qn8uVrXm5uZDhw4tXrzY1taWauTxeN3d3cqv842KigoLCxvsdZVisTg0NHT16tX6Mo0X8iYAYxxJkunp6Z6envb29iq61dbWIoTGjRun5rC4QiCuRqja4cOHr169mpycrKJPSEhIXV0d9YiEjoO8CcYgPEt0ypQpHA7HysrqjTfeOH/+PF60fft2fLmZ+sGfOXMGt1BFVfBLMrq6uoqLi/EiPC0ftxME4eDgUFZW5ufnZ2FhYWZmNmfOHOohqJGMP0oqKyubm5vFYrGKPpmZmTU1Nc7OzlOnTlVz2J9//hkhZGVltXr1akdHRw6HM3HixJiYmLa2Nnq3urq61atXHz58WPUbX1588UWE0Pfff6/m1lnG4jUCUgeuUwA9oub1zcbGxkmTJtna2ubl5bW3t1+/fl0qlRIEQX9qQPnaoru7u7W1Nb1lsOuPYrGYx+NJJBJchLSsrMzV1ZXD4RQWFmpkfHXKqmJqXt88evQoQujjjz8ecOnVq1djYmLwu04vXrw45GgUXFRQKBQuXry4pqbmwYMHmZmZPB7P2dlZJpNR3QICApYvX06PRPn6JkmSuOaLt7e3OptmPW/A8SYYaxITE2/evJmSkjJv3jw+n+/s7PzVV1/Z2dnFxMSM5OWgdF1dXfv375dIJDwez8PDIysrq7e3NzY2ViODU49XaWQ09EfBwAHLUCGEXF1ds7OzV65ceeXKFXqFwCF1d3cjhLhcbkZGxuTJky0tLZcuXZqYmFhdXb17927cJy0t7caNG7t27RpyND6fTxAEDlX3Qd4EYw2ehxgYGEi1mJiY+Pn5PX78WFOngTweD59XYjNmzLC3t6+srNTIz76wsLCtrU0ikYx8KAwnOGNj48E6nDt3LjU1VfXVT2X4Kd65c+fSLzIEBQWhP06379y5s2bNmsOHDys87zsYIyMj6h0EOg7yJhhTcJVPU1NThatp+J5vU1OTRrZiaWmp0GJjY4MQamlp0cj4mmVqaooQot4ipSlOTk4IIWtra3oj3g/37t1DCOHrJLNnz6amMON5SBs3bsQff//9d/q6crl8tF9HqCmQN8GYYmJiIhAIuru7Hz58SG/HZ+hCoRB/NDAw6O3tpXeQyWQKQ1GVopS1trYqnEfjjImzxsjH1yw7OzuEEL6AqEH4xpfCITbeD/j/UitWrFC4LKhwffPZZ5+lVuzo6CBJEoeq+yBvgrEGl5enz2jp6ekpKCjgcrkBAQG4xc7Orr6+nurQ1NR0584dhXHMzMyo3Pf8888fOnSIWtTd3V1WVkZ9/PXXXxsaGsRiMfWzH+H4moVnU+KXaiiTy+UuLi7DGPbNN98UiURnzpzB1wEw/ETQW2+9xXQ0vLuUJ37qJsibYKzZsWPHpEmT4uLi8vPzHz58WF1d/c477zQ2NqamplIztP39/RsaGvbu3dvZ2VlTUxMbG0sdKlJeeuml6urqu3fvlpSU1NbWent7U4sEAsH69etLSkq6urrKy8sjIiI4HE5qairVYSTjMy2rOiSxWGxjY1NZWam8KC0tjcfjrV27VnlRREQEQRA3b94cbFgTE5P09PTW1taFCxfeuHFDJpMdPXp0x44dnp6eMTExTIPEr4MebGK8ztHivfsBILbnEwA9ov5zlvfv34+Li5s0aZKxsbFAIAgICCgoKKB3kMlkkZGRdnZ2XC7Xy8urrKzM3d0d/yLWrVuH+1RVVXl7e/N4PEdHx3379lHrisVikUh07dq1gIAACwsLLpfr4+NTVFSkqfGHLKtKUf85y/Xr1xsZGdXX1yu0HzhwgMvlxsfHK6/i6+trbm4ul8tVj3zhwoWAgACBQMDhcFxcXDZv3vzo0SPlbtHR0QqZJyAggN4hLCxMJBL19vaq83VYzxuQN4He0JG6xThvsh0FSTLJmzKZTCQS0Z9PV+3BgwdcLjcyMnIE0TGAn08/duyYmv1Zzxtwng7A2CcQCPLy8nJycvDL+FQjSTImJobP52/btk0LsdXW1kql0sTExIULF2phcxoBeROAp4Kbm1t5efnp06dx/U0Vmpuba2trCwoKqOkHo+rgwYNJSUlJSUla2JamQN4EQF34ufLKysr6+nqCIDZs2MB2RMw4OTnl5+fj+psqCIXCoqKiadOmaSeqnTt36tGRJgYvEQRAXfHx8fHx8WxHAdgHx5sAAMAM5E0AAGAG8iYAADADeRMAAJhh/77Qnj17srOz2Y4C6AH8hHVYWBjbgegK/Cwm7BDtI0jNlUcdBvhPDgZz+vRpNzc37UwhBHpn1apVGixRyhTLeROAweAXwy5YsIDtQABQBNc3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzRmwHAMB/yWQykiTpLV1dXQ8ePKA+mpubGxsbaz0uABQRCn+pALDF19f3/Pnzgy01NDSsr6+3tbXVZkgADAjO04GuWLRoEUEQAy4yMDB49dVXIWkCHQF5E+iK0NBQI6OBLxwRBLF06VItxwPAYCBvAl1hZWXl7+9vaGiovMjAwCAkJET7IQEwIMibQIdERET09/crNBoZGQUGBgoEAlZCAkAZ5E2gQ4KDg01MTBQanzx5EhERwUo8AAwI8ibQIWZmZiEhIQqTjbhc7ptvvslWSAAog7wJdMs777zT19dHfTQ2Ng4NDeVyuSyGBIACyJtAtwQEBNAvZfb19b3zzjssxgOAMsibQLcYGxsvXLiQw+Hgj5aWln5+fuyGBIACyJtA5yxatKi3txchZGxsHBERMdikTgDYAs9ZAp3T399vb2/f3NyMECoqKnrllVfYjgiAP4HjTaBzDAwMlixZghCys7ObNWsW2+EAoIjlM6ATJ06wGwDQTc888wxCyNPTMzs7m+1YgC6aNWuWg4MDa5snWcXa1wYA6LPjx4+zmLjYv+J+/PjxBQsWsB0F0Dk5OTmhoaH0lhMnToSHh8P/bilhYWEIoafwkHywullaA9c3gY5SSJoA6A7ImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CcDT4vbt28HBwR0dHQihxsbGpKQkDw8PPp8vFAp9fHxyc3OHMWZfX9+ePXvc3d0tLCxsbGzeeOONvLy8weY8BAcHEwSxfft2emNCQsLx48eHsWkWQd4EY19nZ+dzzz03b948tgNhU0VFhYeHh7+/P5/PRwhFRUWlpKRs2bKlsbGxtLTUwcFBKpUmJCQwGrOrq8vX1zcjI2PPnj0tLS3l5eXm5ubBwcFXr15V7nzkyJG8vDzl9qioqMTExI0bNw7ve7EC8iYY+0iS7O/vV34Dh9aYm5t7eXmxtXWEUEdHR1BQ0Ntvv71y5UqqMTk5OTAwkMfjOTk5ffHFFyKRKDk5uaWlRf1h16xZc/ny5R9++OHVV1/lcrkTJkzIyMhQrtiPEGpoaIiLi8OPzyqYMmVKbm5uUlKSHj09CHkTjH0WFhY1NTXfffcd24GwZteuXU1NTZs2baJa8vPz3333Xeojh8OZOnXqkydPrl+/ruaYzc3Nhw4dWrx4Mf39zDwer7u7e/r06Qqdo6KiwsLC/P39BxxKLBaHhoauXr1aLper+5VYBXkTgDGOJMn09HRPT097e3sV3WpraxFC48aNU3PYb7/99smTJ+ocRx8+fPjq1avJyckq+oSEhNTV1Z06dUrNrbML8iYY406ePEn8obu7W6Hl1q1b4eHhlpaW1tbW8+bNq6mpwWslJyfjDg4ODmVlZX5+fhYWFmZmZnPmzCkuLsZ9tm/fjvtQuePMmTO4Bdclocbp6uoqLi7Gi7RfTrSysrK5uVksFqvok5mZWVNT4+zsPHXqVDWH/fnnnxFCVlZWq1evdnR05HA4EydOjImJaWtro3erq6tbvXr14cOHLSwsVIz24osvIoS+//57NbfOMhafjcc33dh9Ph/oEXzXdXjrzp8/HyH0+PFjhZb58+dfuHChs7Pz7NmzXC535syZ9LXEYjGPx5NIJLhPWVmZq6srh8MpLCyk+vB4vFdeeYW+lru7u7W1Nb1FuQ82Z86ccePGlZSUDO9LhYaGhoaGDtnt6NGjCKGPP/54wKVXr16NiYkxMDCwsrK6ePGi+lvHO1AoFC5evLimpubBgweZmZk8Hs/Z2Vkmk1HdAgICli9fTo9k27ZtyqO1t7cjhLy9vdXZNOt5A443wVMtMjJSIpHweLy5c+cGBgaWlZXdv3+f3qGrq2v//v24j4eHR1ZWVm9vb2xsrEa23t/fTyWC0dPY2IgQGuwF9K6urtnZ2StXrrxy5crMmTPVHxYfvHO53IyMjMmTJ1taWi5dujQxMbG6unr37t24T1pa2o0bN3bt2jXkaHw+nyAIHKrug7wJnmr0TOHo6IgQamhooHfg8Xj4FBKbMWOGvb19ZWWlRn7hhYWFbW1tEolk5EOpgBOcwtuV6c6dO5eamqr66qcyHo+HEJo7dy79ykNQUBD643T7zp07a9asOXz4MO45JCMjo8ePHzOKgS2QN8FTjX4Uhl8GpzBdydLSUmEVGxsbhBCj+TrsMjU1RQjR366sEU5OTggha2treiPeOffu3UMI5eXltbe3z549m7qajOchbdy4EX/8/fff6evK5XJ9eeEz5E0AVGltbVU4j8YZEycIhJCBgQF+ixxFJpMpDMJuvUg7OzuEEL6AqEH4bpjCcTfeOXhm0ooVKxQuCypc33z22WepFTs6OkiSxKHqPsibAKjS3d1dVlZGffz1118bGhrEYjH1C7ezs6uvr6c6NDU13blzR2EQMzMzKrc+//zzhw4dGuWo/wTPpqyrqxtwqVwud3FxGcawb775pkgkOnPmDL4OgOEngt566y2mo+F9qDzxUzdB3gRAFYFAsH79+pKSkq6urvLy8oiICA6Hk5qaSnXw9/dvaGjYu3dvZ2dnTU1NbGwsdShKeemll6qrq+/evVtSUlJbW+vt7Y3bfX19ra2tS0tLR/UriMViGxubyspK5UVpaWk8Hm/t2rXKiyIiIgiCuHnz5mDDmpiYpKent7a2Lly48MaNGzKZ7OjRozt27PD09IyJiWEaZEVFBUJosInxOkeL9+4HgNieTwD0yPDmISmUq1i8eHFJSQm95aOPPiL/fCYeGBiI1xWLxSKR6Nq1awEBARYWFlwu18fHp6ioiD6+TCaLjIy0s7PjcrleXl5lZWXu7u54nHXr1uE+VVVV3t7ePB7P0dFx37591Lre3t5WVlYXLlwY3g5Rcx4SSZLr1683MjKqr69XaD9w4ACXy42Pj1dexdfX19zcXC6Xqx75woULAQEBAoGAw+G4uLhs3rz50aNHyt2io6MVMk9AQAC9Q1hYmEgk6u3tVefrsJ43IG8CvTGS+ZvDg/OmNrfIiPp5UyaTiUSi6OhoNUd+8OABl8uNjIwcQXQMVFRUEARx7NgxNfuznjf04Dzd3NycoMETdMVi8fLlyy9dusR2dKPiwYMHBw4c8PX1HTduHJfLfe655xYvXjzgeZZqT+GuAwMSCAR5eXk5OTn79u0bsjNJkjExMXw+f9u2bVqIrba2ViqVJiYmLly4UAub0wg9yJudnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5Rw9asWfO3v/1t/vz5165da21tPXz4cEVFhbu7+8mTJxmN8xTuOjAYNze38vLy06dP4/qbKjQ3N9fW1hYUFAiFQi0EdvDgwaSkpKSkJC1sS2NYPNYl1T7epv/46fD17ODgYOq5i7Hhr3/96/vvv09vwVfNn3vuOaZDjaVdp83z9E8//ZT+M8HXQHWN+ufpY4yaeWP06MHxpgqffPKJp6fnt99++/XXX7Mdiyalp6cfPHiQ3iIWi7lcbk1NDamhZ/LG6q7TFIVbJQolysFTTr/zJkEQuA7r/v372Y5ldHV1dT1+/Hj69OmamkH99Ow6ADROv/Mm+uOhhdLSUuoxsnv37sXExDg5OXE4nPHjx0ulUnySi9QrIIYQ6unp2bRpk4uLi5mZ2bhx44KCgnCpQaqDik2opmYAyrKzsxFCH330EcPdo4p+7ToAdAhL1wf+C43s+iZJklQhgIaGBpIkGxoaJk6caGtre+rUqYcPH165csXHx8fU1JQ+RW7IAmKRkZECgeCHH3549OhRU1NTfHw8Quj8+fN4qTqbUE2dCmZ0TU1Ntra2ypNC1KlCNpZ2nfbnIek4uL7JWgAsbpvURN6k7gjjHz8u/f/ll19SHRobG01MTNzd3akW/OPHb93DQkNDEUL37t3DHydNmjRr1iz6VpydnakfvzqbUG3IAOju37//4osvhoeHK89A9vHxGXLW9FjadZA3FUDeZIu2S09rHC4rYGxsjCtsnzx50sDAgP7mQqFQOG3atEuXLtXV1Tk4OFDtAxYQw4O8/vrrn3/++fvvv79s2bKZM2caGhrSX7qi/iZUUxEApaurKyAgYOrUqUeOHDE0NFQYobCwUM1tDUhPd11YWNiwv/IYgx/QhB2ifXp/fbOoqAghJJFIjI2Ne3p62tvb+/v7BQIBfb43Luh/48YN+ooqCojt27fvyJEjtbW1fn5+fD7/9ddfp57VY7QJ1YasYCaXy/HDZ5mZmcpJc+T0d9cBwC79Pt7s7+/Hzz+sWLECIWRiYmJpadnZ2fn48eORvMUFFwpcsmRJX19fYWFhcnKyVCrdvXv3qlWrNLUJdURHR/f09OTm5lIbevbZZ7Oysl5++eWRD66/uw7fIgPojyPNp3CHsFuXD+n78WZiYuLFixdDQkKoUxWpVCqXy6k3Z2E7d+6cMGGC+q8YtbS0rKqqQggZGxu/9tpr+FYy9aY9jWxiSJs3b7569eo333wz4NuoR24M7zoARpv+5c3+/v6WlpZvvvnGz89v165dy5Yt+/LLL6n//+zYsWPKlCnLli07ffp0e3t7W1vbwYMHt27dmpyczOgY53/+538uX77c09PT0tKya9cukiR9fX01uwkVMjIytmzZ8tNPP1lYWNBPaRXmKjGtQvY07DoAtIHFe1KkevfFFF5OQhCEQCCYMWPGBx98cOnSJeX+ra2tq1atmjx5srGx8fjx4/39/c+ePYsXqVlArKKiIjo6+oUXXsCTEF9++eW0tDT684gqNqGamgEEBgYO9t+LPutoyCpkY2nXkXA/XQncT2cLQY7yu/RUIwji+PHjCxYsYDEGoC9OnDgRHh7O7l+sTnmar2+ymzf07zwdADA8t2/fDg4OxvWQGhsbk5KSPDw8+Hy+UCj08fFRKPCspr6+vj179ri7u1tYWNjY2Lzxxht4eu+AnYODgwmCUHjYPyEhAZ9J6BHImwA8FSoqKjw8PPz9/fl8PkIoKioqJSVly5YtjY2NpaWlDg4OUqk0ISGB0ZhdXV2+vr4ZGRl79uxpaWkpLy83NzcPDg6+evWqcucjR47gtw8piIqKSkxM3Lhx4/C+Fysgb2oYMbjNmzezHR1gwNzcHD/Cr6fj03V0dAQFBb399tu4mAuWnJwcGBjI4/GcnJy++OILkUiUnJzM6P3Ga9asuXz58g8//PDqq69yudwJEyZkZGQMOAOkoaEhLi4OvwdYwZQpU3Jzc5OSkk6cODGMr8YKuImpYXD1DeigXbt2NTU1bdq0iWrJz8+nd+BwOFOnTq2vr79+/brye+UG1NzcfOjQoffffx+/9Rfj8Xj011tSoqKiwsLCvL298auAFYjF4tDQ0NWrV0ulUr2YWQHHmwCMcSRJpqene3p62tvbq+hWW1uLEBo3bpyaw+JKV+ocMh8+fPjq1avJyckq+oSEhNTV1VFTfXUc5E0wBuHZTlOmTOFwOFZWVm+88cb58+fxou3bt+PLJtQP/syZM7iFKg6QnJxMEERXV1dxcTFehA+CcDtBEA4ODmVlZX5+fhYWFmZmZnPmzKEm849k/FFSWVnZ3NwsFotV9MnMzKypqXF2dp46daqaw+IHZK2srFavXu3o6MjhcCZOnBgTE9PW1kbvVldXt3r16sOHD1tYWKgY7cUXX0QIff/992punWUszoEidWAeFtAjas7fbGxsnDRpkq2tbV5eXnt7+/Xr16VSKUEQaWlpVB8ej/fKK6/Q13J3d7e2tqa3KPfBxGIxj8eTSCS4mF5ZWZmrqyuHwyksLNTI+OqUB8TUnL+JT40//vjjAZdevXo1JiYGv7Pv4sWLQ45GwcWxhELh4sWLa2pqHjx4kJmZyePxnJ2dZTIZ1S0gIGD58uX0SLZt26Y8Wnt7O0LI29tbnU2znjfgeBOMNYmJiTdv3kxJSZk3bx6fz3d2dv7qq6/s7OxiYmKam5s1somurq79+/dLJBIej+fh4ZGVldXb2xsbG6uRwanHBDQyGvqj8BW9Ggudq6trdnb2ypUrr1y5Qq90NSR8HZPL5WZkZEyePNnS0nLp0qWJiYnV1dW7d+/GfdLS0m7cuLFr164hR+Pz+QRB4FB1H+RNMNbgeYj0Z65MTEz8/PweP36sqdNAHo+HzyuxGTNm2NvbV1ZWauRnX1hY2NbWJpFIRj4UhhOcsbHxYB3OnTuXmpqq+uqnMvw02ty5c+kXGYKCgtAfp9t37txZs2bN4cOHFZ5bG4yRkRFVS1vHQd4EYwquVmdqaqpwNQ3f821qatLIViwtLRVa8D1oRpN4tMbU1BQhRL0NRVOcnJwQQtbW1vRGvB/u3buHEMLXSWbPnk1NxcPzkDZu3Ig//v777/R15XI5l8vVbJCjBPImGFNMTEwEAkF3d/fDhw/p7fgMnXohuIGBQW9vL72DTCZTGEpFsbLW1laF82icMakZPCMcX7Ps7OwQQvgCogbhG18Kh9h4P+D/S61YsULhsqDC9c1nn32WWrGjo4MkSRyq7oO8CcaakJAQhBB9RktPT09BQQGXyw0ICMAtdnZ29fX1VIempqY7d+4ojGNmZkblvueff/7QoUPUou7u7rKyMurjr7/+2tDQIBaLqZ/9CMfXrOnTpyOE6urqBlwql8tdXFyGMeybb74pEonOnDlDn7CJnwh66623mI6GdxcOVfdB3gRjzY4dOyZNmhQXF5efn//w4cPq6up33nmnsbExNTWVmqHt7+/f0NCwd+/ezs7Ompqa2NhY5cneL730UnV19d27d0tKSmpra729valFAoFg/fr1JSUlXV1d5eXlERERHA4nNTWV6jCS8ZmWBxySWCy2sbGprKxUXpSWlsbj8dauXau8KCIigiCImzdvDjasiYlJenp6a2vrwoULb9y4IZPJjh49umPHDk9Pz5iYGKZB4tea+vv7M12RHVq8dz8AxPZ8AqBH1K8jd//+/bi4uEmTJhkbGwsEgoCAgIKCAnoHmUwWGRlpZ2fH5XK9vLzKysrc3d3xL2LdunW4T1VVlbe3N4/Hc3R03LdvH7WuWCwWiUTXrl0LCAiwsLDgcrk+Pj5FRUWaGn/I8oAU9evIrV+/3sjIqL6+XqH9wIEDXC43Pj5eeRVfX19zc3PltwEquHDhQkBAgEAg4HA4Li4umzdvfvTokXK36OhohcwTEBBA74BfCdPb26vO12E9b0DeBHpDR+pv4rzJdhQkySRvymQykUgUHR2t5sgPHjzgcrnKr54eJRUVFQRBHDt2TM3+rOcNOE8HYOwTCAR5eXk5OTn4pVKqkSQZExPD5/O3bdumhdhqa2ulUmliYuLChQu1sDmNgLwJwFPBzc2tvLz89OnTuP6mCs3NzbW1tQUFBdT0g4kfVAAAFiBJREFUg1F18ODBpKSkpKQkLWxLUyBvAqAu/Fx5ZWVlfX09QRAbNmxgOyJmnJyc8vPzcf1NFYRCYVFR0bRp07QT1c6dO/XoSBPTg5JNAOiI+Pj4+Ph4tqMA7IPjTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAhlicc0/CK8wAAMPC7vNCLM9D0rv3zQOtCQ8Pj4uL02D5XjCWzJo1i8WtE3DQB3QTQRDHjx9fsGAB24EAoAiubwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZiBvAgAAM5A3AQCAGcibAADADORNAABgBvImAAAwA3kTAACYgbwJAADMQN4EAABmIG8CAAAzkDcBAIAZyJsAAMAM5E0AAGAG8iYAADADeRMAAJiBvAkAAMxA3gQAAGYgbwIAADOQNwEAgBnImwAAwAzkTQAAYAbyJgAAMAN5EwAAmIG8CQAAzEDeBAAAZozYDgCA/zp27NjDhw/pLf/6179kMhn1MSQkZPz48VqPCwBFBEmSbMcAAEIIvffee5mZmcbGxvgj/sskCAIh9OTJE3Nz85aWFhMTEzZDBAAhBOfpQHcsWrQIIdT3B7lcLpfL8b8NDQ3DwsIgaQIdAcebQFfI5XJbW9u2trYBlxYUFPj6+mo5JAAGBMebQFcYGRktWrSIOk+ne+aZZ3x8fLQfEgADgrwJdMiiRYv6+voUGo2NjZcsWWJoaMhKSAAog/N0oENIkpwwYUJdXZ1C+8WLF2fOnMlKSAAog+NNoEMIgoiIiFA4VXd0dPTw8GArJACUQd4EukXhVN3Y2Pi9997Ds5EA0BFwng50jouLy/Xr16mPV65cmTZtGovxAKAAjjeBzlmyZAl1qj516lRImkDXQN4EOiciIkIulyOEjI2N3333XbbDAUARnKcDXeTh4XHp0iWCIG7dujVhwgS2wwHgT+B4E+iipUuXIoQ8PT0haQIdpAf1kEpKSj777DO2owBa1d3dTRBET09PWFgY27EArZJIJKtWrWI7iiHowfHm3bt3c3Jy2I4CjK6cnBz6dHdTU1NbW1sHBwcWQ2JRXV3d0/k3X1paWlJSwnYUQ9OD400sOzub7RDAKCII4sMPP1ywYAHV8vvvvz/77LMshsSiEydOhIeHP4V/8/pyeqEHx5vg6fTUJk2g+yBvAgAAM5A3AQCAGcibAADADORNAPTe7du3g4ODOzo6EEKNjY1JSUkeHh58Pl8oFPr4+OTm5g5jzL6+vj179ri7u1tYWNjY2Lzxxht5eXmDPSYTHBxMEMT27dvpjQkJCcePHx/GpnUf5E2gxzo7O5977rl58+axHQibKioqPDw8/P39+Xw+QigqKiolJWXLli2NjY2lpaUODg5SqTQhIYHRmF1dXb6+vhkZGXv27GlpaSkvLzc3Nw8ODr569apy5yNHjuTl5Sm3R0VFJSYmbty4cXjfS5dB3gR6jCTJ/v7+/v5+tgIwNzf38vJia+sIoY6OjqCgoLfffnvlypVUY3JycmBgII/Hc3Jy+uKLL0QiUXJycktLi/rDrlmz5vLlyz/88MOrr77K5XInTJiQkZEx4HvxGhoa4uLilixZorxoypQpubm5SUlJJ06cGMZX02WQN4Ees7CwqKmp+e6779gOhDW7du1qamratGkT1ZKfn08vhsLhcKZOnfrkyRN6aT7VmpubDx06tHjxYltbW6qRx+N1d3dPnz5doXNUVFRYWJi/v/+AQ4nF4tDQ0NWrV+NCLWMG5E0A9BVJkunp6Z6envb29iq61dbWIoTGjRun5rDffvvtkydP1DmOPnz48NWrV5OTk1X0CQkJqaurO3XqlJpb1wuQN4G+OnnyJPGH7u5uhZZbt26Fh4dbWlpaW1vPmzevpqYGr5WcnIw7ODg4lJWV+fn5WVhYmJmZzZkzp7i4GPfZvn077kPljjNnzuCWZ555hj5OV1dXcXExXmRkpO2n7yorK5ubm8VisYo+mZmZNTU1zs7OU6dOVXPYn3/+GSFkZWW1evVqR0dHDoczceLEmJgYhVc019XVrV69+vDhwxYWFipGe/HFFxFC33//vZpb1w+kzsO35NiOAowuhNDx48eHseL8+fMRQo8fP1ZomT9//oULFzo7O8+ePcvlcmfOnElfSywW83g8iUSC+5SVlbm6unI4nMLCQqoPj8d75ZVX6Gu5u7tbW1vTW5T7YHPmzBk3blxJSckwvhGp9t/80aNHEUIff/zxgEuvXr0aExNjYGBgZWV18eJF9beOd6BQKFy8eHFNTc2DBw8yMzN5PJ6zs7NMJqO6BQQELF++nB7Jtm3blEdrb29HCHl7e6uz6dDQ0NDQUPVDZQscb4KxKTIyUiKR8Hi8uXPnBgYGlpWV3b9/n96hq6tr//79uI+Hh0dWVlZvb29sbKxGtt7f349/YBoZbTCNjY0IIYFAMOBSV1fX7OzslStXXrlyhdHbQPHBO5fLzcjImDx5sqWl5dKlSxMTE6urq3fv3o37pKWl3bhxY9euXUOOxufzCYLAoY4ZkDfB2ETPFI6OjgihhoYGegcej4dPIbEZM2bY29tXVlZq5BdeWFjY1tYmkUhGPpQKOMEpvP6T7ty5c6mpqaqvfirj8XgIoblz59KvPAQFBaE/Trfv3LmzZs2aw4cP455DMjIyevz4MaMYdBzkTTA20Y/COBwOQkhhupKlpaXCKjY2NgghRvN12GVqaooQor/+UyOcnJwQQtbW1vRGvHPu3buHEMrLy2tvb589ezZ1NRnPQ9q4cSP++Pvvv9PXlcvlXC5Xs0GyC/ImeEq1trYqnEfjjIkTBELIwMCgt7eX3kEmkykMwu4Liu3s7BBC+AKiBuG7YQrH3Xjn4JlJK1asULjep3B9k17LqqOjgyRJHOqYAXkTPKW6u7vLysqoj7/++mtDQ4NYLKZ+4XZ2dvX19VSHpqamO3fuKAxiZmZG5dbnn3/+0KFDoxz1n+DZlPR6z3RyudzFxWUYw7755psikejMmTP4OgCGnwh66623mI6G96HyxE+9BnkTPKUEAsH69etLSkq6urrKy8sjIiI4HE5qairVwd/fv6GhYe/evZ2dnTU1NbGxsdShKOWll16qrq6+e/duSUlJbW2tt7c3bvf19bW2ti4tLR3VryAWi21sbCorK5UXpaWl8Xi8tWvXKi+KiIggCOLmzZuDDWtiYpKent7a2rpw4cIbN27IZLKjR4/u2LHD09MzJiaGaZAVFRUIocEmxusrLd67HyaYh/Q0QMznISmUq1i8eLHCKxY++ugj8s9n4oGBgXhdsVgsEomuXbsWEBBgYWHB5XJ9fHyKioro48tkssjISDs7Oy6X6+XlVVZW5u7ujsdZt24d7lNVVeXt7c3j8RwdHfft20et6+3tbWVldeHCheHtDfX/5tevX29kZFRfX6/QfuDAAS6XGx8fr7yKr6+vubm5XC5XPfKFCxcCAgIEAgGHw3Fxcdm8efOjR4+Uu0VHRyuklICAAHqHsLAwkUjU29urztfRl3lIepCPIG8+DYaRN0cC502tbY4p9f/mZTKZSCSKjo5Wc+QHDx5wudzIyMgRRMdARUUFQRDHjh1Ts7++5E04TwdAjwkEgry8vJycnH379g3ZmSTJmJgYPp+/bds2LcRWW1srlUoTExMXLlyohc1p0xjMm+Xl5e+9956Tk5OpqamlpeXMmTO3bt2qfCdU35mbmxM0+LEQsVi8fPnyS5cusR0d0B43N7fy8vLTp0/j+psqNDc319bWFhQUCIVCLQR28ODBpKSkpKQkLWxLy8Za3kxMTHz55ZetrKzy8/NlMtnNmzf//ve/5+bmOjs7U08fjw2dnZ2//PILQmj+/PkkSfb19VVVVW3durWqqsrDw+Mvf/nLo0eP2I5RF+HnyisrK+vr6wmC2LBhA9sRaYCTk1N+fj6uv6mCUCgsKiqaNm2adqLauXPn2DvS/C+2LxQMTf1rPfjs48CBAwrtXV1duGz1b7/9xnTrgz2ArCkjGZ+eN+nwXdTg4GDqaT/dh7R7fVPHPbXX9OH6prb9/vvvW7Zseemll5Rv8JmZme3Zs+fhw4fDmEWhjz755BNPT89vv/3266+/ZjsWAMagsZM3Dxw4IJfLB3tvvbe3t729/dmzZ3EtwrGNIAhc/Xv//v1sxwLAGDR28uaPP/6IEFJRixAv+s9//oNGVmBRLwo44u2WlpZSDy/fu3cvJibGycmJw+GMHz9eKpXiCclIvbKVCKGenp5Nmza5uLiYmZmNGzcuKCgIF7ilOqjYBABjCtsXCoam5rUe/HjcTz/9NFiHiIgI9OdihSMpsKgLBRwHu75JkiRVfqahoYEkyYaGhokTJ9ra2p46derhw4dXrlzx8fExNTWlT8wesmxlZGSkQCD44YcfHj161NTUFB8fjxA6f/48XqrOJlRAcH2TBq5v6rixc7yJDVlnQYOFGHS5gKPCiomJibdv3/7ss8/efPNNc3PzadOmff311yRJ/u1vf1NYUUXZyoKCgmnTpr322mtcLtfW1vbTTz91dnYexiYA0Hfaruw/euzt7RsbG1tbWwfrgBcxrUWogooCjiOv/lJYWDiS1XExG2NjY3xZ4OTJkwYGBvT35QqFwmnTpl26dKmurs7BwYFqH7BsJR7k9ddf//zzz99///1ly5bNnDnT0NCQ/qov9TcxmPDw8PDw8JF86zGG3WJLbAkNDWU7hKGNnbzp4+Nz6dKlioqK119/fcAOuPzB7NmzNbXFAQs4NjQ0tLS0sF41q6ioCCEkkUiMjY17enpwqbEBC4PfuHGDntRUlK3ct2+fRCLJzMz08/NDCHl7e0dHR4eEhCCEGG1iMHFxcaNd6FdflJSUpKSk4LP1p8qePXvYDkEtYydvRkdH/+Mf/8jOzk5ISFBeWlRU1NDQEBQUNGHCBKpxhAUWcQFHegcdKeDY39+Pn7pbsWIFQsjExMTS0rKzs/Px48cjufWEy9MuWbKkr6+vsLAwOTlZKpXu3r171apVGtmERCJZsGDBsMMbY1JSUp7CvZGdnc12CGoZO9c3nZ2d//73v//8888HDx5UWPTo0aO4uDhra+uUlBR6+wgLLOpsAcfExMSLFy+GhIRQs7KkUqlcLld4Ymrnzp0TJkxQ/8XWlpaWVVVVCCFjY+PXXnsN34Wn3u+qkU0AoB/YuyWlLkb3FhMTEw0NDT/88MMrV650d3c/ePAgLy/Pzc1NJBKVl5crdMaTHP/3f/9/e/cf0sQbxwH8OdqmS91RUS5OyDkYZT9WMigCESbMwhJavyQEIRIJYklJNcEockThH45vfxgrIoIiCwo2jIhVf0STVJpggdImlTYPtMwVLVmsPx467uvmdbeb7e72ef3n3eNzj/P4sN3z7P38F41G3717d+DAAYqi5s1379ixgyTJDx8+vHz5UqVSvX37Fh83m80kSVZXV3PMp4vpX+h8+q9fv2iafvjwodVqRQgdPnyYnfpF07TRaCwrK+vt7Z2ZmZmenu7u7l66dCl7Cjt5Y8jTp08jhF6/fo1/JEmyqqpqaGgoFovRNH3u3DmEUEdHB/9LcEAwn84C8+kSJ4P/jdB7qL+/v7Gxcc2aNRqNpqioyGKxdHR0sPcvZYgJWMx6gOO8LbEIgiBJcuPGjUePHh0cHExuPz09feLEibKyMrVavXLlSpvN9uTJE3yKZ2xlMBhsbm5et24dXr+5bds2j8fD/ionxyX+CuomG9RNiSMSi7xVqXg9PT0HDx6U2jg3b948NTW10BYFQCiCIO7evZuDT/RSkuY9/w/gJ0vSf8qpnOebAADG+/fv6+rqcLJcJBJxuVwWi0Wn0+n1+qqqqnlR+fz19vaaTKaUU39nzpzJnQUAUDcBUJpgMGixWGw2G06Wa2pq6urqOn/+fCQS6evrKykpsdvtKZedcAiFQnV1dU6nk6bplA2ampqcTmd7e3sG/gDJg7opmCIDHHNKYWEhkxsgx/65zc7O7t69e+/evXhaEuvs7KytrS0oKCgtLb1x4wZFUZ2dnYJ2im9vb9++ffvg4GBRUVHKBkaj8cGDBy6Xq6enR+zfIHnKWb/5z7S2tuKvZgMgQZcvX56cnDx79ixzxOfzsRtoNJry8vKJiYmRkZHkHToXcv36da1Wy93GbDbv27fv5MmTdrs9gyE1EgTvNwFQjkQice3ata1bt3J/nxinKS5fvpx/z38tmtiePXvGx8eZVb1KBXUTyAle6mQ0GjUazbJly3bu3Pns2TN8SvHZgHwMDQ3RNM2RpogQunnzZigUMplM5eXlGR8ATmx4/PhxxnuWluwug+IjZ9ey5RTEY/1mJBIxGAzFxcVer/fr168jIyN2u50gCI/Hw7SRezYglvY9f+vWLfT/sES2N2/eOBwOvIXfq1ev0ug/kUhQFLVkyZKFzuKYgsrKyvQ6l8v6TXi/CWTD6XSOjY11dXXt2rVLp9OZTKbbt2+vXr3a4XAsNMkrlJSzAfnAOVgp01UQQps2bbp3796xY8eGh4fZwVcZpNPpCILAw1AwqJtANvCqw9raWuZIXl5edXX1jx8/MvXBkCMbUHznz58///z586JmPsViMYSQWq1eqMHTp0/dbncG0xSTqVQqJjZbqaBuAnnAUXX5+fnz1sEUFxcjhCYnJzNylZTZgOhP0pX05efnI4SYzVGyIh6P85xEki+om0Ae8vLySJKMxWLRaJR9HH9C1+v1+MeMZAOyj0gkG5AnnMWFHzJmxezsbOLPpjUKBnUTyAbOSGavcfn586ff79dqtTU1NfiIUrMBedqwYQNCaKHYhHg8vnbt2kUdAH5x8DAUDOomkI2LFy8aDIaWlhafzxeNRkdHRw8dOhSJRNxuN/60jhCy2WyfPn26cuXKt2/fQqHQ8ePHk5d2V1RUjI6Ofvz4MRAIhMPhyspK5hRJkm1tbYFA4Pv37wMDAw0NDRqNxu12Mw3E9G+1WlesWNHX15f5l+YPs9m8atUqvLXBPB6Pp6Cg4NSpU8mnGhoaCIIYGxsTPwC8g6nNZhPflaRlczKfH1iHlAsQvxy5qamplpYWg8GgVqtJkqypqfH7/ewGss4GZIi559va2lQq1cTExLzj3d3dWq22tbU1+VesVmthYWE8Hufo1uv1JlcP9gowbP/+/RRFzc3NpTd4uaxDkkE9grqZC3jWzUWF62Z2x4CJuednZmYoimpububZ/suXL1qt9siRI+ldji0YDBIEcefOnbR7kEvdhM/pACgKSZJer/f+/ft4jyluiUTC4XDodLoLFy6IvG44HLbb7U6ns76+XmRX0gd1EwCl2bJly8DAwKNHj3D+JgeapsPhsN/vZxYkpO3q1asul8vlconsRxagbgKgwGzA0tJSn8+H8zc56PX6Fy9erF+/XvwVL126lAvvNDElZz0BwBNkAwJB4P0mAAAIA3UTAACEgboJAADCQN0EAABhZDMvlAubPeW4QCCQ7SFIBX4pcvCeHx8fLykpyfYoeMj2wvu/y51NmQEAsvi+EJFYzPRpAABQHni+CQAAwkDdBAAAYaBuAgCAMFA3AQBAmN/I1Q74MRFjcwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model=get_model_v1( (13,) )\n",
"\n",
"model.summary()\n",
"keras.utils.plot_model( model, to_file='./run/model.png', show_shapes=True, show_layer_names=True, dpi=96)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train on 354 samples, validate on 152 samples\n",
"Epoch 1/100\n",
"354/354 [==============================] - 1s 2ms/sample - loss: 536.0845 - mae: 21.3335 - mse: 536.0846 - val_loss: 439.6562 - val_mae: 19.3198 - val_mse: 439.6562\n",
"354/354 [==============================] - 0s 216us/sample - loss: 354.0647 - mae: 16.8618 - mse: 354.0648 - val_loss: 231.3198 - val_mae: 13.5154 - val_mse: 231.3199\n",
"354/354 [==============================] - 0s 194us/sample - loss: 155.7450 - mae: 9.9432 - mse: 155.7450 - val_loss: 69.8093 - val_mae: 6.2267 - val_mse: 69.8093\n",
"354/354 [==============================] - 0s 170us/sample - loss: 55.4497 - mae: 5.2375 - mse: 55.4497 - val_loss: 28.5090 - val_mae: 4.0794 - val_mse: 28.5090\n",
"354/354 [==============================] - 0s 172us/sample - loss: 31.6844 - mae: 4.0017 - mse: 31.6844 - val_loss: 21.9792 - val_mae: 3.3949 - val_mse: 21.9792\n",
"354/354 [==============================] - 0s 175us/sample - loss: 24.5126 - mae: 3.4343 - mse: 24.5126 - val_loss: 18.8066 - val_mae: 3.1393 - val_mse: 18.8066\n",
"354/354 [==============================] - 0s 176us/sample - loss: 21.5744 - mae: 3.2008 - mse: 21.5744 - val_loss: 16.6019 - val_mae: 3.0136 - val_mse: 16.6019\n",
"354/354 [==============================] - 0s 174us/sample - loss: 19.6449 - mae: 3.0134 - mse: 19.6449 - val_loss: 15.8376 - val_mae: 2.9888 - val_mse: 15.8376\n",
"354/354 [==============================] - 0s 170us/sample - loss: 18.6252 - mae: 2.9144 - mse: 18.6252 - val_loss: 15.3001 - val_mae: 2.9692 - val_mse: 15.3001\n",
"354/354 [==============================] - 0s 173us/sample - loss: 17.0981 - mae: 2.7810 - mse: 17.0981 - val_loss: 14.8818 - val_mae: 2.9166 - val_mse: 14.8818\n",
"354/354 [==============================] - 0s 169us/sample - loss: 16.0782 - mae: 2.6914 - mse: 16.0782 - val_loss: 14.3696 - val_mae: 2.8419 - val_mse: 14.3696\n",
"354/354 [==============================] - 0s 174us/sample - loss: 15.5677 - mae: 2.6683 - mse: 15.5677 - val_loss: 13.9912 - val_mae: 2.8576 - val_mse: 13.9912\n",
"354/354 [==============================] - 0s 185us/sample - loss: 14.8428 - mae: 2.5991 - mse: 14.8428 - val_loss: 14.3104 - val_mae: 2.8784 - val_mse: 14.3104\n",
"354/354 [==============================] - 0s 174us/sample - loss: 14.3035 - mae: 2.5320 - mse: 14.3035 - val_loss: 13.7014 - val_mae: 2.7929 - val_mse: 13.7014\n",
"354/354 [==============================] - 0s 174us/sample - loss: 13.6874 - mae: 2.4875 - mse: 13.6874 - val_loss: 13.2517 - val_mae: 2.7346 - val_mse: 13.2517\n",
"354/354 [==============================] - 0s 169us/sample - loss: 13.3831 - mae: 2.4476 - mse: 13.3831 - val_loss: 13.0551 - val_mae: 2.7135 - val_mse: 13.0551\n",
"354/354 [==============================] - 0s 173us/sample - loss: 13.1403 - mae: 2.4844 - mse: 13.1403 - val_loss: 13.0990 - val_mae: 2.6770 - val_mse: 13.0990\n",
"354/354 [==============================] - 0s 167us/sample - loss: 12.7370 - mae: 2.3913 - mse: 12.7370 - val_loss: 12.6409 - val_mae: 2.6264 - val_mse: 12.6409\n",
"354/354 [==============================] - 0s 175us/sample - loss: 12.3546 - mae: 2.3600 - mse: 12.3546 - val_loss: 12.5174 - val_mae: 2.7141 - val_mse: 12.5174\n",
"354/354 [==============================] - 0s 166us/sample - loss: 12.1547 - mae: 2.3828 - mse: 12.1547 - val_loss: 12.1408 - val_mae: 2.6063 - val_mse: 12.1408\n",
"354/354 [==============================] - 0s 179us/sample - loss: 11.8888 - mae: 2.3270 - mse: 11.8888 - val_loss: 11.9719 - val_mae: 2.5967 - val_mse: 11.9719\n",
"354/354 [==============================] - 0s 189us/sample - loss: 11.6794 - mae: 2.3303 - mse: 11.6794 - val_loss: 11.8047 - val_mae: 2.5511 - val_mse: 11.8047\n",
"354/354 [==============================] - 0s 170us/sample - loss: 11.3378 - mae: 2.3021 - mse: 11.3378 - val_loss: 12.4017 - val_mae: 2.6941 - val_mse: 12.4017\n",
"354/354 [==============================] - 0s 186us/sample - loss: 10.9016 - mae: 2.3034 - mse: 10.9016 - val_loss: 12.3386 - val_mae: 2.5292 - val_mse: 12.3386\n",
"354/354 [==============================] - 0s 202us/sample - loss: 10.7163 - mae: 2.3021 - mse: 10.7163 - val_loss: 12.2563 - val_mae: 2.5674 - val_mse: 12.2563\n",
"354/354 [==============================] - 0s 192us/sample - loss: 10.8481 - mae: 2.2104 - mse: 10.8481 - val_loss: 11.2348 - val_mae: 2.4873 - val_mse: 11.2348\n",
"354/354 [==============================] - 0s 192us/sample - loss: 10.7446 - mae: 2.2232 - mse: 10.7446 - val_loss: 11.4269 - val_mae: 2.5686 - val_mse: 11.4269\n",
"354/354 [==============================] - 0s 187us/sample - loss: 10.1381 - mae: 2.1918 - mse: 10.1381 - val_loss: 13.4143 - val_mae: 2.6246 - val_mse: 13.4143\n",
"354/354 [==============================] - 0s 176us/sample - loss: 10.5442 - mae: 2.1971 - mse: 10.5442 - val_loss: 11.4616 - val_mae: 2.4741 - val_mse: 11.4616\n",
"354/354 [==============================] - 0s 218us/sample - loss: 10.2099 - mae: 2.1867 - mse: 10.2099 - val_loss: 11.4631 - val_mae: 2.4684 - val_mse: 11.4631\n",
"354/354 [==============================] - 0s 202us/sample - loss: 9.5920 - mae: 2.1342 - mse: 9.5920 - val_loss: 12.5109 - val_mae: 2.6033 - val_mse: 12.5109\n",
"354/354 [==============================] - 0s 179us/sample - loss: 9.9940 - mae: 2.1424 - mse: 9.9940 - val_loss: 11.1528 - val_mae: 2.4392 - val_mse: 11.1528\n",
"354/354 [==============================] - 0s 197us/sample - loss: 9.5950 - mae: 2.1156 - mse: 9.5950 - val_loss: 12.0327 - val_mae: 2.6225 - val_mse: 12.0327\n",
"354/354 [==============================] - 0s 228us/sample - loss: 9.6256 - mae: 2.0962 - mse: 9.6256 - val_loss: 10.8296 - val_mae: 2.4168 - val_mse: 10.8296\n",
"354/354 [==============================] - 0s 179us/sample - loss: 9.3365 - mae: 2.1271 - mse: 9.3365 - val_loss: 10.7088 - val_mae: 2.5094 - val_mse: 10.7088\n",
"354/354 [==============================] - 0s 184us/sample - loss: 9.2796 - mae: 2.0914 - mse: 9.2796 - val_loss: 10.7439 - val_mae: 2.4282 - val_mse: 10.7439\n",
"354/354 [==============================] - 0s 186us/sample - loss: 8.7178 - mae: 2.0390 - mse: 8.7178 - val_loss: 13.1923 - val_mae: 2.5942 - val_mse: 13.1923\n",
"354/354 [==============================] - 0s 202us/sample - loss: 8.8195 - mae: 2.0927 - mse: 8.8195 - val_loss: 10.9034 - val_mae: 2.5152 - val_mse: 10.9034\n",
"354/354 [==============================] - 0s 190us/sample - loss: 8.9152 - mae: 2.0784 - mse: 8.9152 - val_loss: 11.3023 - val_mae: 2.4404 - val_mse: 11.3023\n",
"354/354 [==============================] - 0s 196us/sample - loss: 8.8418 - mae: 2.0187 - mse: 8.8418 - val_loss: 10.7721 - val_mae: 2.5067 - val_mse: 10.7721\n",
"354/354 [==============================] - 0s 181us/sample - loss: 8.6890 - mae: 2.0260 - mse: 8.6890 - val_loss: 11.0856 - val_mae: 2.5693 - val_mse: 11.0856\n",
"354/354 [==============================] - 0s 174us/sample - loss: 8.4768 - mae: 2.0517 - mse: 8.4768 - val_loss: 11.3269 - val_mae: 2.4414 - val_mse: 11.3269\n",
"354/354 [==============================] - 0s 171us/sample - loss: 8.5229 - mae: 1.9943 - mse: 8.5229 - val_loss: 10.4669 - val_mae: 2.4794 - val_mse: 10.4669\n",
"354/354 [==============================] - 0s 172us/sample - loss: 8.0707 - mae: 1.9900 - mse: 8.0707 - val_loss: 11.6943 - val_mae: 2.5034 - val_mse: 11.6943\n",
"354/354 [==============================] - 0s 172us/sample - loss: 8.1752 - mae: 1.9715 - mse: 8.1752 - val_loss: 10.6043 - val_mae: 2.3636 - val_mse: 10.6043\n",
"354/354 [==============================] - 0s 174us/sample - loss: 8.2037 - mae: 1.9739 - mse: 8.2037 - val_loss: 10.5447 - val_mae: 2.3784 - val_mse: 10.5447\n",
"354/354 [==============================] - 0s 173us/sample - loss: 7.9866 - mae: 1.9744 - mse: 7.9866 - val_loss: 10.6746 - val_mae: 2.4501 - val_mse: 10.6746\n",
"354/354 [==============================] - 0s 165us/sample - loss: 7.7703 - mae: 1.9705 - mse: 7.7703 - val_loss: 10.4041 - val_mae: 2.4620 - val_mse: 10.4041\n",
"354/354 [==============================] - 0s 182us/sample - loss: 7.8774 - mae: 1.9809 - mse: 7.8774 - val_loss: 10.6823 - val_mae: 2.4969 - val_mse: 10.6823\n",
"354/354 [==============================] - 0s 167us/sample - loss: 7.8654 - mae: 1.9666 - mse: 7.8654 - val_loss: 10.6351 - val_mae: 2.4191 - val_mse: 10.6351\n",
"354/354 [==============================] - 0s 180us/sample - loss: 7.6560 - mae: 1.9236 - mse: 7.6560 - val_loss: 10.3918 - val_mae: 2.3943 - val_mse: 10.3918\n",
"354/354 [==============================] - 0s 170us/sample - loss: 7.3560 - mae: 1.8763 - mse: 7.3560 - val_loss: 10.3560 - val_mae: 2.5009 - val_mse: 10.3560\n",
"354/354 [==============================] - 0s 163us/sample - loss: 7.5076 - mae: 1.8973 - mse: 7.5076 - val_loss: 10.5798 - val_mae: 2.4698 - val_mse: 10.5798\n",
"354/354 [==============================] - 0s 164us/sample - loss: 7.4315 - mae: 1.8962 - mse: 7.4315 - val_loss: 10.0018 - val_mae: 2.3756 - val_mse: 10.0018\n",
"354/354 [==============================] - 0s 170us/sample - loss: 7.2476 - mae: 1.9127 - mse: 7.2476 - val_loss: 10.0664 - val_mae: 2.4074 - val_mse: 10.0664\n",
"354/354 [==============================] - 0s 168us/sample - loss: 7.1336 - mae: 1.8297 - mse: 7.1336 - val_loss: 10.5519 - val_mae: 2.4670 - val_mse: 10.5519\n",
"354/354 [==============================] - 0s 177us/sample - loss: 7.0707 - mae: 1.8462 - mse: 7.0707 - val_loss: 11.4684 - val_mae: 2.7035 - val_mse: 11.4684\n",
"354/354 [==============================] - 0s 173us/sample - loss: 6.9632 - mae: 1.8780 - mse: 6.9632 - val_loss: 10.6361 - val_mae: 2.4145 - val_mse: 10.6361\n",
"354/354 [==============================] - 0s 208us/sample - loss: 7.1218 - mae: 1.8522 - mse: 7.1218 - val_loss: 10.3080 - val_mae: 2.3628 - val_mse: 10.3080\n",
"354/354 [==============================] - 0s 261us/sample - loss: 6.7623 - mae: 1.7823 - mse: 6.7623 - val_loss: 10.3923 - val_mae: 2.3174 - val_mse: 10.3923\n",
"354/354 [==============================] - 0s 166us/sample - loss: 6.9012 - mae: 1.8504 - mse: 6.9012 - val_loss: 10.1488 - val_mae: 2.3802 - val_mse: 10.1488\n",
"354/354 [==============================] - 0s 171us/sample - loss: 6.6419 - mae: 1.8210 - mse: 6.6419 - val_loss: 10.7578 - val_mae: 2.5222 - val_mse: 10.7578\n",
"354/354 [==============================] - 0s 181us/sample - loss: 6.5397 - mae: 1.8096 - mse: 6.5397 - val_loss: 10.5892 - val_mae: 2.5217 - val_mse: 10.5892\n",
"354/354 [==============================] - 0s 171us/sample - loss: 6.4273 - mae: 1.7990 - mse: 6.4273 - val_loss: 10.7066 - val_mae: 2.4491 - val_mse: 10.7066\n",
"354/354 [==============================] - 0s 164us/sample - loss: 6.2635 - mae: 1.7888 - mse: 6.2635 - val_loss: 10.2444 - val_mae: 2.4960 - val_mse: 10.2444\n",
"354/354 [==============================] - 0s 173us/sample - loss: 6.3313 - mae: 1.7769 - mse: 6.3313 - val_loss: 10.1284 - val_mae: 2.3855 - val_mse: 10.1284\n",
"354/354 [==============================] - 0s 169us/sample - loss: 6.2141 - mae: 1.7620 - mse: 6.2141 - val_loss: 10.3170 - val_mae: 2.4570 - val_mse: 10.3170\n",
"354/354 [==============================] - 0s 183us/sample - loss: 6.1732 - mae: 1.7589 - mse: 6.1732 - val_loss: 9.7494 - val_mae: 2.3912 - val_mse: 9.7494\n",
"354/354 [==============================] - 0s 173us/sample - loss: 6.1812 - mae: 1.7704 - mse: 6.1812 - val_loss: 10.7702 - val_mae: 2.3626 - val_mse: 10.7702\n",
"354/354 [==============================] - 0s 171us/sample - loss: 6.1634 - mae: 1.8019 - mse: 6.1634 - val_loss: 9.6836 - val_mae: 2.3618 - val_mse: 9.6836\n",
"354/354 [==============================] - 0s 169us/sample - loss: 6.0410 - mae: 1.7080 - mse: 6.0410 - val_loss: 9.8525 - val_mae: 2.3718 - val_mse: 9.8525\n",
"354/354 [==============================] - 0s 166us/sample - loss: 5.7556 - mae: 1.7068 - mse: 5.7556 - val_loss: 11.4228 - val_mae: 2.4962 - val_mse: 11.4228\n",
"354/354 [==============================] - 0s 176us/sample - loss: 5.8854 - mae: 1.7138 - mse: 5.8854 - val_loss: 9.8943 - val_mae: 2.4214 - val_mse: 9.8943\n",
"354/354 [==============================] - 0s 177us/sample - loss: 5.6033 - mae: 1.6994 - mse: 5.6033 - val_loss: 10.2695 - val_mae: 2.3981 - val_mse: 10.2695\n",
"354/354 [==============================] - 0s 173us/sample - loss: 5.7909 - mae: 1.6973 - mse: 5.7909 - val_loss: 10.0138 - val_mae: 2.3440 - val_mse: 10.0138\n",
"354/354 [==============================] - 0s 171us/sample - loss: 5.4470 - mae: 1.6519 - mse: 5.4470 - val_loss: 9.7148 - val_mae: 2.4004 - val_mse: 9.7148\n",
"354/354 [==============================] - 0s 176us/sample - loss: 5.6775 - mae: 1.6463 - mse: 5.6775 - val_loss: 10.6783 - val_mae: 2.3670 - val_mse: 10.6783\n",
"354/354 [==============================] - 0s 172us/sample - loss: 5.4289 - mae: 1.7021 - mse: 5.4289 - val_loss: 10.2150 - val_mae: 2.3861 - val_mse: 10.2150\n",
"354/354 [==============================] - 0s 166us/sample - loss: 5.4991 - mae: 1.6477 - mse: 5.4991 - val_loss: 9.6550 - val_mae: 2.3681 - val_mse: 9.6550\n",
"354/354 [==============================] - 0s 176us/sample - loss: 5.3646 - mae: 1.6555 - mse: 5.3646 - val_loss: 11.0607 - val_mae: 2.4424 - val_mse: 11.0607\n",
"354/354 [==============================] - 0s 174us/sample - loss: 5.3874 - mae: 1.6344 - mse: 5.3874 - val_loss: 11.2996 - val_mae: 2.6303 - val_mse: 11.2996\n",
"354/354 [==============================] - 0s 167us/sample - loss: 5.3116 - mae: 1.6345 - mse: 5.3116 - val_loss: 10.2543 - val_mae: 2.3943 - val_mse: 10.2543\n",
"354/354 [==============================] - 0s 166us/sample - loss: 5.1442 - mae: 1.6227 - mse: 5.1442 - val_loss: 10.5314 - val_mae: 2.3998 - val_mse: 10.5314\n",
"354/354 [==============================] - 0s 171us/sample - loss: 5.2872 - mae: 1.6288 - mse: 5.2872 - val_loss: 9.8682 - val_mae: 2.3268 - val_mse: 9.8682\n",
"354/354 [==============================] - 0s 170us/sample - loss: 5.1584 - mae: 1.6282 - mse: 5.1584 - val_loss: 10.2676 - val_mae: 2.4443 - val_mse: 10.2676\n",
"354/354 [==============================] - 0s 173us/sample - loss: 5.0609 - mae: 1.6078 - mse: 5.0609 - val_loss: 10.0901 - val_mae: 2.4020 - val_mse: 10.0901\n",
"354/354 [==============================] - 0s 163us/sample - loss: 5.1753 - mae: 1.6148 - mse: 5.1753 - val_loss: 10.7763 - val_mae: 2.3816 - val_mse: 10.7763\n",
"354/354 [==============================] - 0s 169us/sample - loss: 5.0408 - mae: 1.6055 - mse: 5.0408 - val_loss: 10.1056 - val_mae: 2.3234 - val_mse: 10.1056\n",
"354/354 [==============================] - 0s 173us/sample - loss: 5.0175 - mae: 1.6009 - mse: 5.0175 - val_loss: 9.6620 - val_mae: 2.3334 - val_mse: 9.6620\n",
"354/354 [==============================] - 0s 173us/sample - loss: 4.7522 - mae: 1.5615 - mse: 4.7522 - val_loss: 9.8084 - val_mae: 2.3036 - val_mse: 9.8084\n",
"354/354 [==============================] - 0s 169us/sample - loss: 4.8323 - mae: 1.5873 - mse: 4.8323 - val_loss: 10.7285 - val_mae: 2.4886 - val_mse: 10.7285\n",
"354/354 [==============================] - 0s 165us/sample - loss: 4.8179 - mae: 1.5678 - mse: 4.8179 - val_loss: 10.1033 - val_mae: 2.3372 - val_mse: 10.1033\n",
"354/354 [==============================] - 0s 168us/sample - loss: 4.7970 - mae: 1.5422 - mse: 4.7970 - val_loss: 9.8511 - val_mae: 2.3521 - val_mse: 9.8511\n",
"354/354 [==============================] - 0s 180us/sample - loss: 4.7676 - mae: 1.5674 - mse: 4.7676 - val_loss: 10.1749 - val_mae: 2.4087 - val_mse: 10.1749\n",
"354/354 [==============================] - 0s 170us/sample - loss: 4.7223 - mae: 1.5431 - mse: 4.7222 - val_loss: 10.2481 - val_mae: 2.3268 - val_mse: 10.2481\n",
"354/354 [==============================] - 0s 164us/sample - loss: 4.6685 - mae: 1.5333 - mse: 4.6685 - val_loss: 10.7347 - val_mae: 2.5154 - val_mse: 10.7347\n",
"354/354 [==============================] - 0s 177us/sample - loss: 4.5642 - mae: 1.5675 - mse: 4.5642 - val_loss: 11.3132 - val_mae: 2.4601 - val_mse: 11.3132\n",
"354/354 [==============================] - 0s 177us/sample - loss: 4.3886 - mae: 1.4906 - mse: 4.3886 - val_loss: 12.2466 - val_mae: 2.7436 - val_mse: 12.2466\n",
"354/354 [==============================] - 0s 177us/sample - loss: 4.4689 - mae: 1.5368 - mse: 4.4689 - val_loss: 10.4188 - val_mae: 2.3596 - val_mse: 10.4188\n",
"354/354 [==============================] - 0s 168us/sample - loss: 4.6496 - mae: 1.5348 - mse: 4.6496 - val_loss: 10.0829 - val_mae: 2.3822 - val_mse: 10.0829\n"
"source": [
"history = model.fit(x_train,\n",
" y_train,\n",
" epochs = 100,\n",
" batch_size = 10,\n",
" validation_data = (x_test, y_test))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 6 - Evaluate\n",
"### 6.1 - Model evaluation\n",
"MAE = Mean Absolute Error (between the labels and predictions) \n",
"A mae equal to 3 represents an average error in prediction of $3k."
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"x_test / loss : 10.0829\n",
"x_test / mae : 2.3822\n",
"x_test / mse : 10.0829\n"
"source": [
"score = model.evaluate(x_test, y_test, verbose=0)\n",
"\n",
"print('x_test / loss : {:5.4f}'.format(score[0]))\n",
"print('x_test / mae : {:5.4f}'.format(score[1]))\n",
"print('x_test / mse : {:5.4f}'.format(score[2]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"What was the best result during our training ?"
]
},
{
"cell_type": "code",
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>loss</th>\n",
" <th>mae</th>\n",
" <th>mse</th>\n",
" <th>val_loss</th>\n",
" <th>val_mae</th>\n",
" <th>val_mse</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>100.000000</td>\n",
" <td>100.000000</td>\n",
" <td>100.000000</td>\n",
" <td>100.000000</td>\n",
" <td>100.000000</td>\n",
" <td>100.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>19.466892</td>\n",
" <td>2.462477</td>\n",
" <td>19.466893</td>\n",
" <td>18.670107</td>\n",
" <td>2.852570</td>\n",
" <td>18.670107</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>64.483863</td>\n",
" <td>2.592690</td>\n",
" <td>64.483872</td>\n",
" <td>48.257937</td>\n",
" <td>2.039701</td>\n",
" <td>48.257935</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>4.388600</td>\n",
" <td>1.490624</td>\n",
" <td>4.388600</td>\n",
" <td>9.655048</td>\n",
" <td>2.303586</td>\n",
" <td>9.655047</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>5.658976</td>\n",
" <td>1.698877</td>\n",
" <td>5.658976</td>\n",
" <td>10.269067</td>\n",
" <td>2.393491</td>\n",
" <td>10.269066</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>7.713175</td>\n",
" <td>1.945081</td>\n",
" <td>7.713175</td>\n",
" <td>10.750849</td>\n",
" <td>2.469115</td>\n",
" <td>10.750849</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>10.770471</td>\n",
" <td>2.242925</td>\n",
" <td>10.770470</td>\n",
" <td>12.249026</td>\n",
" <td>2.610316</td>\n",
" <td>12.249027</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>536.084498</td>\n",
" <td>21.333506</td>\n",
" <td>536.084595</td>\n",
" <td>439.656211</td>\n",
" <td>19.319771</td>\n",
" <td>439.656189</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" loss mae mse val_loss val_mae val_mse\n",
"count 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000\n",
"mean 19.466892 2.462477 19.466893 18.670107 2.852570 18.670107\n",
"std 64.483863 2.592690 64.483872 48.257937 2.039701 48.257935\n",
"min 4.388600 1.490624 4.388600 9.655048 2.303586 9.655047\n",
"25% 5.658976 1.698877 5.658976 10.269067 2.393491 10.269066\n",
"50% 7.713175 1.945081 7.713175 10.750849 2.469115 10.750849\n",
"75% 10.770471 2.242925 10.770470 12.249026 2.610316 12.249027\n",
"max 536.084498 21.333506 536.084595 439.656211 19.319771 439.656189"
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"df=pd.DataFrame(data=history.history)\n",
"df.describe()"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"source": [
"print(\"min( val_mae ) : {:.4f}\".format( min(history.history[\"val_mae\"]) ) )"
]
},
{
"cell_type": "code",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAGdCAYAAACRlkBKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeZxkVX3//9fn1to9PTszMAyroII4OKAIyDcuyFdEXBISE9yiJoihxSXml4hLAA0Rv5ooSmgNow8TXIgQlcBXo8g3bAnIIg4SM8KADDAzDAzDLD3dXV3L/fz+uLe6bzfV3dU93VW3Zt7Px6Met/reU7fOvb3Uu88591xzd0RERESmErS7AiIiItIZFBpERESkKQoNIiIi0hSFBhEREWmKQoOIiIg0RaFBREREmqLQICIiIk1RaBCRGTGzfzIzjx8VM1s+RfnfTZR3M3tPgzJLzOyTZnaHmT0b7/cpM7vfzK42s/eb2fMavO7icfue7HHZLJ4GkX1Ktt0VEJG9QhZ4OzDZB/IfT7YDMzsRuB5Iho9dwDzg2PhxNvBvwO9OsJsQ2DpFXXdNsV1EJqDQICJ76nHgEKJQ0DA0mNkS4ExgN1AGlozbvojRwLAeuBi43t13x9sPAF4F/CFRMJjIE+5+2MwPRUQmo9AgInvqTqACHGdmx7j7rxuUORvIA1cDp02wfTkwDJzq7huTG919C/A94Htm1jWblReR5mlMg4jMhm/Fy4m6IOrrr5pg+6p4uXZ8YBjP3YemWTcRmSUKDSIyG+qh4R1mNubvipm9ADgReAK4ZYr9rDAzm/3qichsUGgQkT3m7r8F/gtYCZw6bnO9leE77j7ReIR74+UhwN+aWWH2aykie0qhQURmS73rYaSLIm41eOe47Y1cDTwYP/84sMXMvm9mf2VmrzGz7ibrcLCZbZniccx0DkpERik0iMhsuQYoAWeZ2bx43auAQ4F73X3dRC909xJRC8WP4lWLgLOA/wP8B7DDzK43s5OnqEMA7D/FIzf9QxMRUGgQkVni7juAG4jmVfj9ePVUAyCTr9/s7m8EjiZqbfgR8GS8OQe8CfgvM/vwJLt5zN1tisfaGRyeiKDQICKzqx4O3hVfGvn7RJdjXt3sDtz9N+7+OXd/o7sfSBQiPg0MAgZ80cyOn+V6i0gTFBpEZDb9BHiaqKvhfGAB8O/u/sxMdxiHiIuBMwAn+rv17j2vqohMl0KDiMwad68C/0L0t+Vv49XfmvgV09r3bUSzRQK8YDb2KSLTo9AgIrOt3kWRA7YTjXOYLQPxsjyL+xSRJmkaaRGZVe7+CzO7GJgP/Mrdh6d6jZmdADzk7jsnKXMM8JL4Sw1mFGkDhQYRmXXu/ulpvuSPgHPM7Grg+8Bd7t4PYGZLiW5UdSFR6+gA8PVZrK6INEmhQUTSoAIsBP4sfmBmu4j+RiUndtoBnO3uT0ywn4PNbMsU73WHu5+1h/UV2ScpNIhIGnwC+L/A64GTgaOAZUSXWG4F1gE/Bda4+9ZJ9lOf3GkyS6bYLiITMHdvdx1ERESkA+jqCREREWmKQoOIiIg0RaFBREREmqLQICIiIk1RaJhAb2+v9/b2apSoiIhITJdcTk3BQURE9iU20Qa1NIiIiEhTFBpERESkKQoNIiIi0hSFBhEREWmKBkJOU6VSYePGjZRKpXZXpSMUi0UOOuggcrlcu6siIiJ7SKFhmjZu3Mj8+fM57LDDMJtwgKkA7s62bdvYuHEjhx9+eLurIyIie0jdE9NUKpVYunSpAkMTzIylS5eqVUZEZC+h0DADCgzN07kSEdl7KDSIiIhIUxQaREREpCkKDR1ow4YNHHXUUZxzzjm8+MUv5h3veAc33XQTp5xyCs9//vO5++67ufXWW1m9ejWrV6/muOOOo7+/H4AvfOELnHDCCRx77LFcdNFFbT4SERHpJLp6Yg+c/jc/mrN9//Svz5x0+8MPP8y1117LlVdeyQknnMB3v/td/vM//5Prr7+ez372s9RqNa644gpOOeUUdu/eTbFY5MYbb2T9+vXcfffduDtvfvObue2223jlK185Z8chIiJ7D7U0dKjDDz+cVatWEQQBxxxzDK997WsxM1atWsWGDRs45ZRT+OhHP8pXvvIVduzYQTab5cYbb+TGG2/kuOOO4/jjj+c3v/kN69evb/ehiIhIh1BLQ4cqFAojz4MgGPk6CAKq1SoXXHABZ555Jj/+8Y856aSTuOmmm3B3Pv7xj/P+97+/XdUWEZEOptCwB6bqQkha/+RO3KO7bB+5YiHBHF+K+Mgjj7Bq1SpWrVrFnXfeyW9+8xtOP/10/vqv/5p3vOMd9PT0sGnTJnK5HMuXL5/TuoiIyN5BoaFFzCDODHjokJnb0HDZZZdx8803k8lkeNGLXsQZZ5xBoVBg3bp1nHzyyQD09PTw7W9/W6FBRESaYvX/fmWs3t5eB+jr6xuzft26dRx99NHT3t9vn9pFtRYCcPjyBeSy+85wkpmeMxERaYsJ/6vddz652izZHREqqImISAdSaGiR5BAGte6IiEgnUmhokWRLgzKDiIh0IoWGFkm2NKh7QkREOpFCQ4uYWhpERKTDKTS0iAZCiohIp1NoaJFAAyFFRKTDKTS0iI1paWjd+/b09LTuzUREZK+m0NAigQZCiohIh9M00nvinNc3XXS/+NG0r/+k4eqPfexjHHroofT29gJw8cUXY2bcdtttbN++nUqlwiWXXMJb3vKWKd/illtu4aKLLmL//fdn7dq1nHXWWaxatYovf/nLDA0Ncd1113HEEUdw7bXX8ulPf5pMJsPChQu57bbbqNVqXHDBBdxyyy0MDw/zgQ98QDfCEhHZy6mlocOcffbZfO973xv5+pprruG9730vP/zhD7nvvvu4+eab+Yu/+Iumx03cf//9fPnLX+aBBx7gW9/6Fg899BB3330355xzDpdffjkAn/nMZ/jpT3/K/fffz/XXXw/AN77xDRYuXMg999zDPffcw5o1a3j00Udn/4BFRCQ1UhEazMwneOxuUPaFZnadmW03swEzu93MTp1gvwvN7HIz22RmJTP7tZmdZzbHt5icQ8cddxxPP/00mzdv5v7772fx4sWsWLGCT3ziExx77LGcdtppbNq0iaeeeqqp/Z1wwgmsWLGCQqHAEUccwete9zoAVq1axYYNGwA45ZRTeM973sOaNWuo1WoA3HjjjVx11VWsXr2aE088kW3btrF+/fo5OWYREUmHNHVP3A5cOW5dJfmFmR0B3AFUgc8DO4H3AT81szPc/aZE2TzwM+A44HJgHXAG0AfsD1y8xzWeoAuhkV2DZbbsGARgfleeFYu7Z/y2f/AHf8C//uu/smXLFs4++2y+853vsHXrVn7xi1+Qy+U47LDDKJVKTe2rUCiMPA+CYOTrIAioVqsAfO1rX+Ouu+7iRz/6EatXr2bt2rW4O5dffjmnn376jI9DREQ6S5pCw2/d/dtTlLkUWAS81N3XApjZVcCvgSvM7CgfbZc/BzgB+JC7Xx6vW2Nm3wc+YWbfdPfHZv8wGpvNe0+cffbZvO997+OZZ57h1ltv5ZprrmH58uXkcjluvvlmHntsdg/rkUce4cQTT+TEE0/khhtu4IknnuD000/nq1/9Kqeeeiq5XI6HHnqIlStXMm/evFl9bxERSY80hYZ660De3Rt1S8wD3gzcUg8MAO6+28y+DnyGKCTcHW96OzAIrBm3q8uAs4A/ImqtaIlgFi+5POaYY+jv72flypWsWLGCd7zjHbzpTW/iZS97GatXr+aoo47aw9qO9Zd/+ZesX78ed+e1r30tL3nJSzj22GPZsGEDxx9/PO7OsmXLuO6662b1fUVEJF0sDRMNmZkDA0ARyABbge8Bn3L3nXGZk4m6Jv7W3T817vX/G7gRON/drzCzANgN3Ofu/2tc2QJRmPiBu791ojr19vY6QF9f35j169at4+ijj572MQ4OV9m4LcpCXfksB++378yfMNNzJiIibTHhuL+0tDTcDVwLPAwsAN4AnA+8ysxeEbc8HBiX3dTg9fV1K+PlYqCrUVl3HzazbYmyLaF5GkREpNOlIjS4+4njVl1lZr8C/hb4cLysjxwcbrCL+qi/7nHLRmXr5RuORDSzc4FzzzvvvCZq3rx23rDqgQce4F3veteYdYVCgbvuuqu1FRERkY6WiksuJ/AFoAycGX89GC8LDcoWx5WZrGy9/GCjDe5+pbu/bHpVnVo7WxpWrVrF2rVrxzwUGEREZLpSGxrcvQJsZnQixc3xslG3Qn1dvTtiOzDUqGw8pmEpjbs5mq3btF8ztqVh3+me2JeOVURkb5fa0GBmReAgoD5L0QNE3Q0nNyh+Ury8F8DdQ+A+4Lg4JCS9nOi4751JvYrFItu2bZv2h+FsXj3RKdydbdu2USwWpy4sIiKp1/YxDWa21N23Ndj0N0T1uwFGLq28ATjLzF7i7vfHr+8hmpNhPaOXWwJcDZwCnEs0uVPdR4gmh7pmJvU96KCD2LhxI1u3bp3W6xx4esfQyNeVHV0TD0/dixSLRQ466KB2V0NERGZB20MD8CkzOwm4GXgc6CG6euI1wF2M/cD/OPBa4EYz+xKwi2hGyJXAmT723/81wHuBL5rZYUQzQr4B+D3gEnef0Y0Scrkchx9++Exeyscu/XfK1RCAf/vY6RTzaTj9IiIizUnDp9YtwIuAdxONNagRtRp8Eviiu4/Mh+zuD5vZKcDngAuAPFE3xOuTU0jHZctmdhpwCfC2eN+PAB8ErpjjY2qomMuMhIZSpabQICIiHaXtn1ru/m/Av02j/Dpg6vs+R2V3EM33cP7Maje7CrkMDEW30yhVam2ujYiIyPSkdiDk3qiQy4w8H1ZoEBGRDqPQ0EJFhQYREelgCg0tlGxpUPeEiIh0GoWGFlJLg4iIdDKFhhYqqqVBREQ6mEJDC43pnigrNIiISGdRaGihMVdPVBUaRESksyg0tFByMieNaRARkU6j0NBChezo6Vb3hIiIdBqFhhbS5E4iItLJFBpaaEz3hMY0iIhIh1FoaKGirp4QEZEOptDQQmPGNKh7QkREOoxCQwvp6gkREelkCg0tpHtPiIhIJ1NoaCFdPSEiIp1MoaGFdMMqERHpZAoNLaTuCRER6WQKDS2klgYREelkCg0tpFtji4hIJ1NoaCENhBQRkU6m0NBC+WyAxc8rtZBaGLa1PiIiItOh0NBCZjautUGhQUREOodCQyvUarD+1/A/9/Hy4cdHVpcq1TZWSkREZHqyUxeRPVatwP/5CwD+0rLcdsh5gFoaRESks6iloRVy+ZGnea+CO6DBkCIi0lkUGlohCCCbG/ky71FYUPeEiIh0EoWGVkm0NhQ8Cguaq0FERDqJQkOr5AujT+PQoO4JERHpJAoNrZIIDSMtDWWFBhER6RwKDa3SoHtiuKrQICIinUOhoVXy466gQN0TIiLSWRQaWiWn7gkREelsCg2topYGERHpcAoNrdKopUGhQUREOohCQ6skWxrC+uROCg0iItI5FBpapUFLg7onRESkkyg0tEqDMQ1qaRARkU6i0NAqamkQEZEOp9DQKrp6QkREOpxCQ6vo6gkREelwCg2tkku2NERhQS0NIiLSSVIXGsys28weNTM3s39osP2FZnadmW03swEzu93MTp1gXwvN7HIz22RmJTP7tZmdZ2Y290cyTqMbVik0iIhIB8m2uwINfAbYr9EGMzsCuAOoAp8HdgLvA35qZme4+02JsnngZ8BxwOXAOuAMoA/YH7h47g6hgZzGNIiISGdLVUuDmR0PfAS4aIIilwKLgNPd/VJ37wN+B9gMXDGuBeEc4ATgo+7+UXdf4+5nAT8APmFmh87ZgTSilgYREelwqQkNZpYB1gA/IfpgH799HvBm4BZ3X1tf7+67ga8DLyAKCXVvBwbjfSZdBuSAP5rN+k9JLQ0iItLhUhMagD8HjgLOn2D7sUABuLPBtp/HyxMAzCwAjgd+6e6lcWXvBkLGBoy5l7jkshAPhKyFTqUWtrQaIiIiM5WK0GBmhwOfBj7j7hsmKHZgvNzUYFt93cp4uRjoalTW3YeBbYmy4+tyrpnd21zNpyFxyWUXoy0Mam0QEZFOkYrQAHwVeBT44iRluuPlcINtpXFlJitbL9/daIO7X+nuL5ukHjOTbGmgOvJcoUFERDpF26+eMLN3Aq8DXunulUmKDsbLQoNtxXFlJitbLz84wba5MWZyp9GgUCorNIiISGdoa2gwswJR68KPgS1mdmS8qd51sDBe9wzRFRLJbUn1dfXuiO3AUKOy8XsuBW7d4wOYjjFjGkZbGnQFhYiIdIp2d090AcuAM4H1icct8fZ3xl+fAzxA1N1wcoP9nBQv7wVw9xC4DzguDglJLyc67tkftzCZREtDPkx0T1QVGkREpDO0u3tiAHhrg/XLiCZh+gnwDeBX7r7bzG4AzjKzl7j7/QBm1kMUKtYTXRlRdzVwCnAu0eROdR8hmhzqmlk+lsklWhpy4WgvjLonRESkU7Q1NMRjGP51/HozOyx++oi7J7d/HHgtcKOZfQnYRTQj5ErgTHf3RNk1wHuBL8b7Wwe8Afg94BJ3f3Q2j2VKiZaGXFgFdzDTQEgREekY7W5pmBZ3f9jMTgE+B1wA5Im6IV6fnEI6Lls2s9OAS4C3EY1jeAT4IHBFSysOkM1CEEAYEuBkCamSUWgQEZGOkcrQEM/V0PCmUu6+DnhLk/vZQTRZ1EQTRrVWrgDDQ0A0K2TVMpQq1SleJCIikg7tHgi5b2lwBYVaGkREpFMoNLRSgysoShVNIy0iIp1BoaGVGtx/Qt0TIiLSKRQaWilxe2zd6VJERDqNQkMrJbonivGM2QoNIiLSKRQaWinRPZEf6Z5QaBARkc6g0NBKY25ape4JERHpLAoNrTSmpUGhQUREOotCQys1aGlQ94SIiHQKhYZWatDSoNAgIiKdQqGhlTSmQUREOphCQyslWxpCXT0hIiKdRaGhlXK694SIiHQuhYZW0oyQIiLSwRQaWqlBS0OpXMPd21UjERGRpik0tFKipaFI1MLgQKWmO12KiEj6KTS0UqKloctGuyVKZXVRiIhI+ik0tFKDlgaA4apCg4iIpJ9CQys1GNMAGgwpIiKdQaGhlSZqaahoTIOIiKSfQkMrTdTSoO4JERHpAAoNrdRgngaAsronRESkAyg0tFIuOY30aGjQVNIiItIJFBpaKdHSkEuEhnJVYxpERCT9FBpaKdHSkAsrI8919YSIiHQChYZWSrQ0ZGsaCCkiIp1FoaGVsjkwAyDjNQKPuiXU0iAiIp1AoaGVzMYOhtSdLkVEpIMoNLTamLkaorCg0CAiIp1AoaHVGszVoKsnRESkEyg0tFqDWSE1T4OIiHQChYZWazCmoayrJ0REpAMoNLRaonuioIGQIiLSQRQaWq3BVNLDGtMgIiIdQKGh1fLFkadFtTSIiEgHUWhotXyDMQ0KDSIi0gEUGlpNV0+IiEiHUmhotTHzNERhQfM0iIhIJ1BoaLUGLQ0a0yAiIp1AoaHVGswIqbtciohIJ1BoaDW1NIiISIdSaGi1Ce494e7tqpGIiEhT2h4azOyFZvYdM1tnZjvNbNDMfmNmXzSzFROUv87MtpvZgJndbmanTrDvhWZ2uZltMrOSmf3azM4zM5v7I5tAoqWhi9EWBg2GFBGRtMu2uwLAQcAK4IfARqAKrALOBc42s9Xu/jSAmR0B3BGX+TywE3gf8FMzO8Pdb6rv1MzywM+A44DLgXXAGUAfsD9wcSsO7jkSLQ1dNhoahis1CrlMO2okIiLSlLaHBnf/f8D/G7/ezG4DrgHeQxQQAC4FFgEvdfe1cbmrgF8DV5jZUT7azn8OcALwIXe/PF63xsy+D3zCzL7p7o/N0WFNLNHSUEy0NGgwpIiIpF3buycmUf9AXwxgZvOANwO31AMDgLvvBr4OvIAoJNS9HRgE1ozb72VADvijuan2FBItDWNCgwZDiohIyqUmNJhZ0cz2M7ODzOx1wD/Gm34cL48FCsCdDV7+83h5QryvADge+KW7l8aVvRsIGRswWifZ0uDJ0KAxDSIikm5NhYbe3t4/7u3tPXbcunxvb++CCcq/qre398Jp1uUcYCvwBPBTom6Id7r77fH2A+Plpgavra9bGS8XA12Nyrr7MLAtUXYMMzvXzO6dZt2b1+DW2KDuCRERSb9mWxr+Cfjdces+DmyfoPyrgYumWZfrgP8N/B7wGWAHsCyxvTteDjd4bWlcmcnK1st3N9rg7le6+8uarPP0JW+NzWho0E2rREQk7do+ELLO3TcSXT0BcF08YPEeM+ty90uJxidA1EUxXv1+04Pjlo3K1ssPTrBtbiXnaQhHQ4NuWiUiImmXmjEN47n7r4BfAr3xqs3xslG3Qn1dvTtiOzDUqKyZFYClNO7mmHvJloZEaNA8DSIiknapDQ2xLmBJ/PwBou6GkxuUOyle3gvg7iFwH3BcHBKSXk503HM3bmEyiZaGXCI06OoJERFJu7aHBjM7YIL1rwFeTHxlRHxp5Q3Aq83sJYlyPUSDKNcTXRlRdzXRuIVzx+36I0STQ10zS4cwPYmWhlxYGXmugZAiIpJ2aRjT8NV4uuj/IJqboQi8FDgb6Af+IlH248BrgRvN7EvALqIZIVcCZ/rYGzisAd4LfNHMDiOaEfINRAMtL3H3R+fwmCaWaGnI1hKhQS0NIiKSctMJDYt6e3sPSX4N0NvbezAw/l4Oi6ax36uBdwPvIrpawonCwz8CX3D3x+sF3f1hMzsF+BxwAZAn6oZ4fXIK6bhs2cxOAy4B3kY0juER4IPAFdOo3+xKtDRkwyq4g5lCg4iIpN50QsOH48d4G/akAu5+DdPoKnD3dcBbmiy7Azg/fqRDEEA2B9WolSHvNcqWVWgQEZHUazY0PE7UAiCzIZcfCQ0Fr1Imq6snREQk9ZoKDX19fYfNcT32Lfk8DA1ET+NZITVPg4iIpF3br57YJ+WeO5V0WVdPiIhIyik0tEM+McFTHBo0pkFERNKuqe6J3t7eLmAF8ExfX9+ucdsOBb4EnEp0FcWtwP/X19f30CzXde/RoKVhWGMaREQk5ZptaTifaPKkFyVX9vb2zicKCW8BFgDzgTcCt/T29i6dxXruXca0NEQtDGppEBGRtGs2NPwO8ERfX9/Px60/DzgEuBM4EtgfuBw4gMaXZwo0HtOg0CAiIinX7CWXL6LxvRrOIroU80/6+vp+G6/7cG9v75nAGcCFe17FvVCDMQ26ekJERNKu2ZaGZcCYaZd7e3tzwHHAgw3GL/wHUcuDNJJsaQjrV09oTIOIiKRbs6GhAGTGrTsGyDH2JlF1TxPdLEoayTcYCKmWBhERSblmQ8MWojtOJr2CqGuiUbfFfODZPajX3q3RJZeap0FERFKu2dDwX8Cpvb29r4aRSzDfF2/7WYPyLwY27XHt9laNLrlUS4OIiKRcs6HhS/Hyxt7e3vuIxjccC9zS19f3YLJgb2/vAuAUYPyVFlLXoKWhXA0JXbf3EBGR9GoqNPT19d0LvAcYAlYDy4m6Jd7doPi7iW5ZfePsVHEvlGhp6GK0hUGDIUVEJM2avjV2X1/ft3t7e79P1PWwLXGJ5Xg3ALcB62ahfnun3GhLQ7eNBoVypUYxN368qYiISDo0HRoA+vr6hoB7piizYU8qtE9IXD3RZaMtDaVKjQXtqI+IiEgTdMOqdki0NBTHdE9oMKSIiKRXszes+uOZ7Lyvr++qmbxur5doaShSHXmuKyhERCTNmu2e+CeiORmaZXF5hYZGEi0NBR8NCrrTpYiIpNl0xjRUgf8L/M8c1WXfkU+GBrU0iIhIZ2g2NNwKvBL4XaLLLdcA1/T19ZXmqmJ7tcQll3mFBhER6RDNztPwGuCFwN8R3Yjqm8CTvb29l/f29h47h/XbOzWY3AkUGkREJN2mM0/Dw8DHent7Pwm8hWga6fOA3t7e3l8A/wj8S19f38Cc1HRvkmxpCEdDgyZ3EhGRNJv2JZd9fX3Vvr6+7/f19b0eOAL4LLACuBLY3Nvbe/Is13Hvk2hpyCVCQ0ktDSIikmJ7NE9DX1/fY319fX8NnEt0g6oeYNlsVGyvlmhpyIaVkeeap0FERNJsWjNCJvX29h4I/En8OBQoAd8G7pudqu3FEi0N2dpoaNCYBhERSbNphYbe3t4AeCNwDvD6+PUPAB8GvtXX17dz1mu4N0q0NGRqFXAHM4UGERFJtWZnhDwc+FPgvUTjFwaAfwbW9PX13T131dtLZbMQBBCGBO5kCamS0UBIERFJtWZbGh6Ol/cCFwFX6yqJPZQrwPAQEF12WbWMBkKKiEiqNRsaDKgQtTJcCFzY29s71Wu8r6/v0D2o294tPxoaimGVwaCggZAiIpJq0xnTkAMOmquK7HMKReiPnhY9GgypMQ0iIpJmTYWGvr4+3UJ7thWKI09HQoPGNIiISIopDLRLMjSEamkQEZH0U2hol0LXyNOuuKWhrNAgIiIpptDQLsVEaIhbGnT1hIiIpJlCQ7vkRyd4qo9p0DwNIiKSZgoN7ZJoadDVEyIi0gkUGtolMaahGN/pcljzNIiISIopNLRL4uqJLi8DamkQEZF0U2hol2RoCEfHNITu7aqRiIjIpBQa2iXRPdFt1ZHnGgwpIiJp1fbQYGYvMLPPmNnPzWyrmfWb2Voz+6SZzWtQ/oVmdp2ZbTezATO73cxOnWDfC83scjPbZGYlM/u1mZ1nZjb3RzaFREtDtydCg7ooREQkpaZz74m58ifAB4Drge8Q3RjrNcAlwB+a2UnuPgRgZkcAdwBV4PPATuB9wE/N7Ax3v6m+UzPLAz8DjgMuB9YBZwB9wP7Axa04uAklQsM8RkNDqVJjQTvqIyIiMoU0hIZ/BS51952JdV8zs/XAJ4E/Bf4hXn8psAh4qbuvBTCzq4BfA1eY2VHuI4MCzgFOAD7k7pfH69aY2feBT5jZN939sTk9sskkJ3eiMvJcd7oUEZG0anv3hLvfOy4w1H0vXr4YIO6qeDNwSz0wxK/fDXwdeAFRSKh7OzAIrBm338uI7tj5R7NyADOVTw6EHG1p0BUUIiKSVm0PDZOo34b7qXh5LE3JKjEAACAASURBVFAA7mxQ9ufx8gQAMwuA44FfuntpXNm7gZCxAaP1xkzuVB55rjtdiohIWqUyNJhZBriQaOzCd+PVB8bLTQ1eUl+3Ml4uBroalXX3YWBbomx7JMY0FMLR7gm1NIiISFqlMjQQdSGcBFzo7g/G67rj5XCD8qVxZSYrWy/f3WiDmZ1rZvdOr7ozkAwNNYUGERFJv9SFBjP7G+B84Ep3vzSxaTBeFp77KorjykxWtl5+sNEGd7/S3V/WfI1nKDFPQ6GW6J5QaBARkZRKVWgws4uBTwHfBP5s3ObN8bJRt0J9Xb07Yjsw1KismRWApTTu5midxF0uc2GFwKOxDJrcSURE0io1ocHMLgIuAq4CzklcOln3AFF3w8kNXn5SvLwXwN1D4D7guDgkJL2c6LjnvgtiMkEwJjgU4gmeSmppEBGRlEpFaDCzC4kmW/oW8N74Q3+M+NLKG4BXm9lLEq/tIZqTYT3RlRF1VxONWzh33K4+QjTA8ppZPISZSXRRjN5/QqFBRETSqe2TO5nZB4BPA48DNwFvHzfL81Pu/rP4+ceB1wI3mtmXgF1EM0KuBM4c1zqxBngv8EUzO4xoRsg3AL8HXOLuj87VMTWt2AX9O6KnHoUGjWkQEZG0antoYHS+hEOAf26w/Vai6aBx94fN7BTgc8AFQJ6oG+L1ySmk47JlMzuNaDrqtxGNY3gE+CBwxRwcx/QluicUGkREJO3aHhrc/T3Ae6ZRfh3wlibL7iC6EuP8mdRtzhWf2z2hyZ1ERCStUjGmYZ9VSM4KqZYGERFJN4WGdiok7z+h0CAiIumm0NBOidBQb2nQ1RMiIpJWCg3tpO4JERHpIAoN7dSoe0IDIUVEJKUUGtqpQfeEWhpERCStFBraqdEllwoNIiKSUgoN7ZRv0NKggZAiIpJSCg3tVEyGhuiGVeWKxjSIiEg6KTS005gbVpUBtTSIiEh6KTS0U/LqCQ2EFBGRlFNoaKdES0MhjLsnqiHhmJt1ioiIpINCQzslWhq6qYw8L2uuBhERSSGFhnZq0D0BUFYXhYiIpJBCQzslp5GOuycASgoNIiKSQgoN7ZScETK+egJ00yoREUknhYZ2yhdGnha8SuDRWIahskKDiIikj0JDOwXBmNaGQjzB0+5SZaJXiIiItI1CQ7vln3uny12D5YlKi4iItI1CQ7slblpVv/9Ev1oaREQkhRQa2q3B7bHV0iAiImmk0NBuhed2T/QPqaVBRETSR6Gh3QrP7Z7YNaSWBhERSR+FhnZr0NKwSy0NIiKSQgoN7dZgTEO/WhpERCSFFBrarUH3RP+gWhpERCR9FBrardioe0ItDSIikj4KDe2Wf+6dLneXKoTu7aqRiIhIQwoN7ZaY3KnHontOhA4DpepErxAREWkLhYZ2S4xpmB+M3qhKXRQiIpI2Cg3tVhi90+V8G21d0BUUIiKSNgoN7ZZoaZhniZYGXUEhIiIpo9DQbonQUB8ICWppEBGR9FFoaLfCc6+eAM0KKSIi6aPQ0G6J0FAIk6FBLQ0iIpIuCg3tlrjkMl8bDQq606WIiKSNQkO7JSZ3ylWHR57vGlRLg4iIpItCQ7slWhoylURLQ0ktDSIiki4KDe2Wy4MZAJlqmcBDQC0NIiKSPgoN7RYEkB+d4Kng0QRPGtMgIiJpo9CQBsm5GnSnSxERSSmFhjRIXHbZTRQahso1KrWwXTUSERF5jraHBjP7uJlda2a/NTM3sw1TlD/RzG4ys34z22VmPzGz1ROUPdDMrjKzrWY2ZGb3mtlb5+RA9kQiNCzJj67WrJAiIpImbQ8NwGeBU4FHgO2TFTSzk4BbgcOBC4GLgOcDt5vZqnFllwD/CZwFfBX4MLAbuMbM3jvLx7BnEt0TS3KjrQu6/4SIiKRJtt0VAI5w998CmNl/Az2TlP0KUAZe6e6b4tdcA6wD/h54XaLsBUTh4s3ufkNc9hvAncDfmdm17r57tg9mRoqJloasQzxdg1oaREQkTdre0lAPDFMxsyOBE4Br64Ehfv0m4FrgNDM7IPGStwOP1ANDXLYGXA4sAd4wC9WfHYkJnhZmRlsadAWFiIikSdtDwzScEC/vbLDt54ABLwUwsxXAynh9o7LJ/bVfYoKnZGjQFRQiIpImnRQaDoyXmxpsq69bOYOy7ZdoaZgfVEee606XIiKSJp0UGrrj5XCDbaVxZaZTdgwzO9fM7p1RDWcqMaahx2ojzzUrpIiIpEknhYbBeFlosK04rsx0yo7h7le6+8tmVMOZSlw90c1oS4PGNIiISJp0UmjYHC8bdSvU122aQdn2S07u5KNBQVdPiIhImnRSaLgnXp7cYNtJgAO/AHD3J4lCwUkTlAVobRfEZBItDcVEaNCYBhERSZOOCQ3u/jDRB/1bzaw+0JH4+VuB/3D3LYmXXA0cYWZvSpTNAB8EdgA/bknFm5FoaSjUkqFBLQ0iIpIebZ/cyczeBRwaf7kMyJvZp+KvH3P3byWKfxi4mWgGyMvjdR8kCj9/MW7XnyMKE981sy8StTy8jehSy3PcvX/WD2amEqEhXxsdu6kxDSIikiZtDw3AnwKvGrfub+LlrcBIaHD3O8zs1cAl8cOBO4C3uvv9yR24+zYzO4UoPHyAaKbJ/wHOdvfvzcFxzFyieyJbHW1d6B+q4O6YWTtqJSIiMkbbQ4O7v3qa5e8EXttk2U3Au2ZQrdZKXHKZqQyTzwaUqyGVWkipUqMr3/Zvk4iISOeMadirJSZ3ojTEgq7RW11qrgYREUkLhYY0SEwjTbnE/K7cyJe6gkJERNJCoSENEmMaKI0NDRoMKSIiaaHQkAaJqycol8Z2T+iySxERSQmFhjTI5aF+hUR5mIVdowMfNSukiIikhUJDGgTBmMGQi3M+8nzXoLonREQkHRQa0iLRRbEoG4487y8pNIiISDooNKRFMjRkRkODLrkUEZG0UGhIi67ukaeLwuRU0goNIiKSDgoNabF89C7eS/pH77uleRpERCQtFBrS4qDDR54ueGbjyHNdcikiImmh0JAWBx028rS49YmR55rcSURE0kKhIS0SLQ3ZJx8Djy673D1UoRb6RK8SERFpGYWGtFi6PxSjwZA20M/BmWgwpAMDuuxSRERSQKEhLcxg5WEjXx5tO0aea1yDiIikgUJDmiS6KI6obht5rnENIiKSBgoNaZIYDHlYeTQ0bNw20IbKiIiIjKXQkCaJloZDh58ZeX7X+qfaURsREZExFBrSZOVoaFi0awsZrwFw7yNbKVdr7aqViIgIoNCQLt3zYMlyAKxW4/juEgBD5RprH9022StFRETmnEJD2iS6KF6zaPQeFHc+pC4KERFpL4WGtEkMhlyV6R95/vOHniJ0TfIkIiLto9CQNomWhmU7n2Rhdx6AZ3cP89DmHRO9SkREZM4pNKRNIjTY5g28/PnLR76+40F1UYiISPsoNKTN8pWQzUXPn93K7xzSM7LpToUGERFpI4WGtMlmYcUhI1+uzvWTz0bfpsef2c2mZzXRk4iItIdCQxolBkMWnnqc45+3bORrtTaIiEi7KDSkUWJcAxsf5RUv3H/kyzse3NKGComIiCg0pFMyNGzawInPX47FX67buJ0dA8MNXyYiIjKXFBrSKHGLbDZuYFFXjhcdvBiA0OHSH/ySUrnanrqJiMg+S6EhjRYugZ6F0fPhIdjyBG986aEjm9du2Manrr6HwWEFBxERaR2FhjQyg4OfN/r1Vy7k1GUh73nNC0dWPfD4s3ziu3cxUKq0oYIiIrIvUmhIq9e/FYL42/PMU3DpR3nbijLvO+3okSLrNu7gY9++i18++oymmBYRkTmn0JBWxxwP518E+UL09UA//N0F/EF+M72nv2ik2Pond3LBt+/iT/tu4Zo7HtEgSRERmTPm+g+1od7eXgfo6+trb0UefRC+ciH07xxdd8TR3Hf4KVy4Pk+FzJjigcGRByxk9eH7sfrwpbz44CUUchlERESaZBNuUGhoLDWhAeCpzXDZJ2Hrk2NWVxcs5r6DTuDqgeX8jy+KxkKMExgsW9jFgYvnsWJxNwctnceRByzk+SsW0l3ItuoIRESkcyg0TFeqQgNA/w649utw1y1Qe+5VE0Pzl/CLniO4ubqMLZn5PJuZx45MF6E17oEy4OD9enj+ioUcvF8PKxZ3s3LJPA5Y1E1PMYs1CCAiIrJPUGiYrtSFhrqdz8KtP4ZbfgS7tk9atIaxI9PNrqDIrqBIf6ZIf1BgICgwYHkGgzwDQYH+oMDuoEB/EG0fzhbIdXczvyvP/K48i+flWTK/yNLuLPsVA3oWzGdBT4H5XXkWdOWY35UnEyhkiIjsJSb8g6726U6zcAm8+Z1wxh/CL++EX94B/30vDD33RlYZnKW1AZbWpn+TqxpGyXKUghw5r1EMK+SpARACu4IiOzPdPBZ0sTsoUM53US1048VuKBSxXA7L5QnyObKZDNnAyGaMrBmZfI5Mz3yyPfPJzV9AoWcexa4CxUKerq48mXwe8sXRq0faxR02Pwbr1kJpEI54ERz5Isjlp35dtTJ1uZkaLsG6X0bvcdRq6FkwN+8jIjKOQkOnyuXh5a+KHtUqPPxruP8uePJx2P5M1CKxe9eMd5/Bmedl5tXKz9kWAIvCEovCEiNTTg3N+K0mNBTkKAV5hjN5akGWMMgQBlk8kyEMMngmiwdZCAK6akN0lwfpGt5NfngAc8ctAAuigR0WRCHEDIIAn7eAcL8VVJceQGXp/oRd88jUalitQqZWJb/lMTK/WQs7to2tVC4Pz38xHHH02FBQHoanN8PTm+DpJ2FwNyxaGs23cfDzojuXDg3Atqdg29PR92f+IjjwkGjbikOiD/9MBoIMZOq/mh6FkFoNHvwV3HsbPHBP9H4QHdfzj4HjXhEFmkolCjilwejnorsn2m/PfCh2R68bLkG5FD0vl6EyDJVy9B7zF8GSZbB0OXTNi36GNj8WPZ7aDMUu2H8l7H8Q7H8gzJvf+JsXhhDWovplJhiIG9aiOprFj9Hvz5wqDcXfh6eiy5nDEBbvFx33kmXROZhpHcIaDA1Gx5LNRo8gE30P6+ekVoN8Plo/G6rVKEAWu6YuOzgAGx6MvpfLDoDDXjA7oTMMAW/umNzh2a3RGK1y/LNXrUTnZun+sPzA6J+j2e4iLQ1FdSx0zWzf7lF984XZqZt79Ls40A+7d0a/a/07o7/fzzwFz2yJfkYtiP7evPDY6LFk2dT7nkPqnphAarsnpqNShl07YGBX/IPZHy2HBqMPsNJg9OE2uDtaHz+8NIRVnhsWHKMaZMmFmlBqn5DLRz9Dk0mGMrPRgOPhaJkgiFqOcvnoefKDopFsDnI5yObj1xhgo3+oa9Xo9ZVK/GHZHX3wzV8QzaSaGfchPVyCgd0w2B/9rA8NTnFMFn0w5ItQiOsd1qL9uQMe1S1fr18m+h3r3xn9jiWPvb6/Rn9ni91RqOueF71fEMSBMRO9Vz0MVCvRup6FcQBcEG3fujkKqNvi4DN/YRTolq+MQp97tI9aJfpAevQh2PLEc+ux3wFw6JFRUB0eij5ch4eiuuTykCtEx5ovjJ6XfCE6l1ufjD/cnh79XnTPiwLnvPmj9e1ZENXl8UfgiUeivzWTyRdgv/3BiQNuGarlaL8LFsGCxVG4C8Po79hQHJQhDmu56HhKQ1E37s5nR4N2vjC6j56Fo/XtnhcdW60aP+IAuO3p0ZBZHo72u2BR9Nr5C0d/RuqPSnlsMK9VR3926qFycHcU4BqMT5vSwiUwryeqa7ErWi47AN523vT3NTGNaZiuvSI07IlaLfolHC5Ff8DrfyjMol/+3TvjP5I7qfX3M7RrJ8M7d1HZtYuwVKJWreCVCl4pE9ZCQoeaQy3+Q5YdHiRXHqJQGSJfK2NhSOAhGa9F3SGejimy+4MC9xcPYmfQxbGljRxc3dHuKgHwWG4JQ5kCLyg9qclWRPZ1Kw+DT39tNve4b45pMLMA+DDwfuAwYCtwDXChu0+/o39fkslE/yk0an7OZqOm90VLo6JAT/zYU+7OcDWkv1yhOjhAdWCA6uAQ1XKZSrlMdbhMdXiYWqVKWCkTVqvUKlUGM9FAzx2ZLrZTYHfFGSoNM1iqMlQaplqtEdZqVGs1vFJjSW03B1Z3saKygxXVnRTCCmUyVCxDmYBn6OIXhZWszy8fcwXKsmo/x5WeYGVlB8Zo4K5ahi3ZBWzOLmRzdhE7Ml2srO7geeVnOKK8lQOrO+kPijydnc9T8dUt+9V2c0jlWQ6pbOfgynaKXiHjIRmcjNfiPUfv4mZszfTwX91HcHv3kTyWj8794toAJw0+yklDj7K82s9QkGfQcgwGeWoE9ITDzA9LLAhLdIUVhoNsNFbFsgxbjuEgS9kylC1LiLGkNsDyaj/LarspepWSZXk8t4THckt4IreY7rDMyuoOVlZ2sLK6g8JIPZ+rQkCAk6HxPyYhUCVD1IbFpGVnU5mAp7MLeCo7n6eyC6gRsKzWz7LqbpbX+pkf7tkEaUOZAoaTCWtkvDYS6moW4Bbg2Ky31tWCDJlw4u9FXWgBA8sOorTfSorbn2Le048TzOS/3T0UFucRrjg4GgOVy+PZHLiT2fYUwdbNWIMxWnus3p04VevZZLK5iVvIZiKXj/7Gzq+3Ii2EhYuj1p+l+0etLUOD8NCv4MEH4JH/GW0xSSoUZ69OU9irWxrM7MvAh4AfAv8OHA18ELgdOM19fDviqH2+pWEf5+4MlqvsHCizc7BMuRrSXcjSXcgyr5AllwkoVWqUyjWGytWRsjsGy+wcGGb3cJViLjPymkI2Q6UWMjBcYXC4ylC5Rv13r355a7UWUqrUGK7UKFVq1ELH3QndCUOnVKmxa7DMrsEKgxPc5TQwIxMYQWBYfByhQy306U017k63lxmyPD5R/6070UegEwCBh4Rm1AgI690J7mQJyXuVYlglwBm2LKUgG01MNn7f7uTi8tGjFr8PIyGtYhnKlqFiWaoEdHuZhbUhFoZDLKiVCHBCDDcIMYYtF18hVGR3fKXQhMcUH0fRqxTDCkWvkPMaoRkhRkiAA3mvjdQxS0h/UGRn0MXOTJGaZZ6zvzDZvRKv6/IKPeEw88Jhcl4j6yEZQrIeUsOoWhRiqxaQ8xrzwxILa1EANJwnswvZnF3IluwCypZlv9puDqpsZ2V1J0tqA9QIqFhANQ6Fj+aW8nB+GcNBbqQeWa9xWHkbh1e2EWIMxqGzFOQIcPJhlUL8fSh4laJXomVYYSjIsSV+/y3ZBZQsR7eXR45pQVzXBWGJBbUhDGdDfikP55bxVHbBpOMC5tdKLKv1UyOgZFnCbJ4wk6W7VmJ+eTeLaoMsrA1Rs4BBy1PKFhjOFLDAyBFSICRPyLBl2Zbp5lnrpj/+H3leUGO/cJAlYfQz010r0x0O010bpkgVz2Qhk8Ey0ftuLyzgmcJithUWMpgpkKtV6KkMML8yxLzqAPmwSi6skgujn5VqkKWcyVPO5Khk8tH4Kwui3/MgoJLJU8p3M5zrIszmsPrvbLzMBEY2E5DPBmQzAQaE7lEPV61CcWAnVi4RlEsE5WGCcomeRfN54zt/d8LzOQP7XkuDmR1DFBB+4O6/n1j/KPAV4Gzgu22qnqScmTGvkGNeIceBS+Y1LDOvmGu4vhUqtZBytUYmCAiMkeVk82vUA0i15lTDkGrNqVTDkX1VqmE8JtFG/mIMVWoMlCoMlKrsHq7gzsgftsBszHuaReGkPG6fo+8RUgtDspmAIDAyZiPvVY8zUf2ispVqyHC1RjkOUcOVGsPVkG6DXCYgkwnIBlGUCEOn5s620KmG0T4q8aMWOrWaUwuj58U4SHn8h7gWRt1ndWH9gyhTIJuJjq1cnfD/iyk1misltIABiy5/ni1bs/PZmp3PL6fxmqpleLiwnIcLy2elDrN1TP1xy+EYIWyzHBQmGHw7kZFvXfRNHq4FPFtvGzUm/xSsxo8BiEZ7J0d8d8WPmRi/r5nIAN1AN0cWFvDGPdxbs/ba0AC8jehH4rJx69cAnwPeiUKDdKhcJiCXmd5oBrPogzoTQAFNLZ5UD1S1OD1kgmDM3CO1MGQoblUqV8IoOGWMbBBgFoWKcrXGcCWkUotaiWph1EJUb+Wpr6vGQWYkuNWiT7XAopaiegirh5z6I2ooGg08jQJivfXK49al+j6qoTNcqcV1jMJX8j/bwIxqLQppw5XoOAKDXPzfbjYwqqEzVK6OtK4B5LMZ8tmAXDb6WaxUw/h9ovcNAosuiBk5pqhO1Vp0TGZj/6WtH1u9da0ajn5PxssEFo0t3Itby5tVrbXuHOzNoeEEoox5d3Klu5fMbG28XURkTKBqJBME9BQDetrYurSvqrc+VWseN93bmHA1EshqITUfG9aSwageAquJ8DbS7E8UVuotZfXwVKmFIy1iQRC1rCW5j7aS4R6NP3Jwog0jX8fbwtBxfCTshHEYrPlonWthSCUOk9VaSBiHryCuQ8Ygl82QzRi5TBTq5rfw53JvDg0HAs+4e6NRTZuAV5hZ3t3HjIoxs3OBc887b1YvXxERkRkIzOIWjYm3B/EHqMy9vfksdwMTDYMuJcqM4e5XuvvL5qxWIiIiHWpvDg2DwEQjcoqJMiIiItKEvTk0bAb2M7NGwWElUdfFHlywKyIism/Zm0PDPUTH9/LkSjMrAquBe9tRKRERkU61N4eG7xENXv3IuPXvIxrL8J2W10hERKSD7bVXT7j7A2Z2BXC+mf0A+DHRjJAfAm5FczSIiIhMy14bGmIfATYA5wJnAs8AlxPde2LmU7yJiIjsg/bq0ODuNeDv44eIiIjsgb15TIOIiIjMIoUGERERaYpCg4iIiDRlrx7TMBt6e3vbXQUREZFW8r6+vufeRhW1NIiIiEiTzHUv8pYxs3t1M6w9p/M4O3QeZ4fO4+zQeZwdc30e1dIgIiIiTVFoEBERkaYoNLTWle2uwF5C53F26DzODp3H2aHzODvm9DxqTIOIiIg0RS0NIiIi0hSFBhEREWmKQsMcM7PAzP7czH5jZiUze8LM/t7M5rW7bmljZi8ws8+Y2c/NbKuZ9ZvZWjP7ZKPzZWYvNLPrzGy7mQ2Y2e1mdmo76p52ZtZtZo+amZvZPzTYrnM5ATNbYmZ/Z2YPx7/DW83sZjP7nXHlTjSzm+Kf211m9hMzW92ueqeJmfWY2SfM7IH4/DxjZneY2XvMzMaV3efPo5l93MyuNbPfxr+zG6Yo3/Q5M7MDzeyq+Od4yMzuNbO3Nl03jWmYW2b2ZeBDwA+BfweOBj4I3A6cplt0jzKzzwEfAK4Hfg5UgNcAfwj8CjjJ3YfiskcAdwNV4DJgJ/A+4MXAGe5+U8sPIMXM7O+A9wM9wBXufn5im87lBMzsUOAWovP2DeAhYCFwLPBTd/+XuNxJcblNQD2UnQ8sB17h7g+0tOIpYmYBcCvwCuCfiX63u4G3AS8HPu/uH4vL6jwCZubAs8B9wEuBXe5+2ARlmz5nZrYEuDfe9kVgI/B24FXAn7j7N6esnLvrMUcP4BggBL4/bv0HAQfe3u46pukBvAxY2GD9JfH5Oj+x7hqgBqxOrOsBHgMeJA7EejjA8USB4KPxefyHcdt1Lic+d7cDTwArpih3N7ALWJlYtzJed2O7j6PN5/Dk+OfuS+PW54HfAjt0Hp9zzp6XeP7fwIZJyjZ9zoDPx9+LNyXWZeJ9bAN6pqqbuifm1tsAI/rvLWkNMAi8s+U1SjF3v9fddzbY9L14+WKAuKvizcAt7r428frdwNeBFwAnzHF1O4KZZYh+3n4C/KDBdp3LCZjZK4H/RfSf8JNmljOz7gbljiQ6R9e6+6b6+vj5tcBpZnZAq+qdQgvi5ebkSncvA88AA6DzmOTuv22m3AzO2duBR9z9hkTZGnA5sAR4w1TvqdAwt04gamm4O7nS3UvAWvbRP8YzcFC8fCpeHgsUgDsblP15vNS5jfw5cBRRc2UjOpcTq/8BfdzMbgCGgAEze8jMkoG/fn4mOodG1MS8r7ob2AH8lZm91cwOicfQXEp0Xi6Oy+k8Tl/T58zMVhC1QPx8grLJ/U1IoWFuHQg84+7DDbZtAvYzs3yL69RR4v+ULyRqXv9uvPrAeLmpwUvq61bOcdVSz8wOBz4NfMbdN0xQTOdyYi+Ml2uI/gt7N/CnQBn4lpm9N96uczgJd99O1Jr1LFFX2GPAb4jGL/2+u6+Ji+o8Tt90ztmsnF/dGntudQONAgNAKVGm3JrqdKTLgJOAT7j7g/G6ehNxo3NbGldmX/ZV4FGiAU8T0bmc2Px42Q+8Jm5Ox8x+SNQX/1kz+2d0Dpuxm6hv/nrgDqIQ9gHgu2b2Fnf/GTqPMzGdczYr51ehYW4NEo1SbaSYKCMNmNnfEDWrX+nulyY21c9ZocHLdF6BuPn8dcAr3b0ySVGdy4kNxcur64EBov+czex64I+JWiN0DidhZquIgsKfu/vXEuuvJgoSa+IreHQep28652xWzq+6J+bWZqIuiEbfpJVEXRdqZWjAzC4GPgV8E/izcZvrA6oaNaXV1zVqgtsnxD9vXwR+DGwxsyPjAVOHxkUWxusWoXM5mY3xckuDbU/Gy8XoHE7lz4k+lK5NrnT3QeBHRD+Xh6HzOBPTOWezcn4VGubWPUTn+OXJlWZWBFYTXS8r45jZRcBFwFXAOR5fF5TwAFET28kNXn5SvNyXz20XsAw4E1ifeNwSb39n/PU56FxOpj6A+aAG2+rrnib6PYeJz6EDv5jdqnWU+gdSpsG2bGKp8zh9TZ8zd3+SKBScNEFZaOZ3vd3Xo+7ND2AVk8/T8M521zFtD6JBj04UGIJJyl1LNLfASxLr6nMLPMS+PbdADviDBo/z4nP77/HXL9C5nPQ8Lia61n0jievXgRVEffQPJdbdE5c9MLHuwHjdTe0+ljafxy/FP3d/NW59vaXrWSCr8zjh+ZtqnoamiFUOKQAABVNJREFUzxnwBSaep2H7/9/e3YZYUYUBHP8PgdKHspLIikCIMCMiI5NSeieMil4olkqTiMKOCIUUIUUbfTGoDKWTEUVkavWlIqE0KxMtLDGjorcv9qJlfcleNarpwzNrw+1ed262ru7+fzAMe+6Z2TOzu/c+e+ac5wAH9dceM0IOsKIoFhLP5Z8nuovHExki1wHnlmaE3KUoillERrMvgbuIgKtuWxkDpvrmJ79DZI2cT/yB3EgEaheVZblib7V7f1EUxVhiYGRrRkjvZQdFUdwEPAp8BDxBJCS6mQgcLi7LcmVV7wzgDSLAWFgdPhs4AphcluX7e7np+4wqq+ZGIghbQrz3HUb8jo0FZpVlmau63kegKIrp/PM4cTbxe/dA9fUXZVkurtVtfM+KohhN9DyMJh5hbiHyCZ1N9Oo+3m/jBjuKGuobEcXNITLr7ax+SA/SIPPWcNuAJ4kouNO2uqX+eOBFYg74r8BaIjX3oF/LvrgRb9D/ygjpvez3vl1BzGP/hZhJsbJ6M26tdzrwGtEL8ROwAjhlsNu/L2zAsUQK6a+J4PRHYA1whfex7f1a3fR9sNt7RjwuWkwk1tpBBHQ9TdtmT4MkSWrEgZCSJKkRgwZJktSIQYMkSWrEoEGSJDVi0CBJkhoxaJAkSY0YNEiSpEZc5VLSkJdS6iXWMzkn57x6cFsj7b8MGiT1K6XUJAucH8jSEGfQIKkb9+zmtc17qxGSBodBg6TGcs69g90GSYPHoEHS/64+hoBYre8W4HhiMZ3lwNyc87dtjjuOWOH0POBwYlGdVcC9OefP29Q/gFgtcTpwIrEa4BZiwZ/7OhxzJXB7VX8HsQDVnJzzlj25Zmk4cPaEpIF0K7AIeB94iFjt9XrgrZTS4fWKKaWJwAZgGvAucD+xuuS1wIaU0qkt9UcArwCPAMcAS4EFxNK/lwOT27QnAU8Tj1IeBj4EeoBVKaWRe3y10hBnT4OkxqoehHZ25JzntSm/EJiUc36vdo75RM/DPOCGqqwAngIOBqblnJfU6vcAzwBPp5ROyDn/Vb3UC5wPvARclXPeWTtmZHWuVlOBiTnnD2p1lwJXA5cCz3W8eEn2NEjqyt0dtjs61F9cDxgqvcB24Jraf/dnEI8v3q4HDAA552eBtcA4YArseiyRgN+AmfWAoTpmZ875+zbtWVAPGCqPVfvTOlyDpIo9DZIayzkXXR7yZptzbE8pbQLOAsYDm4BTqpdf73Ce14mAYQKwhggwRgHrc85bu2jPhjZlX1X7Q7s4jzQs2dMgaSBt61DeNwhyVMv+mw71+8oPadl3O3jxhzZlf1T7A7o8lzTsGDRIGkhHdCgfU+23t+zHtKkLcGRLvb4P/6P/e9MkdcugQdJAOqu1IKU0CjiZmO74cVXcN+7h7A7n6SvfWO0/IQKHk1JKR/0fDZXUP4MGSQNpekppQktZL/E4YlltAOM6YjrmlCqPwi7V12cCnxEDIsk5/wlk4EBgUet0yZTSiNYpnZL2nAMhJTW2mymXAC/knDe1lL0MrEspPUeMS5hSbZupzbjIOZcppRnAq8CzKaUXid6EccBlRFKo62rTLSFSWk8CLgE+Syktr+odA1wA3AY8+Z8uVFJbBg2SunH3bl7bTMyEqJsPPE/kZegBfiY+yOfmnL+rV8w5r68SPN1J5F+4hMgIuYzICPlpS/3fU0pTgZnAdcAMoAC2Vt9zbfeXJ2l3irJssnidJDXnUtTS0OSYBkmS1IhBgyRJasSgQZIkNeKYBkmS1Ig9DZIkqRGDBkmS1IhBgyRJasSgQZIkNWLQIEmSGjFokCRJjfwNbvdOUqRC6msAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 576x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAGdCAYAAACo8fERAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeZxcVZ338c+vtq7es3T2kARC2IOCoCgqiyO4zKjjuDCiIyjDjKWOoz7q6IjgiDiPOs4oTqsojyLiAigKjhuMCYigYREIEiAkdEL2pDvpvbq28/xxqrurO9Xp6u7qrlvJ9/161auqb91763R30vWtc37nXHPOISIiIjJZoUo3QERERKqbwoSIiIhMicKEiIiITInChIiIiEyJwoSIiIhMicKEiIiITInChIiIiEyJwoSIlJWZfcfMXP6WNrP54+z/hoL9nZldMs7+/1Ww7ydKaM9Vo85/qNt/TfDbFREUJkRkekWAt42zz9+VejIzG32+d06gLTlg9zi3rgmcT0TyIpVugIgctrYCy/BhoegnfjObA7wW6AFSwJxxzvkaYB5wN7AQON7MznLO/aGE9jznnFtRWtNFZCLUMyEi0+V+YBNwmpmdPMY+FwEx4MdAfwnnHOyJ+H7+VrhNRCpEYUJEptON+fuxhjIGt393vBPlezH+Et+DcStwU/6pt5pZzVQaKSJTozAhItNpMExcbGYj/t6Y2XHAi4DngLUlnOtv8b0Yv3LOdTjnNgF/BGYDrytbi0VkwhQmRGTaOOc2A78HlgDnj3p6sFfiJudcroTTDQ5n3FSw7aZRz4lIBShMiMh0GxzCGBrqMDMD3j7q+TGZ2YnAmUA3cEfBUz8CMsCFZrZgnNMcZWa7xrmNVdshIoegMCEi0+1mIAm80czq89vOAZYDDzrnNpRwjkvy97c554YKNZ1ze4C78DPTLh7nHCFgwTi3aAltEZFRFCZEZFo55w7gexPqgb/Jb55I4WWI4V6M7xfZZXCoY7z1KrY452yc2yPjtUdEDqYwISIzYTA0vMPMavGhIg38oIRjXwksBgZ7IUb7KdAHPM/MnleGtorIBClMiMhM+BU+DJwPvA9oAn7pnNtXwrGDxZXzgczoJbDxdRR1o/YVkRmkMCEi0845lwF+iP+b89n85hvHPsIzsybgDRN4qYvzS26LyAxSmBCRmTI41BEF9jNyVsZY3gLU4teimH2I21ygHd978aqytlpExqUELyIzwjn3kJldBTQCjznnBko4bHDY4if5Qs4xmdnPgHflj/n5VNoqIhOjMCEiM8Y59+lS9zWzlcBL81/+pIRDfoIPE39lZrOdc/sn0UQRmQSFCREJqsGpnruBe0vY/078JcSb8BcQ+9qo548ys13jnOM+59wbJ9RKEVHNhIgET36FzMEw8bNSltt2zqUYHt4oNqujlEWrxrsEuogUYc65SrdBREREqph6JkRERGRKFCZERERkShQmREREZEoUJkRERGRKFCYmKJFIuEQioapVERGRPK0zMXkKFCIiciSxsZ5Qz4SIiIhMicKEiIiITInChIiIiEyJwoSIiIhMiQowyySdTrNt2zaSyWSlm1I14vE4S5cuJRqNVropIiIyBQoTZbJt2zYaGxtZsWIF/hpFcijOOdrb29m2bRtHH310pZsjIiJToGGOMkkmk8ydO1dBokRmxty5c9WTIyJyGFCYKCMFiYnRz0tE5PCgMCEiIiJTojAhIiIiU6IwcRhpa2vjhBNO4LLLLuOUU07h4osv5q677uLss89m1apVrFu3jnXr1vGSl7yE0047jZe85CU89dRTAGSzWT7ykY9w5plncuqpp/KNb3yjwt+NiIhUC83mmAYXfuZ/pu3cv77itYd8/plnnuGWW27huuuu48wzz+T73/8+9957L7fffjvXXHMN3/3ud7nnnnuIRCLcddddfOITn+DHP/4x119/Pc3NzTzwwAMMDAxw9tlnc8EFF2imhYiIjEth4jBz9NFHs3r1agBOPvlkXvGKV2BmrF69mra2Njo7O3nnO9/Jxo0bMTPS6TQAv/nNb3jssce49dZbAejs7GTjxo0KEyIiMi6FicNMTU3N0ONQKDT0dSgUIpPJcMUVV3Deeedx22230dbWxrnnngv4dR+uvfZaLrzwwko0W0REqpjCxDQYbyii0JY93QxksgAsn9dITTQ8Xc0CfI/DkiVLAPjOd74ztP3CCy/ka1/7Gueffz7RaJSnn36aJUuWUF9fP63tERGR6qcCzAoLhYbXWsjm3LS/3kc/+lE+/vGPc/bZZ5PNZoe2X3bZZZx00kmcfvrpnHLKKfzDP/wDmUxm2tsjIiLVz5yb/jeww0kikXAAra2tI7Zv2LCBE088ccLn297RS2/S1y0snlNPQ/zIuk7FZH9uIiIy48ZcaVA9ExUWKlgFMjcDPRMiIiLlpjBRYeGCYY6ceolERKQKKUxUWEGWmJGaCRERkXJTmKiwkHomRESkyilMVFhYNRMiIlLlFCYqbKanhoqIiJSbwkSFjZjNoWEOERGpQgoTFTaiZmKGeyYaGhpm9PVEROTwpDBRYYVTQ7PqmRARkSqka3NMh8teVfKuMeC4iZz7W78a86mPfexjLF++nEQiAcBVV12FmXHPPfewf/9+0uk0V199Na9//evHfZm1a9dy5ZVXsmDBAh555BHe+MY3snr1ar785S/T39/PT3/6U1auXMkdd9zB1VdfTSqVYu7cudx0000sWLCA3t5e3v/+97N+/XoymQxXXXVVSa8rIiLVRz0Th5GLLrqIH/3oR0Nf33zzzVx66aXcdtttPPzww6xZs4YPf/jDlLqE+qOPPsqXv/xl1q9fz4033sjTTz/NunXruOyyy7j22msBeOlLX8of/vAH/vSnP3HRRRfx+c9/HoDPfvaznH/++TzwwAOsWbOGj3zkI/T29pb/mxYRkYqreM+EmR0HvB24AFgJxIFNwC3Afznnekftfzzwf4Fz8B/sHwaudM79dgKvOeVzBNFpp53Gnj172LFjB3v37mX27NksWrSID37wg9xzzz2EQiG2b9/O7t27Wbhw4bjnO/PMM1m0aBEAK1eu5IILLgBg9erVrFmzBoBt27bx1re+lZ07d5JKpTj66KMB+M1vfsPtt9/OF7/4RQCSySRbt27VdThERA5DFQ8TwLuA9wK3AzcBaeA84GrgLWZ2lnOuH8DMVgL3ARng80An8PfAr83s1c65u8Z7sXKcY1yHGIooZtOuLrK5HADHLGgiEp58h9Gb3vQmbr31Vnbt2sVFF13ETTfdxN69e3nooYeIRqOsWLGCZDJZ0rlqamqGHodCoaGvQ6HQ0BVF3//+9/OhD32I173udaxdu5arrroKAOccP/7xjzn++OMn/b2IiEh1CMIwx63AUufcxc65a51zX3fOvRX4LHAq8O6CfT8HzAIudM59zjnXCrwM2AH8t5mNeUWzMp+jrMJlXGvioosu4oc//CG33norb3rTm+js7GT+/PlEo1HWrFnDli1bptrcETo7O1myZAkAN9xww9D2Cy+8kGuvvXZoSOVPf/pTWV9XRESCo+Jhwjn3oHOus8hTg4P/pwCYWT3wOmCtc+6RguN7gG/h6xjPPNRrleMc06GcS2qffPLJdHd3s2TJEhYtWsTFF1/Mgw8+yBlnnMFNN93ECSecMNXmjnDVVVfx5je/mZe97GW0tLQMbb/iiitIp9OceuqpnHLKKVxxxRVlfV0REQmOIAxzjGVp/n53/v5UoAa4v8i+f8jfnwmsO8Q5y3GOsiu82Fc51ppYv3790OOWlhbuv7/Ytws9PT1jnuPcc8/l3HPPHfp67dq1RZ97/etfX3SWRm1tLd/4xjcm1nAREalKFe+ZKMbMwsCn8HUN389vXpy/317kkMFtS8Y59aTPYWaXm9mD45x/UrTWhIiIVLNAhgngv4CzgE85557Kb6vL3w8U2T85ap+xTPoczrnrnHNnjHP+SQlV8GJf69ev5/nPf/6I24te9KIZbYOIiFS3wA1zmNlngPcB1znnPlfwVF/+vubgo4iP2mcs5ThH2VXyMuSrV6/mkUceGX9HERGRMQSqZ8LMrgI+CXwb+MdRT+/I3xcbhhjcVmz4otznGFOpi0GNVtgzcSRdOXSyPy8REQmWwIQJM7sSuBL4LnCZO/idZj1+eOLFRQ4/K38/Xk1DOc5RVDwep729fVJvkOEK9kxUinOO9vZ24vH4+DuLiEigBWKYw8w+BVwF3Ahc6pzLjd7HOddjZncAbzSz5znnHs0f2wBcBmykYBaGmTUDi4B9zrl9kznHRCxdupRt27axd+/eCR+bTGXo7EsD0BEL01EXm0wTqk48Hmfp0qXj7ygiIoFW8TBhZu8FPg1sBe4C3jZq3ajdzrk7848/DrwC+I2Z/SfQhV+9cgnw2lG9GX+NHy75ND6oMIlzlCwajQ4tJT1Rf9y4m8/d7jtEzlg5j8++7XmTOo+IiEglVDxMMLxI1DLghiLP3w3cCeCce8bMzgb+HfgXhq+r8apSl8EuxznKrSEeHXrcm0xXogkiIiKTVvEw4Zy7BLhkAvtvAMa9lrVz7jvAd6ZyjplSXxOFfIdI70Cmwq0RERGZmIqHiSPeFZezbP8+fpHs5y1LL6MnqYJEERGpLgoTlZbsI5T0S1vUujRdGuYQEZEqE5ipoUesmuGeiLhLM5DJkc4eNJlFREQksBQmKq2mduhhbc73SqgIU0REqonCRKUV9EzUusEwoSJMERGpHgoTlRYf7pmI53smegbUMyEiItVDYaLSCsKEeiZERKQaKUxU2oiaiRSgmgkREakuChOVVnNwz4SGOUREpJooTFRawVUzh2dzaJhDRESqh8JEpRX0TMSdpoaKiEj1UZiotJqDeyY0zCEiItVEYaLSRtRMDBZgaphDRESqh8JEpRVZZ0LDHCIiUk0UJiqtyAqYPboMuYiIVBGFiUorMjVUPRMiIlJNFCYqrdgwh3omRESkiihMVFpBmKgbnM2hngkREakiChOVNmKdCT+bo28gQzbnKtUiERGRCVGYqLQiBZjgA4WIiEg1UJiotFgNmAFQ47KEXA6AXi1cJSIiVUJhotLMtKS2iIhUNYWJICi2pLZWwRQRkSpR8TBhZh83s1vMbLOZOTNrG2O/FfnnD3W7uITXu+QQx3+17N9gKeJF1prQMIeIiFSJSKUbAFwDdAAPA7MOsd9e4B1jPPdVoBb49QRfd8OobU9N4PjyKeiZiOsy5CIiUmWCECZWOuc2A5jZ40BDsZ2cc73A90ZvN7MXA83Arc65fRN43Tudc2sn3txpUGQVTK01ISIi1aLiwxyDQWIKLsvff2uiB5pZo5nFpvj6U1cYJnKDVw5VmBARkepQ8TAxFWbWALwF2ArcOcHDbwe6gKSZPWpmby93+0oWP3itCS2pLSIi1SIIwxxT8Vb8sMgXncsv0DC+PuD7wG+BPcDRwHuBG81spXPu09PS0kMpLMDUktoiIlJlqrpnAj/EkQO+XeoBzrmbnXMXO+eud87d4Zz7CnAq8DjwSTNbUew4M7vczB4sQ5sPpiuHiohIFavaMGFmJwFn4Qspt07lXM65AeCL+J6aC8bY5zrn3BlTeZ0x1ejKoSIiUr2qNkwA787fT7jwcgxt+fuWMp2vdCNqJnwBpoY5RESkWlRlmDCzKH7Nib3Az8p02lX5+91lOl/pig1zqGdCRESqRFWGCeD1wDzgRudc0Y/wZlZnZieY2aJR2+cW2bcZ+BiQYmILX5VHkWEO9UyIiEi1qPhsDjN7B7A8/+U8IGZmn8x/vcU5d2ORw0oZ4nghsAa4AbikYPt6M7sbWI+fzbECeBewCPiwc27bJL6NqSk2NTSZwTmH5a8oKiIiElQVDxP4YHDOqG2fyd/fDYwIE2a2FF8keZ9zbvRy2KX4AXBu/hxNQCewDrjUOTfzvRIwomei3vnhjZxzJNNZamNB+BWJiIiMreLvVM65cye4/zYgXMJ+a4GDPtY75z48kdebEQVhos6GayV6kmmFCRERCbxqrZk4vBQMc9QXlIDoYl8iIlINFCaCoKZu6OHgCpigy5CLiEh1UJgIgoKeiZr8hb4ABtKlrhAuIiJSOQoTQVBQM1GTLQwT2Uq0RkREZEIUJoIgVjP8MJcmlL9mmcKEiIhUA4WJIAiFoKZgqCM/PXQgozAhIiLBpzARFDUHX4Y8qZ4JERGpAgoTQVHQMxHPTw/VMIeIiFQDhYmgiB98sa9kSmFCRESCT2EiKAp6Jmrz00NVMyEiItVAYSIoilyGXMMcIiJSDRQmgiKuAkwREalOChNBUdAzoQJMERGpJgoTQVGkZ0JhQkREqoHCRFAUFmC6fAGmwoSIiFQBhYmg0KJVIiJSpRQmgiKumgkREalOChNBMWKdCfVMiIhI9VCYCAqtMyEiIlVKYSIo4kVWwFSYEBGRKqAwERTqmRARkSqlMBEURcJEJufIZHOVapGIiEhJFCaConCYw2WGHqt3QkREgk5hIijidUMPB3smQDM6REQk+CoeJszs42Z2i5ltNjNnZm2H2Pc7+X2K3d40gddcbGbfNbO9ZtZvZg+a2ZvL8g1NVsHU0Hi+ABPUMyEiIsEXqXQDgGuADuBhYFaJx7yjyLZ1pRxoZnOAe4H5wJeAbcDbgJvN7F3OuW+X2IbyKggTNbk05hzOTGFCREQCLwhhYqVzbjOAmT0ONIx3gHPue1N4vX8BjgZe55y7I/+61wP3A180s1uccz1TOP/khMIQq4HUACEg5jIMWJSBjMKEiIgEW8WHOQaDxESY12Rmk2n/24BNg0Ei34YscC0wB3jNJM5ZHiMu9qVVMEVEpDpUPExMUmf+1m9md5rZi0o5yMwWAUuAPxR5enDbmeVp4iQUudiXhjlERCToqi1M7AL+E3gP8Nf4eoszgN+Z2V+UcPzi/P32Is8NbltS7EAzu9zMHpxYcyeoyGXIkymFCRERCbaqChPOuX9xzn3IOXeTc+6nzrlPAy8E0sDXSjjF4PzLgSLPJUftM/q1r3POnTHhRk9EvEjPhGomREQk4KoqTBTjnNsI3Awca2bHjbN7X/6+pshz8VH7zDwtqS0iIlWo6sNEXlv+vmWc/Xbk74sNZQxuKzYEMjNGrDWhAkwREakOh0uYWJW/332onZxzO/Fh4awiTw9um966iEMpsgrmQFrX5hARkWCrmjBhZvVmFi+y/TTgzcAG59ymgu11ZnZCfgZHoR8AK83srwr2DQPvBw4Av5iWb6AUugy5iIhUoYovWmVm7wCW57+cB8TM7JP5r7c4527MP14F/NLMfgpsBHqB5wHvArLA5aNO/UJgDXADcEnB9n/Hh4/vm9mX8D0Vf4ufEnqZc667fN/dBBXUTMRVMyEiIlWi4mECeDdwzqhtn8nf3w0MholdwF3AecDFQC2wE/gR8Dnn3JOlvJhzrt3MzsaHivfiV9x8ArjIOfejKXwfU1c4NXSoZiIz1t4iIiKBUPEw4Zw7t8T9dlH8mhxj7b8WsDGe2z6Rc82YorM5VDMhIiLBVjU1E0eEIutMaDaHiIgEncJEkBRZAVM1EyIiEnQKE0GiAkwREalCChNBUmw5bYUJEREJOIWJINElyEVEpAopTARJ4TCHeiZERKRKKEwESfzgqaHqmRARkaBTmAgS1UyIiEgVUpgIkljBVUNdGpwjnc2RzbkKNkpEROTQFCaCJBKBSBSAMI6Y870SqYx6J0REJLgUJoJmRN2EFq4SEZHgU5gImmIX+0opTIiISHApTARNkYt9aUaHiIgEmcJE0BSb0aGaCRERCTCFiaCJxoYexlwGUM2EiIgEm8JE0MRqhh7WKEyIiEgVUJgImiJhQjUTIiISZAoTQaOeCRERqTIKE0GjngkREakyChNBMyJM6PocIiISfAoTQRMtCBM5DXOIiEjwKUwEjYY5RESkyihMBE1seJ0JFWCKiEg1qHiYMLOPm9ktZrbZzJyZtY2xX9zM/t7MfmZmbWbWnz/mB2Z24gRe75L86xS7fbVs39hkFVyGXGFCRESqQaTSDQCuATqAh4FZh9hvBXAdcC9wPbADOAZ4D/BGM3uVc27NBF93w6htT03g+OlRMMyhFTBFRKQaBCFMrHTObQYws8eBhjH22wuc5px7pHCjmd0E/An4AnDGBF73Tufc2ok3d5oVDHPEVTMhIiJVoOJhYjBIlLBfO9BeZPsT+RByykRf28wagQHnXGqix06bwgLMnKaGiohI8JVUM5FIJF6eSCSWlXrSRCJxaiKR+LvJN6t0ZhYCFgG7J3jo7UAXkDSzR83s7WVv3GQU1EzEnA8R6pkQEZEgK7UAcw1wSeGGRCLxsUQicVBPQd5fA9+eQrsm4j34MHFDifv3Ad8HPgi8DvhnIA7caGZXjnWQmV1uZg9Osa3jixYOc6hnQkREgq/UMGFFtsU5dMHktDOzlwD/ATyGL6gcl3PuZufcxc65651zdzjnvgKcCjwOfNLMVoxx3HXOuYnUZEyOrs0hIiJVpuJTQyfLzF4A/A9+VsdrnHPJyZ7LOTcAfBFfQ3JBeVo4SSOGOfJhIpOrVGtERETGVZVhwsxOB+4EOoHznHPby3Datvx9SxnONXlatEpERKpM1YUJMzsNHyS68UFiS5lOvSp/P9FCzvKKHXxtjmQqU6nWiIiIjKuqwkQ+SNwF9OKDxLOH2LfOzE4ws0Wjts8tsm8z8DEgBfy6vK2eoGI1E5kcOecq1SIREZFDmsg6E9PybmZm7wCW57+cB8TM7JP5r7c4527M77cc3yMxG/gK8JJ8AWah25xzvfnHL8TPQrmBkTNR1pvZ3cB6YA9+Zc134WeEfNg5t618390kRKJgBs4RJUfI5chZiFQmRzwarmjTREREiplImLgqkUhcNXpjIpGY6oD+u4FzRm37TP7+buDG/OOjgcFehYPaUbBP7xjPDfoBcC6+0LIJX3exDrjUOVfZXgnwQSJWAwO+nrTGZei3GAPprMKEiIgE0kTCRLHpoYdSUk+Gc+7cEvdbO5E2jLW/c+7DpZ6jYqKjwgQxFWGKiEhglRQmWltbq6q2ouqNXlI7rFUwRUQkuBQSgmhEEaYPEeqZEBGRoJqWMJFIJF6dSCRum45zHxFGrDXhl9RWz4SIiARV2a4amkgkluBnRbwbOKpc5z0iaUltERGpIlMKE4lEwoDXApcDrwIGpxvcDXxzak07ghUsqa0wISIiQTepMJFIJI4CLsP3RCxmeNbEvcClra2tm8rTvCOUltQWEZEqUnKYSCQSIfwlu/8ev0ZDGL9i5G34y43fATypIFEGRYY5VDMhIiJBVVKYSCQSVwOXAgvxvRAPA98Bvt/a2tqR32eamngEKnJ9DvVMiIhIUJXaM/EJIAd8Dfhaa2vrn6evSUJUPRMiIlI9Sp0a6vL7Xgy8L5FIvGj6miSazSEiItWk1J6J5fhaiUuBfwAuTyQST+NrJb7b2tq6a5rad2QaESb8OhMKEyIiElQl9Uy0trZua21tvRJ/hc3XAf8DHAv8O/BcIpH4xbS18EikAkwREakiE5oa2tramgN+Dvw8kUgsZnh66Kvyu7w5kUgMANe3trY+UtaWHkk0zCEiIlVk0stpt7a27mhtbf03/GW/Xwv8DKgH3gs8lEgkHihPE49A0YJ1JjSbQ0REAm7Ky2m3trY64JfALxOJxAL8ctrvBk6f6rmPWDVFVsDMKEyIiEgwle3aHACtra27gWuAaxKJxF+U89xHlGI1EymFCRERCaZpuwR5a2vrXdN17sNeVMtpi4hI9Sh1Bcy/m8zJW1tbvzuZ4454BRf6imk2h4iIBFypwxzfwS9cVSrL768wMRnFZnOoZkJERAJqIjUTGfy00CemqS0yqOCqofGcFq0SEZFgKzVM3A28HHgDMB/4JnBza2trcroadkQr6JmIOR8iFCZERCSoSl0B8zzgeOCL+JUvvw3sTCQS1yYSiVOnsX1Hpljh1NDhngnnJjLSJCIiMjNKHuZobW19BvhYIpH4V+D1+Gt1vAdIJBKJh4BvAD9sbW3tnZaWHkkKhznyNRM5B+lsjlgkXKlWiYiIFDXhqaGtra2Z1tbWH7e2tr4KWIlfV2IRcB2wI5FIvHii5zSzj5vZLWa22cycmbWNs/+LzOwuM+s2sy4z+5WZPX+Crznlc0ybaOEwRwbyPRKa0SEiIkE0pXUmWltbt7S2tl4BXA5sBxqAeZM41TXA+cAmYP+hdjSzs/A1HEcDnwKuBFYBvzOz1aW8WDnOMa3CYQj7TqMQEEV1EyIiElyTXgEzf6Gvd+Vvy4Ek8D3g4UmcbqVzbjOAmT2ODyVj+QqQAl7unNueP+ZmYAPwH8AFJbxeOc4xvWI10O+HOOK5DOlwRGFCREQCaUJhIpFIhIC/xF8t9FX549cDHwBubG1t7ZxMIwaDxHjM7FjgTOD/DYaA/PHbzewW4FIzW+ic2zWd55gRsRro9+UnMa2CKSIiAVbqCphH4y/edSm+PqIXuAH4Zmtr67rpa95Bzszf31/kuT/ge0leAPzPNJ9j+hW7PofChIiIBFCpPRPP5O8fxNcX/KBCszYW5++3F3lucNuSGTjH9Cu2CmY6V6nWiIiIjKnUMGFAGt8r8SngU4lEYrxjXGtr6/IptK2Yuvz9QJHnkqP2Kes5zOxy4PL3vOc947WxPIpeOTQzM68tIiIyAROZzREFlk7gdlRZW+r15e9rijwXH7VPWc/hnLvOOXfGuC0sl8Irh+aX1O5TmBARkQAqqWeitbV12i5VPkE78vfFhiEGtxUbvij3OabfiFUwfYjoHVCYEBGR4AlKSCjVA/n7YgtjnYW/UulDM3CO6Vdz8DBHbzJdqdaIiIiMqarChHPuGXwR6JvNbLCQkvzjNwO/LZzSaWYtZnaCmTVP9hwVUzjMkQ8TfeqZEBGRAJr0olXlZGbvwC98BX4FzZiZfTL/9Rbn3I0Fu38AWINfrfLa/Lb344PRh0ed+n342SeXAt+Z5Dkqo0gBpoY5REQkiAIRJvBrWJwzattn8vd3A0Nhwjl3n5mdC1ydvzngPuDNzrlHS3mxcpxj2hWrmdAwh4iIBFAgwoRz7twJ7n8/8IoS9rsKuGoq56iYWOFsDvVMiCMDeRcAACAASURBVIhIcFVVzcQRpegwh3omREQkeBQmgipabDaHeiZERCR4FCaCqkjPhGZziIhIEClMBNWIMOGHNzTMISIiQaQwEVRFeib6U1myOVepFomIiBSlMBFUBWGiluGrhfbr+hwiIhIwChNBVRAm6mw4QGitCRERCRqFiaAqWGeiloIwoSJMEREJGIWJoBqxAmZ26LHChIiIBI3CRFAVKcAEDXOIiEjwKEwEVcFVQ2O54QChtSZERCRoFCaCqmCYI5orrJlQz4SIiASLwkRQ1QwPc0SzqaHHWlJbRESCRmEiqCJRMAMgnMsScn6tCRVgiohI0ChMBJXZyLoJXTlUREQCSmEiyIpdhlzDHCIiEjAKE0FW9Mqh6pkQEZFgUZgIsmI9E6qZEBGRgFGYCLJoQZjIDfZMKEyIiEiwKEwEmXomRESkCihMBFnRAkzVTIiISLAoTARZwZVDa5wPEX0DGXLOVapFIiIiB1GYCLKCJbUbQn7RKgf0pzTUISIiwaEwEWQFwxxN4eHeCK01ISIiQVJVYcLMrjIzd4jbuAUFZrb2EMefMRPfR8kKhjkawrmhx5rRISIiQRKpdAMm6CfAM0W2nwp8BLijxPPsAz5YZPvmSbZrehT0TAwOc4CW1BYRkWCpqjDhnHsMeGz0djP7Rv7h9SWeqtc5972yNWy6FNRM1FvWF0ygYQ4REQmWqhrmKMbM6oCLgO3AryZwXMjMmszyl+YMooILfdWaeiZERCSYqj5MAG8BmoBvO+eyJR6zBOgBOoEeM/uJmZ0wXQ2ctIJhjlqGeyO0cJWIiATJ4RAm3o0fAPh/Je7/LPB54FLgzUAr8Grgj2a2eqyDzOxyM3twim2dmDHChAowRUQkSKo6TJjZ8cBLgd86554t5Rjn3KXOuX91zv3IOXerc+4jwAVAA/ClQxx3nXNuZmd7FISJeEGni1bBFBGRIKnqMIHvlQD41lRO4pz7HXAPcJ6Z1U65VeVSZDlt0DCHiIgES9WGCTOLAH8HdAC3leGUbUAYmF2Gc5VHQZiI5YZ7IzTMISIiQVK1YQL4K2ABcKNzbqAM51sFZPDhJBgKwkQ0V9AzoWEOEREJkGoOE4NDHEXXljCzRWZ2Qn7q6OC2ZjMLF9n3tcDZwJ3OueS0tHYyCsJEJJsaeqxhDhERCZKqWrRqkJktBl4FrHPOrR9jt88B7wTOA9bmt50HfMnM7sCvdpkBXgi8Hb8q5j9PY7MnrmCdiXB2uDdCYUJERIKkKsMEcAm+vmGihZdPAQ8Bf4kfIokC24CvA9c457aXsY1TV7ACZjhT2DOhYQ4REQmOqgwTzrlrgGvG2ecSfOgo3LYBv7ZEdSgY5gilC8KEltMWEZEAqeaaicNfwVVDrSBM9A1kcM4VO0JERGTGKUwEWXS4Z8JSA8TC/jIiOedIpktdOVxERGR6KUwEWSQC4fzkE5ejOTb869JQh4iIBIXCRNAV1E3Mig5vVhGmiIgEhcJE0BWEiebYcJ2EVsEUEZGgUJgIuoK6iVnh4TChtSZERCQoFCaCrqBnoilSECa0pLaIiASEwkTQFYSJxnBu6LF6JkREJCgUJoKuIEw0jBjmUM+EiIgEg8JE0BWGidDw2hJ9mhoqIiIBoTARdLX1Qw+bssMXNNUwh4iIBIXCRNDNnT/0cFb//qHHGuYQEZGgUJgIupaFQw8bejuGHmsFTBERCQqFiaBrWTD0sL5739Bj9UyIiEhQKEwEXUGYiHcNhwmtgCkiIkGhMBF0c4fDRKSzg7DzMzpUgCkiIkGhMBF00RjMmguAuRzzMj2AeiZERCQ4FCaqQUHvxIJMF+CX03bOjXWEiIjIjFGYqAYFdRNLct0AZHKOVCY31hEiIiIzRmGiGswbnh661PUMPdaMDhERCQKFiWpQsNbE4nzPBGitCRERCQaFiWpQUDMxP9019FgzOkREJAgUJqpBQc/EvNSBocca5hARkSCoujBhZm6MW8/4Rw+d4zVmdp+Z9ZpZh5ndYmZHT2e7p2TOPAj5X1VTqodYzvdI6MqhIiISBJFKN2CSfgdcN2pbSR/TzeyNwK3Ao8BHgGbgn4Hfm9kZzrkd5WxoWYTDMLsF2vcAMD/bzbbQbHrUMyEiIgFQrWFis3PuexM9yMyiwLXAc8DLnPNTI8zsl8BDwFXA5WVsZ/m0LBwKEwszXWyLzqZtT/c4B4mIiEy/qhvmGGRmMTNrmOBh5wCLgW8NBgkA59wjwFrgrfnAETwFdRML8wtXbdh2YKy9RUREZky1hok3AX1At5ntMbNrzay5hOPOzN/fX+S5PwBNwHFlamN5tRy8CuamXZ2kMtlKtUhERASozjCxDj8c8SbgncBvgfcBvyuhp2Jx/n57kecGty0pQxvLryBMHB3qA/wqmBt3dlaqRSIiIkAVhgnn3Iucc190zv3UOfdd59xFwL8Cq4EPjHN4Xf5+oMhzyVH7jGBml5vZg5NqdDkUDHMcVbAKpoY6RESk0qouTIzhC0AKeO04+/Xl72uKPBcftc8IzrnrnHNnTK55ZVCwcNWcgf1Djzds219sbxERkRlzWIQJ51wa2AG0jLPr4LTPYkMZg9uKDYFU3qy5EPG1obFkL7W5FAAbtu/X1UNFRKSiDoswYWZxYCmwe5xdH8jfv7jIc2cBXcDTZWxa+YRCMHf+0JfLrReA9u4B9nYlxzpKRERk2lVVmDCzuWM89Rn8mhl3FOy7yMxOMLPCGoi7gZ3AZYXFmmb2POBc4JZ8L0cwFRRhntY4vPrlExrqEBGRCqq2Ras+aWZnAWuArUAD8BrgPOCP+AWpBn0OP9vjPPwaEjjn0mb2AeBH+Nkf38RPB/0gsBe4cma+jUkqqJs4MZ6CfB3mk9sPcO7Ji8c4SEREZHpVW5hYC5yEDwlzgSywET+b40vOuXH7+51zt5hZP/BJ4Iv4mR3/C3zMORfMeolBBTM6llnhjA71TIiISOVUVZhwzv0M+FmJ+14CXDLGcz8Hfl62hs2UgjDRMjC8vsQzO/3iVbFIuBKtEhGRI1xV1Uwc8QpqJqL797BkTj2gxatERKSyFCaqSUHPBO27OXHJ8AriWrxKREQqRWGimjQ2Qyy/3lZ/H6fOG15768ntqpsQEZHKUJioJmYjhjpOiqeGHqtnQkREKkVhotoUDHUsznVRG/NFl/u6k+zp7K9Uq0RE5AimMFFtFgyvBB7+84Mcv3jW0NeaIioiIpWgMFFtznjZ8ON1d3Pq/PjQl/+7PtjLZIiIyOFJYaLaHHMiLFnhH6cGeHXqGSz/1B837mHTLk0RFRGRmaUwUW3M4JzXDH0556H/5aUnDNdR/ODeTZVolYiIHMEUJqrRWecPTxHd9iyXrBh+6t4NO9m6t7sizRIRkSOTwkQ1qmuAM88Z+nLp43fzolX+8uQO+OHv1TshIiIzR2GiWr381cOPH7ibi1+waOjLNY/vYEdHbwUaJSIiRyKFiWp1zAmw9Gj/ODXA8c89zGlHtwCQc46b71PvhIiIzAyFiWo1qhCTu3/B2166cujLOx/dpkWsRERkRihMVLMXFRRibm9jdd9WTj5qNuCvJHrljx5kb5cChYiITC+FiWpWVw8vHC7EtNarec+KzNDXm3d38U/X/16XJxcRkWmlMFHtXnMR1Df6x8k+Vv3wC3zuFEc45Jey6ugZ4MM33M99T+6qYCNFRORwpjBR7eYvho9+AZrn+K8zaU7/ZStfOzVFQzwCwEA6y7/d8hDfWfMU6Wyugo0VEZHDkcLE4WDJCviX/4B5+emhuRzLf/Z1boz8npfG/MW/HPCDe5/hA9f/nmd3d1WsqSIicvhRmDhczFsEH/vi8HU7gLo/r+OKjd/j6/t/xst6N7IitY99O3bx/m/+jh/9/hn1UoiISFmYc67SbagqiUTCAbS2tla6KcX1dMMN/wl/um/MXbIYnaFaeiO1hBubaGyZQ8O8Fmzxcli20t/qGmaw0SIiUgVsrCciM9kKmQENjfDeT8H2Nvj1rfDHtZDNjNgljGNOro85qT5ob4f2Z+GpUedpWQjHrYaTT4eTToPGWQe/ViYNvd3Q0wW9PTB3vr+JiMgRRWHicLVkBbzr/8Ab3glr7oBNG6DrAK5rP9bXM/7x+3b52313+q+POsavadHfC/190NcLA0XWsDhqJZz2YjjtJX6FThszyIqIyGGiqsKEmR0HvB24AFgJxIFNwC3Afznnxr0ghZmtBc4Z4+kznXMPlqe1ATFnHvzNu4a+NIBMmlzXAZ55ZhuPPNHGs5u205jsYmVqLytTe1me7iDKqHqK5zaX9nrPbfK327/nZ5gccwIcfby/LVnhe05C4XJ9dyIiR56+HujcD4uOqnRLhlRVmADeBbwXuB24CUgD5wFXA28xs7Occ6Us+bgP+GCR7SW+Y1a5SJTQnHkc98J5HPfC00hlsvz6kW18775N7OnsJ+qyrEzt5fT+rbwguZUTB3YR5uDaGhcKYfWNUN8E8Thsa/NDH4M6O3ztRmH9hpmvx2hogqbZMG+hLx5tWeinuS5ZAfHa4f0zaXjyUXj499C+G449Gc6+wIekiejuhAfu9q+z+kz1mMjYcln4/Z3+39srXl98iE+kUrZshP/8JPR0wl9dDK9/R6VbBFRZAaaZnQFsdM51jtp+NfCvwPudc18d5xxrgRXOuRWTaUPgCzCnIJ3N8b+PbeOHv9/Ezv19Q9vrcimOTe0hS4jeUIzeUA19oRi5WC0nLZvD81bM5dTlc1k1K0pkw8PwyP3w2Do/JDJRZj5cHHUMhCOw/oGDz2MhWH2GDxULl/rhl8FbvG5kUOjrhd/8GO68bXhY5sTnw98mYPGySfyUAOdgz07Y8jRkMr4tpbzhOAdd+/2+oSITqVID8OgfYcFiWHbs5NsGCkuTNZCEb31+OAAvXgYf+QI0Nle2XUeqHVv835PVL/R/E450256FL3zU16oN+tA1cNLpM9WCMf+wVFWYGIuZrQYeA77hnPvHcfZdC6wAjgEagG43gR/C4RwmBmVzOR5pa+feDbu476ldHOhNlXRcPBrm5KNms3r5XFYvbeZ46yK6dSM8+xQ8+7T/pFdKvcZU1DfC4uX+TaC2Ae75RfHXDIfhlW+El/wFtO+BPTtg7y6oqYGTXwArT/L7AORysHUTrF8HTz/uPxkUnrO2Dl79FnjFG6AmfvBrOedDws9vgraNsPAouDgBJ542vM8zT8C3/wN2b/dfv/otvt4lPIEhoScfhR99wwed41f7HphTzvS9P+PJZPz3uOkJ2LsTVhznl2qPREt//WrX2QHXXul/R4WWHQv/5//65etlZmSz8Otb4Gff8wXk4Qhc8kF48Ssq3bLK2fkcfP4j0H1g5PbmOfDpr/ve3ul32IeJVwO/AP7NOXflOPuuBc7GD5HUAn3Ar4FPOOeeHO+1joQwUSibc/z5uQ4e3ryPjp4knb0pDvSl2NvVT3v3wCGPDRksml3PspYGlrU0cFRLA0tmxVkadzRmerHODtK7dtC37Tkyu7ZT27GT2o6dWG5Uvcbc+XD62bBoGay7G558ZHLfTMtCHxxcCetr1Nb7UBGv9b0jnR3jHzO7xXc7Llvp//iFI7BzK/zPD/wb9WhnvBz++p1w9y/gzp8M9yoMOvYkuPzjfkhnIOnDzKPrfPtPOn24R+RAO9z8TVi3tni7Fh4Fp7zAH3P8qT7wJPt8Ue7T62Hjn6Htad8zMvr7eeUb4eWv9j+HTMb//Pbu8OO1XQf8H7aeTpi/BM597eT+oOWy/pPW3t2+6Ld9ty/yPeZ4OOH5I4e9ih37xJ/87ygSgdnz/M9rzjz/76VYuCtmext8+VPQsaf488eeBB+8pvTzFerphl/dAn/8rf+5A2C+92j+Ih8qTzrND+GFwz4Mbm/zbx71Df7fyUz0jDy3Gf78EDQ0+/ZMdCixXHZvh+u/AJuL/Dl+3dv9/7Eg9bx1dsDjD8FxpwwvHDgVu7bBrd/ys+SWHQvLj4U58/3P5EC73yde54N+T76T/rSXQOKKmfi5HL5hwszCwL3AGcApzrnRkxxH7/9tYAe+JyMLvAh4H5ACXuqcW3+o44+0MHEouw708diWdh5t87e9XcmSj22IR4hFwnT0jHwDq7Mcr1roOKexn2OawsROep7/D1X4n2TPDrj317DhEUj2Q3oAUin/h3r0GyL4/+Cvf4f/pL19C9z0Vd8TMBX1jbBilX9z3bVtaucqZKGRYaehyQeA9Q8c/L2Z+cLWHVsL3qTGEYn6N7Bd23yPSynqGvytY8+hj6mphVe+wQeQwevFDMpmfY/Ohkd8GNy93QekgeTIOpvRwhFYdYoPdgsW+zqbplk+eP3ht/D730DH3jHaE4fnnQVnnuPDVDTmj+vr8b+3rZvg2Sf9m9a2tuGfu4XgbQn/xv7dLw+f76TT4R3/BC0LSvuj3d/rh9fu/IkPR+MZbN/on0ck6sP0ua/1vW5PPZb/OT7qX+Po4/zPaNVqH2QjEyiFc86Hsd/cCn9+eORzi5b5qeFLj4GmZmiY5e9ntYz9Gsl+3/76xom9sQ0kYePjPszc/YuR/9ajMUgX9I6edT787Xv8sr7ZjP+9NTQf3KZcDh5/AO7Ph7gFS2HRUn8/b6E/JlYz+Tdg5/xstx9+w/8ewmE457U+7Bwq/KVT/v9ffePIwJbLwdqfw63XF/87NqgmDv/8Wf/v+NqCz87v+Cc45zWT+15Kd1iHiWvxYeATzrnPTfIcLwPWAr91zr1yjH0uBy5/z3ve8wJQmChm14E+1m/p4LEt7Tz+XAc7Okp8gxtDJGTMa65lXlOceU21NNfH6OlP09mXorMvRd9AhiVz6jlucTOrFjWzamETtb0H/Djrjq1Yxx4iR68idNb5I//QOAf3/6+vpejt9oWf8xf7PzDte3y9x/59IxvT0ASnnOGHDo45cfgNJZuFe3/lu2O79o/9zcRq/H/0F78Cfv1j+OOag/c56XR45wf82iA/vaH0N/tCLzzHv5k/+xQ89gA89ejIP8SH0rIQVp7oeyR+f+fB3amlqq2H57/Yv6n09/k/tDvaSntDnS619TBrrg8exaY0D6qphX/8hP89A/zmJ3DzdQef66hj/Bv34uX+TXfxMr991zY/VPTME/DoH/yny5kUifrvc/Zc/6bfNFifU/AekE75N6t0yv9f2d428ddYuiL/qXmV/z23bfS9W7ue8/+/YjX+03TLAv9z6ev2a9H0dvv9a+vyIbURUkn/8xodosJh+Ku3w7l/Cdd9Dp54uGhzAP97O/5U36Ny3Cl+OPK3t/sPHuN9Lw1NMGsOLD/Oh/Njjve9eblc/oPKgP+eGmcNDzseaIcbv+KHL0errYNXv9Wv05Ps8//ue7t9z0/b077uYXDtnyUrfOA9frX/u3Co7xF8sPrAZ+CE5/mvb/pvP/Uf/M/8zHN8b0V3/lbfCJ/8yqHPOTGHZ5gws88AnwSuc879wxTPtQZ4GdB4qBkh6pkoXTKdZdu+Hrbu62HL3m62d/SyvaOP7R29DKSzAITMWDCrloWz6ujqS7GpzNcNCRnMbqhhbkOcOQ01xKLh/GiCG1WraL72synOS45bwEmhTkJPPOz/kJx4mv8Dc6gprcl+uOs2ePxB30uSzfhbKOzfmC74G2iePbz/0+v9H4Ltbb7L8i1/Dy971fCnpKcfh2/++8hQs2gZnPly/wdw/Tp4ZsPwp+lidRhQ8InvYf+HavCNw8yvA7LqFP/H99iT/ZvQoNQA3HeXX/hs787h7bNbfE/P7PwbVdNs/wfunl/4HpLJMPM/g7nzfaBpWeB/bk887P/wjqeh2X9abWiC/XuhfS/s3jay3aW04ejj/ae70YV+d9wEP7tx/HPEasb+RLnwKHjDO/zvZ/B3nE75XpEn/uR7GnY957fPmgtL8iFl85PFu/ung4Xg+Wf5N8CNfz50j9F0W7IC3v1/hguRMxn4/n/DPb+cmdc3O3jY0UL+//DsFt+zVlg3VVN76JA6UUtWwGsv8mGobaPv1QuF4J3/PLLYMjUAV/+TD4XF1DfCl28pX7sOxzBhZlcBVwLfBt49kSLKMc73beASYIlzbsw4qzAxdc45OnoGSGdytDTFiYSHZzZsa+/h7j/v5O4ndrBl7zQXax5CS2Ocl564kFOWzSGdyZFMZ0mm/KeJuY1x5jfXMq+plln1MXLOkck6sjlHzjlqIiFi0TCh8bpPs1n/SWXBUr/+xmjdB3w3eSQKL3ip/xRceM6eLv+Gm80Oh4zxHGj3haZLlpe2ZHou6z9RRaI+RMRqxt7vgXv8+iKDRaSjzW7xM2lOfL7v3amrh1j80F3NB9p9QNu0IV+nka/VSPb5N/+Xvcq/AY7+3p3zQeSBe/yU4MJgMfipecFi345jjvcFp7VjFFg654PV/f8LW5+ZWBFxy0I/zn/WeeOvr9J9wO8zeoho6ybf9f/HNf5T/Irj/M/whOf7QPfMEz4wPv342DUfhxKrgZdeCK/86+Ex/8EQ+tRjPtB2d/r2de4/dP2Qhfz5JvPGuniZf6McvI0etnAO7vrpcI9iOOL3cW7sHqC6BnjZhf7fyq7tPmTufM7/u+rpKk9gOv91fi2fDX/yQxSlDHu2LIADHQe/vhlc+CY/LBuNlfb6z22Ga/557B7Ib/zPxAq5D+3wChNmdiVwFfBd4FLnSqmoG/ec9+LrJxqdc2MO/itMzJz+VIa9nf3s7Uqyt6ufzr40jbVRZtXFaK6PEYuEeXZPF0/v6GTjzk7a9nSTc46QGaGQYUDvQGbc15ku0XCI2liYo1oaOHZhMysXNnHMgiai4RCpTJZUJkcmm6M+HmVOQw2z6msIhw4dQLI5hxnjB5VKyWb9m/+Bfb63obbO38+a69+oKtFu53whbCYNcxb4osapjJPv3+ff4Ldt9r0xO7f6N6hM2veSHHuinw107Ek+rJTrD3ku50PboUJjss+/Ue5v97+D7q6CT9j5+2jMv+FHY/53s/Kk4mF2LD1dsOUZH6ye2+QD0Irj/JDHspX+3IN1Ke17fLCoa/Ahqb7Rv25fjx/+6u3x39MxJ/iwORmDU7U3/MnfNj/phyTOeTWc9Yqxi2ad85/se7p8yNj8FLQ95e+79vuegFg8/6aeDyyF75ctC+CSDw0POYDvQfndr2DdGv9/YfDff20dzFvsf04rVvmfQ7LP90o9+kf/oaCuAS5+n+8pnKitm/z3Hq/z9RqDt4ZZU/v3frDDJ0yY2aeATwM3ApeMFSTMbBHQDGx1zvXltzUDPc657Kh9Xwv8HPilc+6QFSwKE9Ulnc3R0Z2kvWeAju4kmazzhfSA5f+DOed8LVc2x+PP7efeDTvp6p/5Lt6Qwaz6GprrYjTWRmmsjdEYj/pQlQ9U7d0DhAzm54eGFs6qY8mcelYubGLlwiaaav2nmVQmS9uebjbu7GRfd5J4NEJdTZjaWITG2ijHLmxmbuMkZiZIcYMzUhqagzXTQCYnmz04BGbSvlemY58fwjzmhLF76g5fh0eYMLP3Al8FtgJXwOg1n9ntnLszv+93gHcC5znn1ua3vQH4EnAHfrXLDPBC/BLdHcDZzrmnD9UGhYnDXzaX49G2Du59cif7upLUxiLEY/6NOJvLsbfTv7Hv7UrS3Z8iHAoRDhmRsAFGOpNlIFOZy7vPb66lvibC1n09ZHOH/r/d0hTnxCWzWLWomXAoRCabI53NMZDOcqAvxf6eAfb3DNDZn2JeU5zjF8/i+MWzOG5xMy2NcUIhIxwKEbLhYCYih7XD5qqh+RJrlgE3FHn+buDOQxz/FPAQ8JfAAiAKbAO+DlzjnBtjsFeOJOFQiNOPaeH0YybZ7Yrv7UhlcnT2pdi8u4tNu7rYtLuL5/b1YOaHQGKRMJGw0dWXpqMnWZbekD2dpY9V7+tK8ruuXfxuw66S9t2wbezZHfFomIbaKI3xKI21UaKRMM75GhLn/M8DRvYSh0M2dHPAQDrLQDpHKpMlk80Rj0WojYWpi0Woj0dZNLuOo+b69UqWzq2nJqprvIgERVX1TASBeiZkuqSzOfb3DNDVl6I7maanP01Xf4pYJMy8Zj89tqUxTs45du3vY9eBfnYe6GPL3m427eqibU836exwj8jiOXWsWtjMkjn1pLI5+gYy9A1k2NedZOPOzqEZNdXIgIWz61gxr5EV8xtZ1uKLSTv7UkM/v0w2N9RjYubDSm8yQ+9Amt5khub6GGeunMdZxy1g8ZzixZeZbI727iR7upL0DaSZVV/D7PoaZjfUEC0oHBY5QhwewxxBoDAhQZXJ5nhuXw99qQwr5jVSHx+7UC+by9G2p5sN2w/w3L4eQmZEwiGi4RDRSIjmuhhzGvybZkM8yrb2Hp7a3snTOw/wzM4u+lIZcjlHNpdjnNGUqrCspYFVi5rpT2XoHcjQm0xzoC9FR3dyzO+vuS7GiUtn87wVc3n+irksn9dA255uHt3SwWNt7Wze00VdLMK8pjhzG+O0NMapj0eJx8LEo2Hi0Qg10TA10RDxaJhYJJz/2t9ikVDZCm2dc0NrsyyYVTduoa/IGBQmykVhQmSknHP0D2SGelN6kmnS2RwhM8yMkC8lwRjuJcg55ycnOB9InPNDJYNvpOGQkUxn6c/3pnT2p9je3stz+3p4rr2Xnft7AxdiwiEbt05lomKRkK/Zyf9camMR6mqGb/H8FORQyP+cB4eLkqksyXSW3mR6qHg3la/jmdNQw8tPWsTLT1rEiUtnB3dmkATRYVMzISIBEzKjPh71PSEzdLXuVCbLc/t6advTRdveHra19xCLhGmqi9JUG6OpNkokHMLB0CJlsUiYhniU+poItTURNu3q4o9P7+bhZ/cNvdEWM6ehhnlNtdTHI3T2ptjfO8CB3oGDwky5g4T/PnOkMik6x9+1ZB09A/x0XRs/XdfGvKY4LU1xLL9om5mRyfopy6lMjkwuRzQc8uElH2Si4VA+JPpjGmujLJ/XyPJ55HdSygAAD7tJREFUvp6lvmZkj1g259je3sPTO/0U7u7+NMvnNXDsomZWLWymqa7E9RQk0BQmRKTqxCLhoemwk3X84lm85vRlJNNZHm3bx/6eAR+KaqI0xCM01saY21hDLHJwoWc259je0Tt0XZrHtrTT2ZdiTkMNq5fN4dQVczlp6WzS2RztXUn2didp707Sn8qM6DkYyGSHCk+T6QyptF8gbXAdknKqq4kQMqMnOVzo63stSr+mTika4hEi4RCRUIhw2OjqS9GfGrs+Z3a9n16ZymRJZ3Nkc46GeJSm2ihNdTEaa2MHDcvEIn5oKJ7vtXHOLxqXzgehwVg3eFRNNOxDZn7adSwSIpN1pDO5oTqjaCRETcQPL8UiIcJhP0srbEZNNMyCWbVF/y2IpzAhIke0eDTMi1YtmNAx4ZANXQ33r85YjnOOnmSGhnjk4GmyiyfXrpxzI4JHMpWhv2Dopy+VIZnOksuvvJrL+TVUBusx/JttmHlN/vo29fEo2VyOx7Z0sPbPO7h3w64RwaJcepITWyhuf+/BS5APXn+H9t5yNWvKDJjXXMvi2XXMa6qlO+lnYe3vGaCrP01dfg2XwTViZtXHmJMv1p1VX0MynWF/j+/Z2t8zQDQcYlZ9LF/UG6M+Hh2umYmE6E9l2X2gj92d/ew+0I8ZnLp8Lqcf08Ks+uH1LQZXFB4MhYNTtUPmZ6atmD+BBcmm8vNRzcTEqGZCRA4H6WyOZ3d3kc76mhU/JOSGC3HDISJhI5XxM4EGi1OzWV906/ABZl9Xki37etiaH27KFBnumV1fw3GLmzluUTOzGmrYvLuLjTs7eXb3yBlIMj4DVi1u5uj5jWxr72XL3p4xQ2F9TYSffPTCcr98UeqZEBE5AkXDIY5bXN4il2wuR28yQyaXG7peTSwSYk5DTdGFzTLZHB09A4RDRiwSJhrxi6D1JNN09fmp0d39aXKFH3odDGTyw0T5nhsz/NBKOEQkZPnXGl7bpD+Vpbs/RVd/iq4+XyA8OHNpcIrv4NDSQCZLOpPLz1ZyZHKOvoE0ezr7A1H064Cnd3Ty9I7xK2lmcjE5hQkRESmLcCg0oYLKSDjE/Obag7bPaQgzpyFYy72nszl27fdXPe7oGaCpNsrshhrmNMRpqo2STGfp7k/T3e+HaAZXke3o8QW78WiY2fnp1rPqasjk/Loynfn9+vL1NKmMX4U2GgmxoLmOhbNqWTCrlq6+NA9t3suGbQdGhiugLhZh8Zw6Qmb/v707D5KjLOM4/v0REwIEAtEISUTwAqOIiBzhBqUsUPFAkQIDqIBCA5bREhVR4lGKiAQFXtB4ckNKUVA5jBLkEEOEYLSEoBCEcAgC4cpyvv7xvoPt2DN79GZ7k/19qro6+/Yzk3eendl99u23335hhOn5CGuMGbo5Hi4mzMzMejF61Gps+JJ0xUqVtcaOXuH3u/ngzq/h8Z5nuOmOB3nosR4mT1iLjSauzcR1xja+pL2LCTMzs5XEuLGj2WnqpKa78X+8HqyZmZnV4mLCzMzManExYWZmZrW4mDAzM7NaXEyYmZlZLS4mzMzMrBYXE2ZmZlaLiwkzMzOrxcWEmZmZ1eJiwszMzGpxMWFmZma1+N4cA1QURdNdMDMzG0oxhFB5RzGPTJiZmVktim33RbdmSFoQY9yq6X6s7JzHweE8Dg7ncXA4j4NjRebRIxNmZmZWi4sJMzMzq8XFxPDxvaY7sIpwHgeH8zg4nMfB4TwOjhWWR8+ZMDMzs1o8MmFmZma1uJgwMzOzWlxMNETSapJmSLpFUo+kuyR9S9JaTfdtOJK0iaQvS7pe0gOSHpO0UNLnq3ImaVNJP5f0sKQnJF0t6S1N9H04k7SmpDskRUmnVhx3HruQNEHSiZL+nj/HD0i6UtJObXHbSpqb37ePSrpM0hZN9Xu4kDRO0jGSFuXcPCjpOkkfkqS2WOcQkPQ5SXMk3Z4/t0t6ie9z3iRNlnRmfh8vl7RA0j596pfnTDRD0reBjwMXAZcCU4GjgKuB3WOMzzfYvWFH0vHAEcDFwPXAM8BuwAeAPwPTYozLc+yrgPnAs8DJwDLgUGAzYM8Y49whfwHDlKQTgY8B44DTYoxHlo45j11I2giYR8rdD4DFwHhgc+DyGOP5OW5ajlsKtAq2I4GXAtvHGBcNaceHCUmrAVcB2wM/IX2u1wT2A7YBTogxfibHOoeZpAg8BNwIvBl4NMa4cYfYPudN0gRgQT52EnA3sD+wC/CRGOOPunYsxuhtiDfg9cDzwE/b2o8CIrB/030cbhuwFTC+ov2rOWdHltouBJ4Dtii1jQPuBG4lF9EjfQO2JBUKn8w5PLXtuPPYPX9XA3cBk3qJmw88CkwptU3JbVc0/ToazN92+X03q619DHA78IhzWJm3V5b+/RdgSZfYPucNOCF/P/YqtY3Kz/FvYFy3fvk0RzP2A0T6a69sNvAkMH3IezTMxRgXxBiXVRy6IO83A8inPN4FzIsxLiw9/nHg+8AmwNYruLvDnqRRpPfbZcDPKo47j11I2hnYkfTX872SRktasyLu1aQ8zYkxLm2153/PAXaXtMFQ9XuYWSfv7yk3xhifBh4EngDnsF2M8fa+xA0gb/sD/4gxXlKKfQ44BZgAvL3b/+diohlbk0Ym5pcbY4w9wEJG8A/pAXhZ3t+f95sDqwN/qIi9Pu+dX5gBvJY05FnFeeyu9YP1n5IuAZYDT0haLKn8x0ArR53yKNJQ9Ug0H3gEOFrSPpJenufofJ2Uk5k5zjkcmD7nTdIk0ojF9R1iy89XycVEMyYDD8YYn6o4thR4iaQxQ9ynlU7+6/qLpKH6c3Pz5LxfWvGQVtuUFdy1YU3SK4AvAV+OMS7pEOY8drdp3s8m/dV2EHAw8DRwlqQP5+POYwcxxodJo18PkU6p3QncQpob9b4Y4+wc6hwOTH/yVjvHvgV5M9YEqgoJgJ5SzNND052V1snANOCYGOOtua011FyV3562mJHqdOAO0iSrTpzH7tbO+8eA3fLQPJIuIp3v/5qkn+A89uZx0nn/i4HrSIXZEcC5kt4dY/wNzuFA9SdvtXPsYqIZT5JmzFYZW4qxDiR9hTRE/70Y49dLh1p5W73iYSM+t3kI/m3AzjHGZ7qEOo/dLc/781qFBKS/tiVdDBxIGr1wHjuQ9AZSATEjxnhGqf08UoExO19R5BwOTH/yVjvHPs3RjHtIpzKqvnFTSKdAPCrRgaSZwLHAj4DD2g63JnNVDcm12qqG8lZ5+f12EvBr4D5Jr86TtDbKIeNz27o4j725O+/vqzh2b96vh/PYzQzSL6o55cYY45PAr0jvy41xDgeqP3mrnWMXE824gZT7bcqNksYCW5Cu9bUKko4DjgPOBA6J+fqlkkWkobrtKh4+Le9Han7XACYC7wBuK23z8vHp+etDcB5705o8/bKKY622f5E+69A5jxH40+B2baXR+iU1quLYi0p753Bg+py3GOO9pGJhWodY6O3z3vQ1syNxA95A93Umpjfdx+G4kSZbRlIhsVqXuDmk9RHeWGprrY+wmBG6PgIwGnh/xXZ4zuul+etNnMdec7ke6Vr9uyldfw9MIs0DWFxquyHHTi61Tc5tc5t+LQ3mcFZ+3x3d1t4aGXsIeJFz2DWHva0z0ee8Ad+k8zoTDwNrd+uLV8BsiKRTSOf8LyINO08lrYh5LfCW6BUw/4ekI0gruP0T+AKpGCu7P6bJWq3rq+eTVsmcRfrgHEoq4t4RY7x8qPq9MpC0MWlCZvsKmM5jF5I+CnwX+CvwQ9JiS4eTCop3xhivyHHbA1eSCo9T8sOPAtYHdogx3jzEXR8W8gqiN5IKs3NIP/smkN5jGwNHxBhDjnUOM0kH8N9Tk0eR3nffyl/fGWM8qxTb57xJejFppOLFpNOhS0lrIu1KGgX+QdeONV1ZjdSNVPF9irSS4FP5G3cSvawyNlI34MekqrnTNq8tfirwC9J17E8C15CWKW/8tQy3jfSD+/9WwHQe+5S7vUnX4T9BurLjivxDuj1uO+C3pFGLx4DLgS2b7n/TG/Aq0lLad5OK1keB3wN7O4cdczavrz8H+5s30qmns0iLhvWQir19+9Ivj0yYmZlZLZ6AaWZmZrW4mDAzM7NaXEyYmZlZLS4mzMzMrBYXE2ZmZlaLiwkzMzOrxcWEmZmZ1eK7hprZiFUUxUzSvV52CyHMa7Y3ZisvFxNmNmBFUfRl1Tv/ojZbxbmYMLPB8KUux5YMVSfMrBkuJsysthDCzKb7YGbNcTFhZkOmPEeBdOfDTwCvJd2A6JfAMSGE+yoe9xrS3WLfCkwk3YhoLvCVEMJtFfGjSHefPADYjHRnxaWkmyR9o8Nj3g8cneN7SDft+lQIYWmd12w2EvhqDjNrwgzgDOBm4GTS3XM/DFxXFMXEcmBRFFsDC4DpwA3AiaQ7dX4QWFAUxVZt8WOAy4DTgQ2Bc4HvkG6v/F5gh4r+FMDZpFMypwF/AfYF5hZFsXrtV2u2ivPIhJnVlkccqvSEEI6vaN8T2DaEcFPpOWaRRiqOBw7ObQLOBNYBpocQzinF7wucD5xdFMXrQgjP50Mzgd2BS4B9QghPlR6zen6udnsAW4cQFpVizwX2A94NXNjxxZuZRybMbFAc12H7bIf4s8qFRDYTWAbsXxoN2J50GuQP5UICIIRwAXANsCmwI7xweqMAlgOHlQuJ/JinQggPVPTnO+VCIpud99t0eA1mlnlkwsxqCyGonw+5quI5lhVFsRDYBZgKLAS2zId/1+F5fkcqJN4E/J5UeIwH/hhCuKcf/VlQ0XZX3q/Xj+cxG5E8MmFmTbi/Q3tr8uX4tv29HeJb7eu27fs7afKRirZn835UP5/LbMRxMWFmTVi/Q/sGeb+sbb9BRSzApLa4VlEwZeBdM7P+cjFhZk3Ypb2hKIrxwBakyzL/lptb8yp27fA8rfYb8/4WUkGxeVEUkwejo2bWOxcTZtaEA4qieFNb20zSaY3zShMnryVdNrpjXgfiBfnrnYHFpImYhBCeAwKwBnBG+2WdRVGMab/01Mzq8wRMM6uty6WhAD8PISxsa7sUuLYoigtJ8x52zNsSSleAhBBiURQHAb8BLiiK4hek0YdNgfeQFrs6sHRZKKSlvbcF9gIWF0Xxyxy3IfA24NPAjwf0Qs2skosJMxsMx3U5toR0ZUbZLOAi0roS+wKPk37BHxNC+Fc5MITwx7xw1bGk9SP2Iq2AeR5pBcxb2+KfLopiD+Aw4EDgIEDAPfn/vKb/L8/MulGMfbnpn5lZfb7lt9mqyXMmzMzMrBYXE2ZmZlaLiwkzMzOrxXMmzMzMrBaPTJiZmVktLibMzMysFhcTZmZmVouLCTMzM6vFxYSZmZnV4mLCzMzMavkPQJmsBDv7PRsAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 576x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAGdCAYAAACRlkBKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeZxkdX3/+9en1u6enp0ZmBmQVRYFBQUE/YmCRBQTjTugRohAQgUQzc+4IxoMRhNcCOWCXpUEDKhE45WAciOLYdEBB0fCvjozMMwMs3Z3dVWd87l/nFPdp5vqmeqenqpTM+/n49GPqj7ne059T01P17u/2zF3R0RERGRbMp2ugIiIiHQHhQYRERFpiUKDiIiItEShQURERFqi0CAiIiItUWgQERGRlig0iIiISEsUGkRkq8zse2bmZnbzFI41M3u7mf27mT1uZoNmttHM7jezr5vZMS2e50gz+46ZPWhmA2Y2ZGZPmNntZvZlM3uLmc2Y4Nh5ZvbJuOxzZlYzs9Vmdq+Z/cDM/srM9pvstYnsikyLO4nI1pjZ94D3A7e4+2sncdzewA+BoxKbNwN5oCex7V+Bs929MsF5Pgt8GrB4UwhsAGbG52p4q7v/ZNyxrwD+E1iY2LwJyALJkPFTd//z1q5MZNellgYRmXZmtg9wB1Fg2AT8X2APd5/l7r3AwcBlRAHgfcANZpZvcp5TgQuJAsO1wJFA0d3nA73AYcDfAX9ocuwcRgPDw8B7gJnuPtvd+4FFwCnAdUBtuq5dZGemlgYR2arJtjSYWRb4NXAMsAZ4rbv/7wRl3wX8gOgPmC+5+9+N238n8Arg5+7+p9t43Z5ka4WZ/TXwdWAYOMDdV2zl2F53H9rWtYns6tTSICLT7W1EgQGgNFFgAHD3a4FvxN9+0MwWjytyWPz4/27rRZt0bzSOXba1wBAfq8Ag0gKFBhGZbmfHjw+6+49aKP8Fom6KAnD6BGWWbEd9FpmZbbuYiGyLQoOITJt4XMIr429/2sox7v5H4O7429eO2700fjzPzF49yeo0jn0B8HkzK07yeBEZR6FBRKbTPkBf/PzeSRz3+/jxkHHb/56oFWI2cGs8VfMbZvYBMzt0Gy0IPwAejJ9/HHjGzH5sZn9nZsebWd9WjhWRJhQaRGQ6zUs8XzeJ49bGj/OTG939JuDPgSfjTQcDfwV8G1gOPG1mXzKzMcfFx1aAE4Cfx5vmEI23+Efgv4ENZvafZnbsJOopsktTaBCR6TTVsQMTHufuPwMOAN4EfBW4E2gMXNydaDrnvWZ2cJNjV8WzLg4ham34OfB0vDsP/BnwP2b2wSnWW2SXotAgItMp2brwvL/+t6JR9rlmO9297u7Xu/sF7n4sUavBnzA6q2IJcPVE3RXu/oC7f8Hd/9TdFxOFiM8Cg0SB5VIze9kk6iuyS1JoEJHp9ATRBzHASydx3EvixwmnZya5e9Xdb3L3PwO+E28+Aji8xeMfcPeLgDcCTvS78P2TqK/ILkmhQUSmjbvXgNvjb9/SyjFmthfw8vjbW6bwst9JPD9wMge6+61Eq0VO+liRXZFCg4hMt2/FjweZ2TtaKP8xot9FNeC7U3i9gcTz6nYcP5VjRXYpCg0iMt2uA34bPy+b2YsmKhgvI/3X8bdfc/dV4/af2MLCTKclni9LHHuUmc3e2oFm9mJGu1GWba2siCg0iEjr8ma22za+8u4eEN0IajWwALjdzD5sZiN3mjSzA83sq8DVRL+Hfg18oslr/juw3Mw+YmaHmVkmPj5rZi8ys28Q3bAK4Gfu/nji2HcDT8a34D7RzGYmXn++mZ0D3BS//gDRNE4R2QrdsEpEtipxw6pWHO/uN8fH7Ut0a+yXJ/ZvIprq2JvYdjVwZrP7P5jZ08AeiU0BsJFosadsYvv/AG929+cSx15C1PWRtAnIMboAFUS32T7F3W9s4fpEdmm5TldARHZO7v64mR0FvAN4J9HdKhcCdeAh4Gbge+5+x1ZOcxBwMnA80W2x9yUKDMPAM8A9RLfM/pE//y+gTxBNyXwDcCzRwlALiKZYrgHuB24ErnD3Ndt5uSK7BLU0iIiISEs0pkFERERaotAgIiIiLVFoEBERkZYoNIiIiEhLFBomUCqVvFQqaZSoiIhITFMut03BQUREdiUTrsKqlgYRERFpiUKDiIiItEShQURERFqi0CAiIiIt0UDISarVaqxYsYJKpdLpqqRaT08Pe+65J/l8vtNVERGRaaLQMEkrVqxg5syZ7LPPPphNOMB0l+burFu3jhUrVrDvvvt2ujoiIjJN1D0xSZVKhfnz5yswbIWZMX/+fLXGiIjsZBQapkCBYdv0HomI7HwUGrpQf39/p6sgIiK7IIUGERERaYlCQxdzdz7ykY9w6KGHcthhh3HNNdcA8PTTT3Pcccdx+OGHc+ihh3LbbbcRBAGnn376SNkvf/nLHa69iIh0G82e2A4n/f3Pd9i5b/z0m7ZZ5rrrrmPZsmXce++9rF27lqOOOorjjjuOq6++mpNOOolPfvKTBEHA4OAgy5YtY+XKlfzhD38AYMOGDTus7iIisnNSS0MX+/Wvf82pp55KNptl99135zWveQ2//e1vOeqoo/jud7/LRRddxPLly5k5cyb77bcfjz32GOeddx433HADs2bN6nT1RUSkyyg0dDH35jfgPO6447j11ltZsmQJ73vf+7jyyiuZO3cu9957L6997Wu5/PLLOfPMM9tcWxER6XbqntgOrXQhNDz89MaRD/kDFs0mMw1TEo877ji++c1v8v73v5/nnnuOW2+9lS996Us8+eSTLFmyhLPOOouBgQHuueceTj75ZAqFAm9/+9vZf//9Of3007f79UVEZNei0NAmZtBoGPDQIbv9oeGtb30rd9xxBy996UsxM774xS+yxx578P3vf58vfelL5PN5+vv7ufLKK1m5ciVnnHEGYRgCcMkll2z364uIyK7FJmri3tWVSiUHKJfLY7bff//9HHLIIZM+32OrN1EPog/sfRfOIp/b+XuGpvpeiYhIR034V+3O/8mVEsnuiFBBTUREupBCQ5skhzCodUdERLqRQkObJFsalBlERKQbKTS0SbKlQd0TIiLSjRQa2sTU0iAiIl1OoaFNNBBSRES6nUJDm2Q0EFJERLqcQkOb2JiWhva9bn9//4T7nnjiCQ499ND2VUZERLqaQkObZDQQUkREupyWkd4eZ76h5aK7xV8t+/YNTTd/9KMfZe+996ZUKgFw0UUXYWbceuutrF+/nlqtxsUXX8xb3vKWybwalUqFc845h6VLl5LL5bj00ks5/vjjue+++zjjjDOoVquEYciPf/xjFi9ezLve9S5WrFhBEAR8+tOf5t3vfvekXk9ERLqPQkOXOeWUU7jgggtGQsO1117LDTfcwIc+9CFmzZrF2rVrOeaYY3jzm988pktkWy6//HIAli9fzgMPPMDrX/96HnroIb7xjW/wwQ9+kPe85z1Uq1WCIOD6669n8eLF/PznPwdg48aN03+hIiKSOqnonjAzn+BrS5OyB5nZT8xsvZkNmNltZnbCBOedbWaXmdlKM6uY2X1mdo5N5tM0ZY444gieffZZVq1axb333svcuXNZtGgRn/jEJ3jJS17CiSeeyMqVK1m9evWkzvvrX/+a973vfQAcfPDB7L333jz00EMce+yx/MM//AP/+I//yJNPPklvby+HHXYYN910Ex/96Ee57bbbmD179o64VBERSZk0tTTcBnxr3LZa8hsz2x+4HagDXwQ2AmcBN5rZG939pkTZAvBL4AjgMuB+4I1AGdgduGi7azxBF0IzmwarPLNhEICZvQUWze2b8su+4x3v4Ec/+hHPPPMMp5xyCldddRVr1qzh7rvvJp/Ps88++1CpVCZ1zolmdJx22mm84hWv4Oc//zknnXQS3/72tznhhBO4++67uf766/n4xz/O61//ei688MIpX4+IiHSHNIWGx9z937ZR5hJgDvByd18GYGZXAvcBl5vZwT766XcmcBRwvrtfFm+7wsx+DHzCzL7r7k9O/2U0N533njjllFM466yzWLt2LbfccgvXXnstCxcuJJ/P86tf/Yonn5z8ZR133HFcddVVnHDCCTz00EM89dRTHHTQQTz22GPst99+nH/++Tz22GP8/ve/5+CDD2bevHm8973vpb+/n+9973vbdT0iItIdUtE90WBmBTNrOkfQzGYAbwZubgQGAHffAnwbOJAoJDScBgwCV4w71VeAPNDWkXuZaZxy+eIXv5jNmzezZMkSFi1axHve8x6WLl3KkUceyVVXXcXBBx886XOWSiWCIOCwww7j3e9+N9/73vcoFotcc801HHrooRx++OE88MAD/MVf/AXLly/n6KOP5vDDD+fzn/88n/rUp7bvgkREpCtYGhYaMjMHBoAeIAusAa4BPuXuG+MyxxJ1TXze3T817vg/AX4BnOvul5tZBtgC3OPu/2dc2SJRmLjO3d85UZ1KpZIDlMvlMdvvv/9+DjnkkElf4+BwnRXroiEavYUce+028foJO4upvlciItJRE477S0v3xG+AHwKPALOAk4FzgdeY2Svj1oTFcdmVTY5vbFsSP84FepuVdfdhM1uXKNsWWqdBRES6XSpCg7u/YtymK83s98DngQ/Gj42Rg8NNTtEY9dc37rFZ2Ub5piMRzexs4OxzzjmnhZq3rpM3rFq+fPnIzIiGYrHIXXfd1d6KiIhIV0vVmIZxvgRUgTfF3w/Gj8UmZXvGldla2Ub5wWY73P1b7n7k5Kq6bZ1saTjssMNYtmzZmC8FBhERmazUhgZ3rwGrGF1IcVX82KxbobGt0R2xHhhqVjYe0zCf5t0crdZt0seMbWnY+bsndoVrFBHZ1aQ2NJhZD7An0FilaDlRd8OxTYofEz8uBXD3ELgHOCIOCUlHE1330qnUq6enh3Xr1k36Q3E6Z0+knbuzbt06enp6tl1YRES6RsfHNJjZfHdf12TX3xPV72cQTa00s58BbzOzl7r7vfHx/URrMjxMNKCy4QfAq4CziRZ3ariAaHGoa6dS3z333JMVK1awZs2aSR3nwLMbhka+r23onXh46k6gp6eHPffcs9PVEBGRadTx0AB8ysyOAX4FPAX0E82eOB64i7Ef+B8HXgf8wsy+DGwiWhFyCfAmH/vn/xXAGcClZrYP0YqQJwNvBS5298enUtl8Ps++++47lUP56CX/RbUeAvDTj55ETyENb7+IiEhr0vCpdTPwIuD9RGMNAqJWg08Cl7r7yHrI7v6Imb0K+ALwMaBA1A3xhuQS0nHZqpmdCFwMnBqf+1HgPODyHXxNTfXksyOhoVILFBpERKSrdPxTy91/Cvx0EuXvB1q677O7byBa7+HcqdVuehXzWRiKbqdRqQUdro2IiMjkpHYg5M6omM+OPB9WaBARkS6j0NBGPQoNIiLSxRQa2ijZ0qDuCRER6TYKDW2klgYREelmCg1t1KOWBhER6WIKDW00pnuiqtAgIiLdRaGhjcbMnqgrNIiISHdRaGij5GJOGtMgIiLdRqGhjYq50bdb3RMiItJtFBraSIs7iYhIN1NoaKMx3RMa0yAiIl1GoaGNejR7QkREuphCQxuNGdOg7gkREekyCg1tpNkTIiLSzRQa2kj3nhARkW6m0NBGmj0hIiLdTKGhjXTDKhER6WYKDW2k7gkREelmCg1tpJYGERHpZgoNbaRbY4uISDdTaGgjDYQUEZFuptDQRoVcBouf14KQIAw7Wh8REZHJUGhoIzMb19qg0CAiIt1DoaEdggAevg/+9x6OHn5qZHOlVu9gpURERCYnt+0ist3qNfjHvwXgI5bj1hecA6ilQUREuotaGtohXxh5WvA6uAMaDCkiIt1FoaEdMhnI5Ue+LXgUFtQ9ISIi3UShoV0SrQ1Fj8KC1moQEZFuotDQLoXi6NM4NKh7QkREuolCQ7skQsNIS0NVoUFERLqHQkO7NOmeGK4rNIiISPdQaGiXwrgZFKh7QkREuotCQ7vk1T0hIiLdTaGhXdTSICIiXU6hoV2atTQoNIiISBdRaGiXZEtD2FjcSaFBRES6h0JDuzRpaVD3hIiIdBOFhnZpMqZBLQ0iItJNFBraRS0NIiLS5RQa2kWzJ0REpMspNLSLZk+IiEiXU2hol3yypSEKC2ppEBGRbpK60GBmfWb2uJm5mf1Lk/0HmdlPzGy9mQ2Y2W1mdsIE55ptZpeZ2Uozq5jZfWZ2jpnZjr+ScZrdsEqhQUREukiu0xVo4nPAbs12mNn+wO1AHfgisBE4C7jRzN7o7jclyhaAXwJHAJcB9wNvBMrA7sBFO+4SmshrTIOIiHS3VLU0mNnLgAuAz0xQ5BJgDnCSu1/i7mXg1cAq4PJxLQhnAkcBH3b3D7v7Fe7+NuA64BNmtvcOu5Bm1NIgIiJdLjWhwcyywBXADUQf7OP3zwDeDNzs7ssa2919C/Bt4ECikNBwGjAYnzPpK0AeePd01n+b1NIgIiJdLjWhAfgQcDBw7gT7XwIUgTua7LszfjwKwMwywMuA37l7ZVzZ3wAhYwPGjpeYclmMB0IGoVMLwrZWQ0REZKpSERrMbF/gs8Dn3P2JCYotjh9XNtnX2LYkfpwL9DYr6+7DwLpE2fF1OdvMlrZW80lITLnsZbSFQa0NIiLSLVIRGoCvA48Dl26lTF/8ONxkX2Vcma2VbZTva7bD3b/l7kdupR5Tk2xpoD7yXKFBRES6RcdnT5jZe4HXA8e5e20rRQfjx2KTfT3jymytbKP84AT7dowxizuNBoVKVaFBRES6Q0dDg5kViVoXrgeeMbMD4l2NroPZ8ba1RDMkkvuSGtsa3RHrgaFmZePXnA/cst0XMBljxjSMtjRoBoWIiHSLTndP9AILgDcBDye+bo73vzf+/kxgOVF3w7FNznNM/LgUwN1D4B7giDgkJB1NdN3TP25haxItDYUw0T1RV2gQEZHu0OnuiQHgnU22LyBahOkG4DvA7919i5n9DHibmb3U3e8FMLN+olDxMNHMiIYfAK8CziZa3KnhAqLFoa6d5mvZukRLQz4c7YVR94SIiHSLjoaGeAzDj8ZvN7N94qePunty/8eB1wG/MLMvA5uIVoRcArzJ3T1R9grgDODS+Hz3AycDbwUudvfHp/NatinR0pAP6+AOZhoIKSIiXaPTLQ2T4u6PmNmrgC8AHwMKRN0Qb0guIR2XrZrZicDFwKlE4xgeBc4DLm9rxQFyOchkIAzJ4OQIqZNVaBARka6RytAQr9XQ9KZS7n4/8JYWz7OBaLGoiRaMaq98EYaHgGhVyLplqdTq2zhIREQkHTo9EHLX0mQGhVoaRESkWyg0tFOTGRSVmpaRFhGR7qDQ0E5N7j+h7gkREekWCg3tlLg9tu50KSIi3UahoZ0S3RM98YrZCg0iItItFBraKdE9URjpnlBoEBGR7qDQ0E5jblql7gkREekuCg3tNKalQaFBRES6i0JDOzVpaVD3hIiIdAuFhnZq0tKg0CAiIt1CoaGdNKZBRES6mEJDOyVbGkLNnhARke6i0NBOed17QkREupdCQztpRUgREeliCg3t1KSloVINcPdO1UhERKRlCg3tlGhp6CFqYXCgFuhOlyIikn4KDe2UaGnotdFuiUpVXRQiIpJ+Cg3t1KSlAWC4rtAgIiLpp9DQTk3GNIAGQ4qISHdQaGiniVoaahrTICIi6afQ0E4TtTSoe0JERLqAQkM7NVmnAaCq7gkREekCCg3tlE8uIz0aGrSUtIiIdAOFhnZKtDTkE6GhWteYBhERST+FhnZKtDTkw9rIc82eEBGRbqDQ0E6JloZcoIGQIiLSXRQa2imXBzMAsh6Q8ahbQi0NIiLSDRQa2sls7GBI3elSRES6iEJDu41ZqyEKCwoNIiLSDRQa2q3JWg2aPSEiIt1AoaHdmqwKqXUaRESkGyg0tFuTMQ1VzZ4QEZEuoNDQbonuiaIGQoqISBdRaGi3JktJD2tMg4iIdAGFhnYr9Iw87VFLg4iIdBGFhnYrNBnToNAgIiJdQKGh3TR7QkREupRCQ7uNWachCgtap0FERLqBQkO7NWlp0JgGERHpBgoN7dZkRUjd5VJERLqBQkO7qaVBRES6VG46TlIqlXLAoYABfyiXy7XpOO9OaYJ7T7g7Ft82W0REJI1aamkolUr7lkqlvyyVSgc22XcysAK4G1gKrCqVSm9vtQJmdpCZXWVm95vZRjMbNLMHzOxSM1s0QfmfmNl6Mxsws9vM7IQJzj3bzC4zs5VmVjGz+8zsHOvkp3OipaGX0RYGDYYUEZG0a7V74gPAFUA1ubFUKu0L/BBYCPwReACYB1xdKpVe3OK59wQWAf8BfBy4APglcDZwt5ktbBQ0s/2B24FjgS8CHwH6gRvN7MTkSc2sEJ/nr4FrgPOAB4Ey8JkW6zb9Ei0NvTYaGtRFISIiaddqaPg/wPJyufzEuO3nA71EgWLfcrn8YuDdQJ7oQ3qb3P3/c/cT3P0T7l5292+5+3nAGURh4vRE8UuAOcBJ7n6Ju5eBVwOrgMvHtSCcCRwFfNjdP+zuV7j724DrgE+Y2d4tXvv0SrQ09CRaGjQYUkRE0q7V0LAv8Icm298A1IGPlstlByiXyz8C7gBes511ezJ+nAtgZjOANwM3u/uyRiF33wJ8GziQKCQ0nAYMEgWapK8QhZp3b2f9pibR0jAmNKilQUREUq7V0LAAeCq5oVQqzST6oF5aLpc3jCt/D1G3Q8vMrMfMdjOzPc3s9cA3413Xx48vAYpEgWS8O+PHo+JzZYCXAb9z98q4sr8BQsYGjPZJtjR4MjRoTIOIiKRbq6HBgdnjth1ONFviniblNzL5mRlnAmuIxkbcSNQN8V53vy3evzh+XNnk2Ma2JfHjXKJuk+eVdfdhYF2i7BhmdraZLZ1k3VvX5NbYoO4JERFJv1ZDwxPAq8ZtO54oTNzVpPwCYPUk6/IT4E+AtwKfAzbE52noix+HmxxbGVdma2Ub5fua7YjHVBzZYp0nL3lrbEZDg25aJSIiaddqa8AvgPNLpdKngK8RdUucQzSe4YYm5Y9kXHfGtrj7CqKpmwA/MbMfA781s153v4RofAJEXRTjNe43PTjusVnZRvnBCfbtWMl1GsLR0KCbVomISNq12tLwRaK//D8LrCdqXdgd+G65XF6TLFgqlfYGjgBu2Z6Kufvvgd8BpXjTqvixWbdCY1ujO2I9MNSsrJkVgfk07+bY8ZItDYnQoHUaREQk7VoKDeVy+WngOOBXRE37K4F/JppyOd77icY0/Nc01K+XaN0HgOVE3Q3HNil3TPy4FMDdQ6KxFkfEISHpaKLr3nHjFrYm0dKQT4QGzZ4QEZG0a3mwYrlcvg84sYVynyMak9ASM9vD3Z9psv14oqWpb4ZoaqWZ/Qx4m5m91N3vjcv1Ew2ifJhoZkTDD4jGYZwNXJbYfgFRt8q1rdZxWiVaGvLh6GrbGggpIiJpNy33nthOX4+Xi/5vorUZeoCXA6cAm4G/TZT9OPA64Bdm9mVgE3AWUTfEm9zdE2WvIFog6lIz2we4HziZaKDlxe7++A68poklWhpyQSI0qKVBRERSbrpuWPVSotkUBtxWLpcn0/T/A6IujfcRzZZwovDwTeBL7j4yoNLdHzGzVwFfAD4GFIi6Id7g7jclT+ru1Xhp6YuBU4nGMTxKtFLl5VO5zmmRaGnIhXVwBzOFBhERSb2WQkOpVDqOqAugXC6X7xy37yLg0+O2fbVcLn+4lXO7+7VMoqvA3e8H3tJi2Q3AufFXOmQykMtDPWplKHhA1XIKDSIiknqtzp54J/Auoib+EaVS6dXAhUQrLF4FfINo4aQPxne/lGYSrQ3FxO2xRURE0qzV0HAscFe5XN44bvtfEXUnnF8ul/+iXC7/DdEsizrReAJpppCYdhmHBq3TICIiaddqaFhMNDthvBOAARI3hSqXyw8QLQPdmXs7dIP885eSrmr2hIiIpFyroWE+45aFLpVKewB7ALeXy+X6uPIPEy3+JM00aWnQmAYREUm7VkPDEM8PAS+LH3/XpPwwMD5ISEOTloZhjWkQEZGUazU0PAC8sVQqJWdbvIloPMPtTcrvBTy9nXXbeY1paYhaGNTSICIiadfqOg0/Irr/xH+WSqVvEN2w6gNEy0X/skn5VzFupoUkNBvToNAgIiIp12pouIxogaQ3ACfF2wz4v+VyuZIsWCqVXgHsw9ilmyVJsydERKQLtXrDqmGiqZQXEt0K+yrgz8rl8r80KX448FPgZ9NVyZ1OsqUh1DoNIiLSHSZzw6oBoiWZt1Xum0RLQMtECk0GQqqlQUREUq7VgZAynZpNudQ6DSIiknKTvmFVqVSaAbyDaLDjYqIZFE8D/wP8KG6RkK1pNuVSLQ0iIpJyk2ppKJVK7wWeAP4fohtYnUw09fLMeNsTpVLpPdNcx51Pk5aGaj0kHHNnbxERkXRpOTSUSqXzgO8TrQ65FPgH4BygFD//bbzvylKplJ67SqZRoqWhl9EWBg2GFBGRNGv11tgHApcC64H3lMvlG5sU+1SpVPoT4Grg0lKp9ItyufzQ9FV1J5K4y2WfjQaFai2gJ5/tRI1ERES2qdWWhg8SrcvwlgkCAwDlcvmXwFuALHD+9ldvJ5WYPdFroy0NWqtBRETSrNXQ8Drg5nK5/D/bKlgul28HfgWcuD0V26klWhp6xnRPKDSIiEh6tRoa9gTunsR5746PkWYSLQ09ift6aQaFiIikWauhwYm6J1o1mbK7nkRLQ9FHg4LudCkiImnWamhYARw5ifO+HPjj5KuziygkQ4NaGkREpDu0Ghr+GziuVCq9alsFS6XSK4HXxsdIM4kplwWFBhER6RKthoavEHVR/EepVJpwgGOpVHod8BMgAL66/dXbSTVZ3AkUGkREJN1aWqehXC4/XCqV/pYoPNxYKpV+A9xE1AXhwAuIZkscTTSe4cNao2Erki0N4Who0OJOIiKSZpO5y+XXSqXSBqLg8AqigJBkwAbgb8vl8nenr4o7oURLQz4RGrROg4iIpNmk7j1RLpevJGpV+Evgu8ANwI3A94APAHsrMLQg0dKQC2sjz7VOg4iIpNmk73JZLpe3ENz59HsAACAASURBVIWE701UplQq9QCFcrm8aco125klWhpywWho0JgGERFJs0m1NEzC14HndtC5u1+ipSEb1CC+u6VCg4iIpNmOCg2gBZ4mlstBJnrrM+7kiAZAaiCkiIik2Y4MDbI1TdZq0EBIERFJM4WGTknefyKeQaGBkCIikmYKDZ1S7Bl52uPRYEiNaRARkTRTaOiUZqFBYxpERCTFFBo6JRkaQrU0iIhI+rW0TkOpVNKn2XQr9o487Y1bGqoKDSIikmKtLu40lemTPoVjdh09idAQtzRo9oSIiKRZqzesUjfGdEvOnmi0NGhMg4iIpJjCQKckWho0e0JERLqBQkOnJMY0NNZpGNY6DSIikmIKDZ2SmD3R61VALQ0iIpJuCg2dkgwN4eiYhtA1flRERNJJoaFTEt0TfVYfea7BkCIiklYdDw1mdqCZfc7M7jSzNWa22cyWmdknzWxGk/IHmdlPzGy9mQ2Y2W1mdsIE555tZpeZ2Uozq5jZfWZ2jpl1/g6ciZaGPk+EBnVRiIhISrW6TsOO9JfA3wD/CVwF1IDjgYuBd5nZMe4+BGBm+wO3A3Xgi8BG4CzgRjN7o7vf1DipmRWAXwJHAJcB9wNvBMrA7sBF7bi4CSVCwwxGQ0OlFjCrE/URERHZhjSEhh8Bl7j7xsS2b5jZw8AngQ8A/xJvvwSYA7zc3ZcBmNmVwH3A5WZ2sPvIoIAzgaOA8939snjbFWb2Y+ATZvZdd39yh17Z1iQXd6I28lx3uhQRkbTqePeEuy8dFxgarokfDwWIuyreDNzcCAzx8VuAbwMHEoWEhtOAQeCKcef9CpAH3j0tFzBVheRAyNGWBs2gEBGRtOp4aNiKPePH1fHjS4AicEeTsnfGj0cBmFkGeBnwO3evjCv7GyBkbMBovzGLO1VHnutOlyIiklapDA1mlgUuJBq7cHW8eXH8uLLJIY1tS+LHuUBvs7LuPgysS5TtjMSYhmI42j2hlgYREUmrVIYGoi6EY4AL3f3BeFtf/DjcpHxlXJmtlW2U72u2w8zONrOlk6vuFCRDQ6DQICIi6Ze60GBmfw+cC3zL3S9J7BqMH4vPP4qecWW2VrZRfrDZDnf/lrsf2XqNpyixTkMxSHRPKDSIiEhKpSo0mNlFwKeA7wJ/PW73qvixWbdCY1ujO2I9MNSsrJkVgfk07+Zon8RdLvNhjYxHYxm0uJOIiKRVakKDmX0G+AxwJXBmYupkw3Ki7oZjmxx+TPy4FMDdQ+Ae4Ig4JCQdTXTdO74LYmsymTHBoRgv8FRRS4OIiKRUKkKDmV1ItNjSvwJnxB/6Y8RTK38GvNbMXpo4tp9oTYaHiWZGNPyAaNzC2eNOdQHRAMtrp/ESpibRRTF6/wmFBhERSaeOL+5kZn8DfBZ4CrgJOG3cKs+r3f2X8fOPA68DfmFmXwY2Ea0IuQR407jWiSuAM4BLzWwfohUhTwbeClzs7o/vqGtqWU8vbN4QPfUoNGhMg4iIpFXHQwOj6yW8APh+k/23EC0Hjbs/YmavAr4AfAwoEHVDvCG5hHRctmpmJxItR30q0TiGR4HzgMt3wHVMXqJ7QqFBRETSruOhwd1PB06fRPn7gbe0WHYD0UyMc6dStx2u5/ndE1rcSURE0ioVYxp2WcXkqpBqaRARkXRTaOikYvL+EwoNIiKSbgoNnZQIDY2WBs2eEBGRtFJo6CR1T4iISBdRaOikZt0TGggpIiIppdDQSU26J9TSICIiaaXQ0EnNplwqNIiISEopNHRSoUlLgwZCiohISik0dFJPMjREN6yq1jSmQURE0kmhoZPG3LCqCqilQURE0kuhoZOSsyc0EFJERFJOoaGTEi0NxTDunqiHhGNu1ikiIpIOCg2dlGhp6KM28ryqtRpERCSFFBo6qUn3BEBVXRQiIpJCCg2dlFxGOu6eAKgoNIiISAopNHRSckXIePYE6KZVIiKSTgoNnVQojjwtep2MR2MZhqoKDSIikj4KDZ2UyYxpbSjGCzxtqdQmOkJERKRjFBo6rfD8O11uGqxOVFpERKRjFBo6LXHTqsb9JzarpUFERFJIoaHTmtweWy0NIiKSRgoNnVZ8fvfE5iG1NIiISPooNHRa8fndE5uG1NIgIiLpo9DQaU1aGjappUFERFJIoaHTmoxp2KyWBhERSSGFhk5r0j2xeVAtDSIikj4KDZ3W06x7Qi0NIiKSPgoNnVZ4/p0ut1RqhO6dqpGIiEhTCg2dlljcqd+ie06EDgOV+kRHiIiIdIRCQ6clxjTMzIzeqEpdFCIikjYKDZ1WHL3T5UwbbV3QDAoREUkbhYZOS7Q0zLBES4NmUIiISMooNHRaIjQ0BkKCWhpERCR9FBo6rfj82ROgVSFFRCR9FBo6LREaimEyNKilQURE0kWhodMSUy4LwWhQ0J0uRUQkbRQaOi2xuFO+PjzyfNOgWhpERCRdFBo6LdHSkK0lWhoqamkQEZF0UWjotHwBzADI1qtkPATU0iAiIumj0NBpmQwURhd4Knq0wJPGNIiISNooNKRBcq0G3elSRERSSqEhDRLTLvuIQsNQNaAWhJ2qkYiIyPN0PDSY2cfN7Idm9piZuZk9sY3yrzCzm8xss5ltMrMbzOzwCcouNrMrzWyNmQ2Z2VIze+cOuZDtkQgN8wqjm7UqpIiIpEnHQwPwD8AJwKPA+q0VNLNjgFuAfYELgc8ALwRuM7PDxpWdB/waeBvwdeCDwBbgWjM7Y5qvYfskuifm5UdbF3T/CRERSZNcpysA7O/ujwGY2R+A/q2U/RpQBY5z95XxMdcC9wP/DLw+UfZjROHize7+s7jsd4A7gH8ysx+6+5bpvpgp6Um0NOQc4uUa1NIgIiJp0vGWhkZg2BYzOwA4CvhhIzDEx68EfgicaGZ7JA45DXi0ERjisgFwGTAPOHkaqj89Egs8zc6OtjRoBoWIiKRJx0PDJBwVP97RZN+dgAEvBzCzRcCSeHuzssnzdV5igadkaNAMChERSZNuCg2L48eVTfY1ti2ZQtnOS7Q0zMzUR57rTpciIpIm3RQa+uLH4Sb7KuPKTKbsGGZ2tpktnVINpyoxpqHfgpHnWhVSRETSpJtCw2D8WGyyr2dcmcmUHcPdv+XuR06phlOVmD3Rx2hLg8Y0iIhImnRTaFgVPzbrVmhsWzmFsp2XXNzJR4OCZk+IiEiadFNo+G38eGyTfccADtwN4O5PE4WCYyYoC9DeLoitSbQ09CRCg8Y0iIhImnRNaHD3R4g+6N9pZo2BjsTP3wn8t7s/kzjkB8D+ZvZnibJZ4DxgA3B9WyreikRLQzFIhga1NIiISHp0fHEnM3sfsHf87QKgYGafir9/0t3/NVH8g8CviFaAvCzedh5R+Pnbcaf+AlGYuNrMLiVqeTiVaKrlme6+edovZqoSoaEQjI7d1JgGERFJk46HBuADwGvGbfv7+PEWYCQ0uPvtZvZa4OL4y4HbgXe6+73JE7j7OjN7FVF4+BuilSb/FzjF3a/ZAdcxdYnuiVx9tHVh81ANd8fMOlErERGRMToeGtz9tZMsfwfwuhbLrgTeN4VqtVdiymW2Nkwhl6FaD6kFIZVaQG+h4/9MIiIi3TOmYaeWWNyJyhCzekdvdam1GkREJC0UGtIgsYw01Qoze/Mj32oGhYiIpIVCQxokxjRQGRsaNBhSRETSQqEhDRKzJ6hWxnZPaNqliIikhEJDGuQL0JghUR1mdu/owEetCikiImmh0JAGmcyYwZBz8z7yfNOguidERCQdFBrSItFFMScXjjzfXFFoEBGRdFBoSItkaMiOhgZNuRQRkbRQaEiL3r6Rp3PC5FLSCg0iIpIOCg1psXD0Lt7zNo/ed0vrNIiISFooNKTFnvuOPJ21dsXIc025FBGRtFBoSIs99xl52rPmjyPPtbiTiIikhUJDWiRaGnJPPwkeTbvcMlQjCH2io0RERNpGoSEt5u8OPdFgSBvYzF7ZaDCkAwOadikiIimg0JAWZrBkn5FvD7ENI881rkFERNJAoSFNEl0U+9fXjTzXuAYREUkDhYY0SQyG3Kc6GhpWrBvoQGVERETGUmhIk0RLw97Da0ee3/Xw6k7URkREZAyFhjRZMhoa5mx6hqwHACx9dA3VetCpWomIiAAKDenSNwPmLQTAgoCX9VUAGKoGLHt83daOFBER2eEUGtIm0UVx/JzRe1Dc8ZC6KEREpLMUGtImMRjysOzmked3PrSa0LXIk4iIdI5CQ9okWhoWbHya2X0FAJ7bMsxDqzZMdJSIiMgOp9CQNonQYKue4OgXLhz5/vYH1UUhIiKdo9CQNguXQC4fPX9uDa9+Qf/IrjsUGkREpIMUGtIml4NFLxj59vD8Zgq56J/pqbVbWPmcFnoSEZHOUGhIo8RgyOLqp3jZfgtGvldrg4iIdIpCQxolxjWw4nFeedDuI9/e/uAzHaiQiIiIQkM6JUPDyid4xQsXYvG3969Yz4aB4aaHiYiI7EgKDWmUuEU2K55gTm+eF+01F4DQ4ZLrfkelWu9M3UREZJel0JBGs+dB/+zo+fAQPPNH/vTle4/sXvbEOj71g98yOKzgICIi7aPQkEZmsNd+o99/7UJOWBBy+vEHjWxa/tRzfOLquxio1DpQQRER2RUpNKTVG94JmfifZ+1quOTDnLqoylknHjJS5P4VG/jov93F7x5fqyWmRURkh1NoSKsXvwzO/QwUitH3A5vhnz7GOwqrKJ30opFiDz+9kY/92118oHwz197+qAZJiojIDmOuv1CbKpVKDlAulztbkccfhK9dCJs3jm7b/xDu2fdVXPhwgRrZMcUzBgfsMZvD992Nw/edz6F7zaOYzyIiItIim3CHQkNzqQkNAKtXwVc+CWueHrO5Pmsu9+x5FD8YWMj/+pxoLMQ4GYMFs3tZPHcGi+b2sef8GRywx2xeuGg2fcVcu65ARES6h0LDZKUqNABs3gA//DbcdTMEz581MTRzHnf378+v6gt4JjuT57Iz2JDtJbTmPVAG7LVbPy9cNJu9dutn0dw+lsybwR5z+ujvyWFNAoiIiOwSFBomK3WhoWHjc3DL9XDzz2HT+q0WDTA2ZPvYlOlhU6aHzdkeNmeKDGSKDFiBwUyBgUyRzZkiWzJFNmei/cO5Ivm+Pmb2FpjZW2DujALzZvYwvy/Hbj0Z+mfNZFZ/kZm9BWb15pnZWyCbUcgQEdlJTPgLXe3T3Wb2PHjze+GN74Lf3QG/ux3+sBSGnn8jqyzO/GCA+cHkb3IVYFQsTyWTJ+8BPWGNAgEAIbAp08PGbB9PZnrZkilSLfRSL/bhPX1Q7MHyeSxfIFPIk8tmyWWMXNbImZEt5Mn2zyTXP5P8zFkU+2fQ01ukp1igt7dAtlCAQs/o7JFOcYdVT8L9y6AyCPu/CA54EeQL2z6uXtt2uakarsD9v4te4+DDoX/WjnkdEZFxFBq6Vb4AR78m+qrX4ZH74N674OmnYP3aqEViy6Ypnz6LM8OrzAiqz9uXAeaEFeaEFUaWnBqa8ktNaCiTp5IpMJwtEGRyhJksYSaHZ7OEmSyezeGZHGQy9AZD9FUH6R3eQmF4AHPHLQOWiQZ2WCYKIWaQyeAzZhHutoj6/D2ozd+dsHcG2SDAghrZoE7hmSfJPrAMNqwbW6l8AV54KOx/yNhQUB2GZ1fBsyvh2adhcAvMmR+tt7HXftGdS4cGYN1qWPds9O8zcw4sfkG0b9ELog//bBYyWcg2/mt6FEKCAB78PSy9FZb/Nno9iK7rhS+GI14ZBZpaLQo4lcHo56KvPzpv/0zo6YuOG65AtRI9r1ahNgy1avQaM+fAvAUwfyH0zoh+hlY9GX2tXgU9vbD7Eth9T9h9McyY2fwfLwwhDKL6ZScYiBsGUR3N4q/Rf58dqjIU/zusjqYzhyHM3S267nkLovdgqnUIAxgajK4ll4u+Mtno37DxngQBFArR9ulQr0cBsqd322UHB+CJB6N/ywV7wD4HTk/oDEPAW7smd3huTTRGqxr/7NVr0Xszf3dYuDj642i6u0grQ1Edi71TO7d7VN9CcXrq5h79XxzYDFs2Rv/XNm+Mfn+vXQ1rn4l+Ri0T/b456CXR17wF2z73DqTuiQmktntiMmpV2LQBBjbFP5ibo8ehwegDrDIYfbgNbom2x19eGcJqzw8LjlHP5MiHWlBql5AvRD9DW5MMZWajAcfD0TKZTNRylC9Ez5MfFM3k8pDPQ64QH2OAjf6iDurR8bVa/GHZF33wzZwVraSaHfchPVyBgS0wuDn6WR8a3MY1WfTBUOiBYlzvMIjO5w54VLdCo37Z6P/Y5o3R/7HktTfO1+z3bE9fFOr6ZkSvl8nEgTEbvVYjDNRr0bb+2XEAnBXtX7MqCqjr4uAzc3YU6BYuiUKfe3SOoBZ9ID3+EDzzx+fXY7c9YO8DoqA6PBR9uA4PRXXJFyBfjK61UBx9XwrF6L1c83T84fbs6L9F34wocM6YOVrf/llRXZ56FP74aPS7ZmsKRdhtd3DigFuFejU676w5MGtuFO7CMPo9NhQHZYjDWj66nspQ1I278bnRoF0ojp6jf/ZofftmRNcW1OOvOACue3Y0ZFaHo/POmhMdO3P26M9I46tWHRvMg/roz04jVA5uiQJck/Fp2zR7Hszoj+ra0xs9LtgDTj1n8ueamMY0TNZOERq2RxBE/wmHK9Ev8MYvCrPoP/+WjfEvyY0EmzcztGkjwxs3Udu0ibBSIajX8FoNr1UJg5DQIXAI4l9kueFB8tUhirUhCkEVC0MyHpL1IOoO8XQskb05U+Tenj3ZmOnlJZUV7FXf0OkqAfBkfh5D2SIHVp7WYisiu7ol+8BnvzGdZ9w1xzSYWQb4IPBXwD7AGuBa4EJ3n3xH/64km43+UmjW/JzLRU3vc+ZHRYH++Gt7uTvD9ZDN1Rr1wQHqAwPUB4eoV6vUqlXqw1Xqw8MEtTphrUpYrxPU6gxmo4GeG7K9rKfIlpozVBlmsFJnqDJMvR4QBgH1IMBrAfOCLSyub2JRbQOL6hsphjWqZKlZlioZ1tLL3cUlPFxYOGYGyoL6Zo6o/JEltQ0Yo4G7blmeyc1iVW42q3Jz2JDtZUl9A/tV17J/dQ2L6xvZnOnh2dxMVsezW3YLtvCC2nO8oLaevWrr6fEaWQ/J4mQ9iM8cvYqbsSbbz//07c9tfQfwZCF67+cGAxwz+DjHDD3OwvpmhjIFBi3PYKZAQIb+cJiZYYVZYYXesMZwJheNVbEcw5ZnOJOjalmqliPEmBcMsLC+mQXBFnq8TsVyPJWfx5P5efwxP5e+sMqS+gaW1DawpL6B4kg9n69GhgxOluZ/mIRAnSxRGxZbLTudqmR4NjeL1bmZrM7NIiDDgmAzC+pbWBhsZma4fQukDWWLGE42DMh6MBLqAsvglsGxaW+tCzJZsuHE/xYNoWUYWLAnld2W0LN+NTOefYrMVP7a3U5hzwzCRXtFY6DyBTyXB3ey61aTWbMKazJGa7s1uhO31Xq2Nbn8xC1kU5EvRL9jZzZakWbD7LlR68/83aPWlqFBeOj38OByePR/R1tMkoo901enbdipWxrM7KvA+cB/AP8FHAKcB9wGnOg+vh1x1C7f0rCLc3cGq3U2DlTZOFilWg/pK+boK+aYUcyRz2ao1AIq1YChan2k7IbBKhsHhtkyXKcnnx05ppjLUgtCBoZrDA7XGaoGNP7vNaa31oOQSi1guBZQqQUEoePuhO6EoVOpBWwarLJpsMbgBHc5zZiRzRiZjGHxdYQOQeiTW2rcnT6vMmQFfKL+W3eij0AnA2Q8JDQjIEPY6E5wJ0dIwev0hHUyOMOWo5LJRQuTjT+3O/m4fPQVxK/DSEirWZaqZalZjjoZ+rzK7GCI2eEQs4IKGZwQww1CjGHLxzOEetgSzxSa8Jri6+jxOj1hjR6vkfeA0IwQIySDAwUPRuqYI2RzpoeNmV42ZnsILPu884XJ7pV4W6/X6A+HmREOk/eAnIdkCcl5SIBRtyjE1i1D3gNmhhVmB1EANJync7NZlZvNM7lZVC3HbsEW9qytZ0l9I/OCAQIy1CxDPQ6Fj+fn80hhAcOZ/Eg9ch6wT3Ud+9bWEWIMxqGzksmTwSmEdYrxv0PR6/R4LXoMawxl8jwTv/4zuVlULE+fV0euaVZc11lhhVnBEIbzRGE+j+QXsDo3a6vjAmYGFRYEmwnIULEcYa5AmM3RF1SYWd3CnGCQ2cEQgWUYtAKVXJHhbBHLGHlCioQUCBm2HOuyfTxnfWyO/0aekQnYLRxkXhj9zPQFVfrCYfqCYXqo49kcZLNYNnrd9cVZrC3OZV1xNoPZIvmgRn9tgJm1IWbUByiEdfJhnXwY/azUMzmq2QLVbJ5athCNv7JM9P88k6GWLVAp9DGc7yXM5bHG/9n4MZsxctkMhVyGXDaDAaF71MMV1OgZ2IhVK2SqFTLVYTLVCv1zZvKn7/3zCd/PKdj1WhrM7MVEAeE6d397YvvjwNeAU4CrO1Q9STkzY0Yxz4xinsXzZjQtM6Mn33R7O9SCkGo9IJvJkDFGHre2vkYjgNQDpx6G1AOnVg9HzlWrh/GYRBv5jTFUCxio1Bio1NkyXMOdkV9sGbMxr2kWhZPquHOOvkZIEIbkshkyGSNrNvJajTgT1S8qW6uHDNcDqnGIGq4FDNdD+gzy2QzZbIZcJooSYegE7qwLnXoYnaMWfwWhEwROEEbPe+Ig5fEv4iCMus8awsYHUbZILhtdW7U+4d8X29RsrZTQMgxYNP15uqzJzWRNbia/m8QxdcvySHEhjxQXTksdpuuaNscth2OEsM7yUJxg8O1ERv7pon/k4SDDc422UWPrn4L1+GsAotHeyRHfvfHXVIw/11RkgT6gjwOKs/jT7Txbq3ba0ACcSvQj8ZVx268AvgC8F4UG6VL5bIZ8dnKjGcyiD+psBopoafGkRqAK4vSQzWTGrD0ShCFDcatStRZGwSlr5DIZzKJQUa0HDNdCakHUShSEUQtRo5Wnsa0eB5mR4BZEn2oZi1qKGiGsEXIaX1FD0WjgaRYQG61XHrcuNc5RD53hWhDXMQpfyb9sM2bUgyikDdei68gY5OO/dnMZox46Q9X6SOsaQCGXpZDLkM9FP4u1ehi/TvS6mYxFE2JGrimqUz2Irsls7J+0jWtrtK7Vw9F/k/GyGYvGFu7EreWtqgftew925tBwFFHG/E1yo7tXzGxZvF9EZEygaiabydDfk6G/g61Lu6pG61M98Ljp3saEq5FAFoQEPjasJYNRIwTWE+FtpNmfKKw0Wsoa4akWhCMtYplM1LKW5D7aSoZ7NP7IwYl2jHwf7wtDx/GRsBPGYTDw0ToHYUgtDpP1ICSMw1cmrkPWIJ/Lkssa+WwU6ma28edyZw4Ni4G17t5sVNNK4JVmVnD3MaNizOxs4OxzzpnW6SsiIjIFGbO4RWPi/Zn4A1R2vJ35Xe4DJhoGXUmUGcPdv+XuR+6wWomIiHSpnTk0DAITjcjpSZQRERGRFuzMoWEVsJuZNQsOS4i6LrZjwq6IiMiuZWcODb8lur6jkxvNrAc4HFjaiUqJiIh0q505NFxDNHj1gnHbzyIay3BV22skIiLSxXba2RPuvtzMLgfONbPrgOuJVoQ8H7gFrdEgIiIyKTttaIhdADwBnA28CVgLXEZ074mpL/EmIiKyC9qpQ4O7B8A/x18iIiKyHXbmMQ0iIiIyjRQaREREpCUKDSIiItKSnXpMw3QolUqdroKIiEg7eblcfv5tVFFLg4iIiLTIXPcibxszW6qbYW0/vY/TQ+/j9ND7OD30Pk6PHf0+qqVBREREWqLQICIiIi1RaGivb3W6AjsJvY/TQ+/j9ND7OD30Pk6PHfo+akyDiIiItEQtDSIiItIShQYRERFpiULDDmZmGTP7kJk9YGYVM/ujmf2zmc3odN3SxswONLPPmdmdZrbGzDab2TIz+2Sz98vMDjKzn5jZejMbMLPbzOyETtQ97cysz8weNzM3s39psl/v5QTMbJ6Z/ZOZPRL/H15jZr8ys1ePK/cKM7sp/rndZGY3mNnhnap3mphZv5l9wsyWx+/PWjO73cxONzMbV3aXfx/N7ONm9kMzeyz+P/vENsq3/J6Z2WIzuzL+OR4ys6Vm9s6W66YxDTuWmX0VOB/4D+C/gEOA84DbgBN1i+5RZvYF4G+A/wTuBGrA8cC7gN8Dx7j7UFx2f+A3QB34CrAROAs4FHiju9/U9gtIMTP7J+CvgH7gcnc/N7FP7+UEzGxv4Gai9+07wEPAbOAlwI3u/u9xuWPiciuBRig7F1gIvNLdl7e14iliZhngFuCVwPeJ/m/3AacCRwNfdPePxmX1PgJm5sBzwD3Ay4FN7r7PBGVbfs/MbB6wNN53KbACOA14DfCX7v7dbVbO3fW1g76AFwMh8ONx288DHDit03VM0xdwJDC7yfaL4/fr3MS2a4EAODyxrR94EniQOBDrywFeRhQIPhy/j/8ybr/ey4nfu9uAPwKLtlHuN8AmYEli25J42y86fR0dfg+PjX/uvjxuewF4DNig9/F579l+ied/AJ7YStmW3zPgi/G/xZ8ltmXjc6wD+rdVN3VP7FinAkb011vSFcAg8N621yjF3H2pu29ssuua+PFQgLir4s3Aze6+LHH8FuDbwIHAUTu4ul3BzLJEP283ANc12a/3cgJmdhzwf4j+En7azPJm1tek3AFE79EP3X1lY3v8/IfAiWa2R7vqnUKz4sdVyY3uXgXWAgOg9zHJ3R9rpdwU3rPTgEfd/WeJsgFwGTAPOHlbr6nQsGMdRdTS8JvkRnevAMvYRX8ZT8Ge8ePq+PElQBG4o0nZO+NHvbeRDwEHEzVXNqP3cmKNX6BPmdnPgCFgwMweMrNk4G+8PxO9h0bUxLyr+g2wAfg7M3unmb0gHkNzCdH7clFcTu/j5LX8ntn/397dx9pRlHEc/47FO3HsqwAAB/JJREFUFkywVGygtxJrfKk1okAECjS8qCEYJChiGrUvIaAp05DYEIlp0F4kUYxKCcSh2qhIoRX4o4IoAhUraVFsxRI0QvnDor1tQQNWsNzWl/GPZ7Zu1t1zZ9t77rkvv0+y2ZzZ2dM5T8895zmzM7POzcB6IH7VULf8fI2UNHRXH/DXGOP+mmMDwBudc5NHuE1jSvql/EWse31tKu5L+4GaU4qymV1u2qjnnHsLcB3wpRjjjoZqimWz2Wm/GvsVthi4HDgArHHOXZaOK4YdxBhfwnqzXsQuhT0HPI2NX/pYjHF1qqo4ttcmZsMSX90au7teB9QlDACDpToHRqY5Y9JNwFxgeYzxmVRWdBHXxXawUmciuxX4IzbgqYli2ezotH8ZOC91p+OcW49di/+yc+77KIY5XsGuzd8HPIYlYUuBtc65i2OMD6M4Hoo2MRuW+Cpp6K592CjVOkeW6kgN59z1WLf6t2OMXykdKmI2peY0xRVI3efnA2fHGP/Zoapi2ezVtF9XJAxgv5ydc/cBi7DeCMWwA+fciViisCzGuKpUvg5LJFanGTyKY3ttYjYs8dXlie7ahV2CqPtPmoldulAvQw3nXD9wLfA9YEnlcDGgqq4rrSir64KbENL77UbgJ8Ae59zb0oCpN6cqU1PZMSiWnexM+z01x3an/TQUw6Esw76U7ikXxhj3AT/G3pezUBwPRZuYDUt8lTR01xYsxqeVC51zRwInYfNlpcI5twJYAdwOXBHTvKCSp7AutjNqTp+b9hM5tkcB04ELgWdL28Z0fEF6fAWKZSfFAOY31Rwryl7A/s6hOYYR+M3wNm1MKb6QJtUcO6K0Vxzby45ZjHE3lhTMbagLOX/rvZ6POp434EQ6r9OwoNdtHG0bNugxYgnDazrUuwdbW+C9pbJibYHtTOy1BV4LXFqzXZli+0B6/A7FsmMcp2Fz3XdSmr8OzMCu0W8vlW1JdftKZX2pbEOvX0uP47gyve+uqZQXPV0vAkcojo3xG2qdhuyYAV+jeZ2Gl4Cjh2qPVoTsMufcLdh1+fVYd/EcbIXIzcD7o1aEPMg5txRb0exPwBewhKvs+WgDpor5yb/GVo1cif2BfBpL1C6MMT44Uu0eK5xzs7CBkdUVIRXLBs65zwDfAn4PfBdbkOhKLHH4cIzxoVTvTODnWIJxSzr9KuA44KwY45Mj3PRRI62q+QSWhN2Jffa9AXuPzQKWxhhDqqs4As65hfzvcuJV2PvuG+nxczHGNaW62TFzzh2L9Twci13CHMDWEzoX69X9zpCN63UWNd43LIu7GltZb3/6T7qRjJW3JtoG3IZlwU3bxkr9OcC92BzwfcAmbGnunr+W0bhhH9D/tyKkYjlk3C7B5rH/A5tJ8VD6MK7WOwP4GdYL8TLwIHBKr9s/GjbgrdgS0jux5PTvwKPAJYpjbbw25n4Oto0ZdrloDbaw1iCW0M3PbZt6GkRERCSLBkKKiIhIFiUNIiIikkVJg4iIiGRR0iAiIiJZlDSIiIhIFiUNIiIikkVJg4iIiGTRXS5FZNzz3vdj9zM5L4SwsbetERm7lDSIyJC89zmrwOkLWWScU9IgIm1c1+HYjpFqhIj0hpIGEckWQujvdRtEpHeUNIjIsCuPIcDu1vdZ4J3YzXTuB5aHEPbUnPd27A6nHwCmYzfV2QBcH0J4tqb+JOxuiQuBd2N3AxzAbvjz1YZzLgWuSfUHsRtQXR1CGDic1ywyEWj2hIh00zJgFfAkcBN2t9fLgMe899PLFb33pwJbgQXAFuDr2N0lPwVs9d6/r1J/MvBT4FbgBGAtcDN269+PAmfVtMcDd2CXUr4J/A6YD2zw3k857FcrMs6pp0FEsqUehDqDIYQbaso/BJweQvht6TlWYj0PNwCXpzIH3A68HlgQQrizVH8+8APgDu/9u0II/0mH+oEPAj8CPh5C2F86Z0p6rqoLgFNDCE+V6q4FPgFcDNzd+OJFRD0NItLKiobt8w3115QThqQf2At8svTr/kzs8sUvywkDQAjhLmATMBuYBwcvS3jgVWBJOWFI5+wPIfylpj03lxOGZHXan9bwGkQkUU+DiGQLIbiWp/yi5jn2eu+3AecAc4BtwCnp8CMNz/MIljCcDDyKJRhTgcdDCLtatGdrTdmf035ai+cRmZDU0yAi3fR8Q3kxCHJqZb+7oX5Rfkxl33bw4t9qyv6V9pNaPpfIhKOkQUS66biG8uPTfm9lf3xNXYAZlXrFl//MQ2+aiLSlpEFEuumcaoH3fipwEjbd8Q+puBj3cG7D8xTlT6T901ji8B7vfd9wNFREhqakQUS6aaH3/uRKWT92OWJdaQDjZmw65ry0jsJB6fHZwHZsQCQhhH8DATgKWFWdLum9n1yd0ikih08DIUUkW4cplwA/DCFsq5Q9AGz23t+NjUuYl7YdlGZchBCi934x8DBwl/f+Xqw3YTbwEWxRqEWl6ZZgS1qfDlwEbPfe35/qnQCcD3wOuO2QXqiI1FLSICJtrOhwbAc2E6JsJbAeW5dhPvAK9kW+PITwQrliCOHxtMDTtdj6CxdhK0Kuw1aEfKZS/4D3/gJgCbAIWAw4YFf6Nze1f3ki0omLMefmdSIi+XQrapHxSWMaREREJIuSBhEREcmipEFERESyaEyDiIiIZFFPg4iIiGRR0iAiIiJZlDSIiIhIFiUNIiIikkVJg4iIiGRR0iAiIiJZ/gsClBna6AeDkAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 576x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"ooo.plot_history(history, plot={'MSE' :['mse', 'val_mse'],\n",
" 'MAE' :['mae', 'val_mae'],\n",
" 'LOSS':['loss','val_loss']})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 7 - Make a prediction"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"my_data = [ 1.26425925, -0.48522739, 1.0436489 , -0.23112788, 1.37120745,\n",
" -2.14308942, 1.13489104, -1.06802005, 1.71189006, 1.57042287,\n",
" 0.77859951, 0.14769795, 2.7585581 ]\n",
"real_price = 10.4\n",
"\n",
"my_data=np.array(my_data).reshape(1,13)"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Reality : 10.40 K$\n"
]
}
],
"source": [
"\n",
"predictions = model.predict( my_data )\n",
"print(\"Prédiction : {:.2f} K$\".format(predictions[0][0]))\n",
"print(\"Reality : {:.2f} K$\".format(real_price))"
]
},
""
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 4
}