Skip to content
Snippets Groups Projects
01-One-hot-encoding.ipynb 17.7 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
    "\n",
    "# <!-- TITLE --> [IMDB1] - Sentiment analysis with hot-one encoding\n",
    "<!-- DESC --> A basic example of sentiment analysis with sparse encoding, using a dataset from Internet Movie Database (IMDB)\n",
    "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
    "\n",
    "## Objectives :\n",
    " - The objective is to guess whether film reviews are **positive or negative** based on the analysis of the text. \n",
    " - Understand the management of **textual data** and **sentiment analysis**\n",
    "\n",
    "Original dataset can be find **[there](http://ai.stanford.edu/~amaas/data/sentiment/)**  \n",
    "Note that [IMDb.com](https://imdb.com) offers several easy-to-use [datasets](https://www.imdb.com/interfaces/)  \n",
    "For simplicity's sake, we'll use the dataset directly [embedded in Keras](https://www.tensorflow.org/api_docs/python/tf/keras/datasets)\n",
    "\n",
    "## What we're going to do :\n",
    "\n",
    " - Retrieve data\n",
    " - Preparing the data\n",
    " - Build a model\n",
    " - Train the model\n",
    " - Evaluate the result\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 1 - Import and init\n",
    "### 1.1 - Python stuff"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "\n",
    "import tensorflow as tf\n",
    "import tensorflow.keras as keras\n",
    "import tensorflow.keras.datasets.imdb as imdb\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "import matplotlib\n",
    "\n",
    "import pandas as pd\n",
    "\n",
    "import os,sys,h5py,json\n",
    "from importlib import reload\n",
    "\n",
    "sys.path.append('..')\n",
    "import fidle.pwk as pwk\n",
    "\n",
    "run_dir = './run/IMDB1'\n",
    "datasets_dir = pwk.init('IMDB1', run_dir)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 1.2 - Parameters\n",
    "The words in the vocabulary are classified from the most frequent to the rarest.  \n",
    "`vocab_size` is the number of words we will remember in our vocabulary (the other words will be considered as unknown).  \n",
    "`hide_most_frequently` is the number of ignored words, among the most common ones  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "vocab_size           = 10000\n",
    "hide_most_frequently = 0\n",
    "\n",
    "epochs     = 10\n",
    "batch_size = 512"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Override parameters (batch mode) - Just forget this cell"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pwk.override('vocab_size', 'hide_most_frequently', 'batch_size', 'epochs')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 2 - Understanding hot-one encoding\n",
    "#### We have a **sentence** and a **dictionary** :"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "sentence = \"I've never seen a movie like this before\"\n",
    "\n",
    "dictionary  = {\"a\":0, \"before\":1, \"fantastic\":2, \"i've\":3, \"is\":4, \"like\":5, \"movie\":6, \"never\":7, \"seen\":8, \"this\":9}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### We encode our sentence as a **numerical vector** :"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "sentence_words = sentence.lower().split()\n",
    "\n",
    "sentence_vect  = [ dictionary[w] for w in sentence_words ]\n",
    "\n",
    "print('Words sentence are         : ', sentence_words)\n",
    "print('Our vectorized sentence is : ', sentence_vect)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Next, we **one-hot** encode our vectorized sentence as a tensor :"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ---- We get a (sentence length x vector size) matrix of zeros\n",
    "#\n",
    "onehot = np.zeros( (10,8) )\n",
    "\n",
    "# ---- We set some 1 for each word\n",
    "#\n",
    "for i,w in enumerate(sentence_vect):\n",
    "    onehot[w,i]=1\n",
    "\n",
    "# --- Show it\n",
    "#\n",
    "print('In a basic way :\\n\\n', onehot, '\\n\\nWith a pandas wiew :\\n')\n",
    "data={ f'{sentence_words[i]:.^10}':onehot[:,i] for i,w in enumerate(sentence_vect) }\n",
    "df=pd.DataFrame(data)\n",
    "df.index=dictionary.keys()\n",
    "df.style.set_precision(0).highlight_max(axis=0).set_properties(**{'text-align': 'center'})"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 2 - Retrieve data\n",
    "\n",
    "IMDb dataset can bet get directly from Keras - see [documentation](https://www.tensorflow.org/api_docs/python/tf/keras/datasets)  \n",
    "Note : Due to their nature, textual data can be somewhat complex.\n",
    "\n",
    "### 2.1 - Data structure :  \n",
    "The dataset is composed of 2 parts: \n",
    "\n",
    " - **reviews**, this will be our **x**\n",
    " - **opinions** (positive/negative), this will be our **y**\n",
    "\n",
    "There are also a **dictionary**, because words are indexed in reviews\n",
    "\n",
    "```\n",
    "<dataset> = (<reviews>, <opinions>)\n",
    "\n",
    "with :  <reviews>  = [ <review1>, <review2>, ... ]\n",
    "        <opinions> = [ <rate1>,   <rate2>,   ... ]   where <ratei>   = integer\n",
    "\n",
    "where : <reviewi> = [ <w1>, <w2>, ...]    <wi> are the index (int) of the word in the dictionary\n",
    "        <ratei>   = int                   0 for negative opinion, 1 for positive\n",
    "\n",
    "\n",
    "<dictionary> = [ <word1>:<w1>, <word2>:<w2>, ... ]\n",
    "\n",
    "with :  <wordi>   = word\n",
    "        <wi>      = int\n",
    "\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.2 - Load dataset\n",
    "For simplicity, we will use a pre-formatted dataset - See [documentation](https://www.tensorflow.org/api_docs/python/tf/keras/datasets/imdb/load_data)  \n",
    "However, Keras offers some usefull tools for formatting textual data - See [documentation](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text)  \n",
    "\n",
    "By default : \n",
    " - Start of a sequence will be marked with : 1\n",
    " - Out of vocabulary word will be : 2\n",
    " - First index will be : 3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ----- Retrieve x,y\n",
    "#\n",
    "(x_train, y_train), (x_test, y_test) = imdb.load_data( num_words=vocab_size, skip_top=hide_most_frequently)\n",
    "\n",
    "y_train = np.asarray(y_train).astype('float32')\n",
    "y_test  = np.asarray(y_test ).astype('float32')\n",
    "\n",
    "# ---- About\n",
    "#\n",
    "print(\"Max(x_train,x_test)  : \", pwk.rmax([x_train,x_test]) )\n",
    "print(\"Min(x_train,x_test)  : \", pwk.rmin([x_train,x_test]) )\n",
    "print(\"x_train : {}  y_train : {}\".format(x_train.shape, y_train.shape))\n",
    "print(\"x_test  : {}  y_test  : {}\".format(x_test.shape,  y_test.shape))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 3 - About our dataset\n",
    "When we loaded the dataset, we asked for using \\<start\\> as 1, \\<unknown word\\> as 2  \n",
    "So, we shifted the dataset by 3 with the parameter index_from=3\n",
    "\n",
    "### 3.1 - Sentences encoding"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print('\\nReview example (x_train[12]) :\\n\\n',x_train[12])\n",
    "print('\\nOpinions (y_train) :\\n\\n',y_train)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.2 - Load dictionary"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ---- Retrieve dictionary {word:index}, and encode it in ascii\n",
    "#\n",
    "word_index = imdb.get_word_index()\n",
    "\n",
    "# ---- Shift the dictionary from +3\n",
    "#\n",
    "word_index = {w:(i+3) for w,i in word_index.items()}\n",
    "\n",
    "# ---- Add <pad>, <start> and <unknown> tags\n",
    "#\n",
    "word_index.update( {'<pad>':0, '<start>':1, '<unknown>':2} )\n",
    "\n",
    "# ---- Create a reverse dictionary : {index:word}\n",
    "#\n",
    "index_word = {index:word for word,index in word_index.items()} \n",
    "\n",
    "# ---- About dictionary\n",
    "#\n",
    "print('\\nDictionary size     : ', len(word_index))\n",
    "print('\\nSmall extract :\\n')\n",
    "for k in range(440,455):print(f'    {k:2d} : {index_word[k]}' )\n",
    "\n",
    "# ---- Add a nice function to transpose :\n",
    "#\n",
    "def dataset2text(review):\n",
    "    return ' '.join([index_word.get(i, '?') for i in review])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.3 - Have a look, for human"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pwk.subtitle('Review example :')\n",
    "print(x_train[12])\n",
    "pwk.subtitle('After translation :')\n",
    "print(dataset2text(x_train[12]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.4 - Few statistics"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "sizes=[len(i) for i in x_train]\n",
    "plt.figure(figsize=(16,6))\n",
    "plt.hist(sizes, bins=400)\n",
    "plt.gca().set(title='Distribution of reviews by size - [{:5.2f}, {:5.2f}]'.format(min(sizes),max(sizes)), \n",
    "              xlabel='Size', ylabel='Density', xlim=[0,1500])\n",
    "pwk.save_fig('01-stats-sizes')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "unk=[ 100*(s.count(2)/len(s)) for s in x_train]\n",
    "plt.figure(figsize=(16,6))\n",
    "plt.hist(unk, bins=100)\n",
    "plt.gca().set(title='Percent of unknown words - [{:5.2f}, {:5.2f}]'.format(min(unk),max(unk)), \n",
    "              xlabel='# unknown', ylabel='Density', xlim=[0,30])\n",
    "pwk.save_fig('02-stats-unknown')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 3 - Basic approach with \"one-hot\" vector encoding\n",
    "Basic approach.  \n",
    "\n",
    "Each sentence is encoded with a **vector** of length equal to the **size of the dictionary**.   \n",
    "\n",
    "Each sentence will therefore be encoded with a simple vector.  \n",
    "The value of each component is 0 if the word is not present in the sentence or 1 if the word is present.\n",
    "\n",
    "For a sentence s=[3,4,7] and a dictionary of 10 words...    \n",
    "We wil have a vector v=[0,0,0,1,1,0,0,1,0,0,0]\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.1 - Our one-hot encoder"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def one_hot_encoder(x, vector_size=10000):\n",
    "    \n",
    "    # ---- Set all to 0\n",
    "    #\n",
    "    x_encoded = np.zeros((len(x), vector_size))\n",
    "    \n",
    "    # ---- For each sentence\n",
    "    #\n",
    "    for i,sentence in enumerate(x):\n",
    "        for word in sentence:\n",
    "            x_encoded[i, word] = 1.\n",
    "\n",
    "    return x_encoded"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.2 - Encoding.."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "x_train = one_hot_encoder(x_train)\n",
    "x_test  = one_hot_encoder(x_test)\n",
    "\n",
    "print(\"To have a look, x_train[12] became :\", x_train[12] )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 4 - Build the model\n",
    "Few remarks :\n",
    " - We'll choose a dense vector size for the embedding output with **dense_vector_size**\n",
    " - **GlobalAveragePooling1D** do a pooling on the last dimension : (None, lx, ly) -> (None, ly)  \n",
    "   In other words: we average the set of vectors/words of a sentence\n",
    " - L'embedding de Keras fonctionne de manière supervisée. Il s'agit d'une couche de *vocab_size* neurones vers *n_neurons* permettant de maintenir une table de vecteurs (les poids constituent les vecteurs). Cette couche ne calcule pas de sortie a la façon des couches normales, mais renvois la valeur des vecteurs. n mots => n vecteurs (ensuite empilés par le pooling)  \n",
    "Voir : [Explication plus détaillée (en)](https://stats.stackexchange.com/questions/324992/how-the-embedding-layer-is-trained-in-keras-embedding-layer)  \n",
    "ainsi que : [Sentiment detection with Keras](https://www.liip.ch/en/blog/sentiment-detection-with-keras-word-embeddings-and-lstm-deep-learning-networks)  \n",
    "\n",
    "More documentation about this model functions :\n",
    " - [Embedding](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding)\n",
    " - [GlobalAveragePooling1D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalAveragePooling1D)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_model(vector_size=10000):\n",
    "    \n",
    "    model = keras.Sequential()\n",
    "    model.add(keras.layers.Dense(32, activation='relu', input_shape=(10000,)))\n",
    "    model.add(keras.layers.Dense(32, activation='relu'))\n",
    "    model.add(keras.layers.Dense(1, activation='sigmoid'))\n",
    "    \n",
    "    model.compile(optimizer = 'rmsprop',\n",
    "                  loss      = 'binary_crossentropy',\n",
    "                  metrics   = ['accuracy'])\n",
    "    return model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 5 - Train the model\n",
    "### 5.1 - Get it"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = get_model(vector_size=vocab_size)\n",
    "\n",
    "model.summary()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 5.2 - Add callback"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "os.makedirs('./run/models',   mode=0o750, exist_ok=True)\n",
    "save_dir = \"./run/models/best_model.h5\"\n",
    "savemodel_callback = tf.keras.callbacks.ModelCheckpoint(filepath=save_dir, verbose=0, save_best_only=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 5.1 - Train it"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%time\n",
    "\n",
    "history = model.fit(x_train,\n",
    "                    y_train,\n",
    "                    epochs          = epochs,\n",
    "                    batch_size      = batch_size,\n",
    "                    validation_data = (x_test, y_test),\n",
    "                    verbose         = 1,\n",
    "                    callbacks       = [savemodel_callback])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 6 - Evaluate\n",
    "### 6.1 - Training history"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pwk.plot_history(history, save_as='02-history')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 6.2 - Reload and evaluate best model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = keras.models.load_model('./run/models/best_model.h5')\n",
    "\n",
    "# ---- Evaluate\n",
    "score  = model.evaluate(x_test, y_test, verbose=0)\n",
    "\n",
    "print('x_test / loss      : {:5.4f}'.format(score[0]))\n",
    "print('x_test / accuracy  : {:5.4f}'.format(score[1]))\n",
    "\n",
    "values=[score[1], 1-score[1]]\n",
    "pwk.plot_donut(values,[\"Accuracy\",\"Errors\"], title=\"#### Accuracy donut is :\", save_as='03-donut')\n",
    "\n",
    "# ---- Confusion matrix\n",
    "\n",
    "y_sigmoid = model.predict(x_test)\n",
    "\n",
    "y_pred = y_sigmoid.copy()\n",
    "y_pred[ y_sigmoid< 0.5 ] = 0\n",
    "y_pred[ y_sigmoid>=0.5 ] = 1    \n",
    "\n",
    "pwk.display_confusion_matrix(y_test,y_pred,labels=range(2))\n",
    "pwk.plot_confusion_matrix(y_test,y_pred,range(2), figsize=(8, 8),normalize=False, save_as='04-confusion-matrix')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pwk.end()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "---\n",
    "<img width=\"80px\" src=\"../fidle/img/00-Fidle-logo-01.svg\"></img>"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}