Skip to content
Snippets Groups Projects
01-DNN-Regression.ipynb 160 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<img width=\"800px\" src=\"../fidle/img/00-Fidle-header-01.svg\"></img>\n",
    "\n",
    "\n",
    "# <!-- TITLE --> [BHPD1] - Regression with a Dense Network (DNN)\n",
    "<!-- DESC --> Simple example of a regression with the dataset Boston Housing Prices Dataset (BHPD)\n",
    "<!-- AUTHOR : Jean-Luc Parouty (CNRS/SIMaP) -->\n",
    "\n",
    "## Objectives :\n",
    " - Predicts **housing prices** from a set of house features. \n",
    " - Understanding the **principle** and the **architecture** of a regression with a **dense neural network**  \n",
    "\n",
    "\n",
    "The **[Boston Housing Prices Dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html)** consists of price of houses in various places in Boston.  \n",
    "Alongside with price, the dataset also provide theses informations : \n",
    "\n",
    " - CRIM: This is the per capita crime rate by town\n",
    " - ZN: This is the proportion of residential land zoned for lots larger than 25,000 sq.ft\n",
    " - INDUS: This is the proportion of non-retail business acres per town\n",
    " - CHAS: This is the Charles River dummy variable (this is equal to 1 if tract bounds river; 0 otherwise)\n",
    " - NOX: This is the nitric oxides concentration (parts per 10 million)\n",
    " - RM: This is the average number of rooms per dwelling\n",
    " - AGE: This is the proportion of owner-occupied units built prior to 1940\n",
    " - DIS: This is the weighted distances to five Boston employment centers\n",
    " - RAD: This is the index of accessibility to radial highways\n",
    " - TAX: This is the full-value property-tax rate per 10,000 dollars\n",
    " - PTRATIO: This is the pupil-teacher ratio by town\n",
    " - B: This is calculated as 1000(Bk — 0.63)^2, where Bk is the proportion of people of African American descent by town\n",
    " - LSTAT: This is the percentage lower status of the population\n",
    " - MEDV: This is the median value of owner-occupied homes in 1000 dollars\n",
    "## What we're going to do :\n",
    "\n",
    " - Retrieve data\n",
    " - Preparing the data\n",
    " - Build a model\n",
    " - Train the model\n",
    " - Evaluate the result\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 1 - Import and init"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": 1,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style>\n",
       "\n",
       "div.warn {    \n",
       "    background-color: #fcf2f2;\n",
       "    border-color: #dFb5b4;\n",
       "    border-left: 5px solid #dfb5b4;\n",
       "    padding: 0.5em;\n",
       "    font-weight: bold;\n",
       "    font-size: 1.1em;;\n",
       "    }\n",
       "\n",
       "\n",
       "\n",
       "div.nota {    \n",
       "    background-color: #DAFFDE;\n",
       "    border-left: 5px solid #92CC99;\n",
       "    padding: 0.5em;\n",
       "    }\n",
       "\n",
       "div.todo:before { content:url();\n",
       "    float:left;\n",
       "    margin-right:20px;\n",
       "    margin-top:-20px;\n",
       "    margin-bottom:20px;\n",
       "}\n",
       "div.todo{\n",
       "    font-weight: bold;\n",
       "    font-size: 1.1em;\n",
       "    margin-top:40px;\n",
       "}\n",
       "div.todo ul{\n",
       "    margin: 0.2em;\n",
       "}\n",
       "div.todo li{\n",
       "    margin-left:60px;\n",
       "    margin-top:0;\n",
       "    margin-bottom:0;\n",
       "}\n",
       "\n",
       "div .comment{\n",
       "    font-size:0.8em;\n",
       "    color:#696969;\n",
       "}\n",
       "\n",
       "\n",
       "\n",
       "</style>\n",
       "\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/markdown": [
       "<br>**FIDLE 2020 - Practical Work Module**"
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Version              : 2.0.1\n",
      "Notebook id          : BHPD1\n",
      "Run time             : Thursday 14 January 2021, 10:57:04\n",
      "TensorFlow version   : 2.2.0\n",
      "Keras version        : 2.3.0-tf\n",
      "Datasets dir         : /home/pjluc/datasets/fidle\n",
      "Run dir              : ./run\n",
      "Update keras cache   : False\n"
     ]
    }
   ],
   "source": [
    "import tensorflow as tf\n",
    "from tensorflow import keras\n",
    "\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import pandas as pd\n",
    "import os,sys\n",
    "\n",
    "sys.path.append('..')\n",
    "import fidle.pwk as pwk\n",
    "\n",
    "datasets_dir = pwk.init('BHPD1')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 2 - Retrieve data\n",
    "\n",
    "### 2.1 - Option 1  : From Keras\n",
    "Boston housing is a famous historic dataset, so we can get it directly from [Keras datasets](https://www.tensorflow.org/api_docs/python/tf/keras/datasets)  "
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# (x_train, y_train), (x_test, y_test) = keras.datasets.boston_housing.load_data(test_split=0.2, seed=113)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.2 - Option 2 : From a csv file\n",
    "More fun !"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": 3,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style  type=\"text/css\" >\n",
       "</style><table id=\"T_ba065_\" ><caption>Few lines of the dataset :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>        <th class=\"col_heading level0 col13\" >medv</th>    </tr></thead><tbody>\n",
       "                <tr>\n",
       "                        <th id=\"T_ba065_level0_row0\" class=\"row_heading level0 row0\" >0</th>\n",
       "                        <td id=\"T_ba065_row0_col0\" class=\"data row0 col0\" >0.01</td>\n",
       "                        <td id=\"T_ba065_row0_col1\" class=\"data row0 col1\" >18.00</td>\n",
       "                        <td id=\"T_ba065_row0_col2\" class=\"data row0 col2\" >2.31</td>\n",
       "                        <td id=\"T_ba065_row0_col3\" class=\"data row0 col3\" >0.00</td>\n",
       "                        <td id=\"T_ba065_row0_col4\" class=\"data row0 col4\" >0.54</td>\n",
       "                        <td id=\"T_ba065_row0_col5\" class=\"data row0 col5\" >6.58</td>\n",
       "                        <td id=\"T_ba065_row0_col6\" class=\"data row0 col6\" >65.20</td>\n",
       "                        <td id=\"T_ba065_row0_col7\" class=\"data row0 col7\" >4.09</td>\n",
       "                        <td id=\"T_ba065_row0_col8\" class=\"data row0 col8\" >1.00</td>\n",
       "                        <td id=\"T_ba065_row0_col9\" class=\"data row0 col9\" >296.00</td>\n",
       "                        <td id=\"T_ba065_row0_col10\" class=\"data row0 col10\" >15.30</td>\n",
       "                        <td id=\"T_ba065_row0_col11\" class=\"data row0 col11\" >396.90</td>\n",
       "                        <td id=\"T_ba065_row0_col12\" class=\"data row0 col12\" >4.98</td>\n",
       "                        <td id=\"T_ba065_row0_col13\" class=\"data row0 col13\" >24.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_ba065_level0_row1\" class=\"row_heading level0 row1\" >1</th>\n",
       "                        <td id=\"T_ba065_row1_col0\" class=\"data row1 col0\" >0.03</td>\n",
       "                        <td id=\"T_ba065_row1_col1\" class=\"data row1 col1\" >0.00</td>\n",
       "                        <td id=\"T_ba065_row1_col2\" class=\"data row1 col2\" >7.07</td>\n",
       "                        <td id=\"T_ba065_row1_col3\" class=\"data row1 col3\" >0.00</td>\n",
       "                        <td id=\"T_ba065_row1_col4\" class=\"data row1 col4\" >0.47</td>\n",
       "                        <td id=\"T_ba065_row1_col5\" class=\"data row1 col5\" >6.42</td>\n",
       "                        <td id=\"T_ba065_row1_col6\" class=\"data row1 col6\" >78.90</td>\n",
       "                        <td id=\"T_ba065_row1_col7\" class=\"data row1 col7\" >4.97</td>\n",
       "                        <td id=\"T_ba065_row1_col8\" class=\"data row1 col8\" >2.00</td>\n",
       "                        <td id=\"T_ba065_row1_col9\" class=\"data row1 col9\" >242.00</td>\n",
       "                        <td id=\"T_ba065_row1_col10\" class=\"data row1 col10\" >17.80</td>\n",
       "                        <td id=\"T_ba065_row1_col11\" class=\"data row1 col11\" >396.90</td>\n",
       "                        <td id=\"T_ba065_row1_col12\" class=\"data row1 col12\" >9.14</td>\n",
       "                        <td id=\"T_ba065_row1_col13\" class=\"data row1 col13\" >21.60</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_ba065_level0_row2\" class=\"row_heading level0 row2\" >2</th>\n",
       "                        <td id=\"T_ba065_row2_col0\" class=\"data row2 col0\" >0.03</td>\n",
       "                        <td id=\"T_ba065_row2_col1\" class=\"data row2 col1\" >0.00</td>\n",
       "                        <td id=\"T_ba065_row2_col2\" class=\"data row2 col2\" >7.07</td>\n",
       "                        <td id=\"T_ba065_row2_col3\" class=\"data row2 col3\" >0.00</td>\n",
       "                        <td id=\"T_ba065_row2_col4\" class=\"data row2 col4\" >0.47</td>\n",
       "                        <td id=\"T_ba065_row2_col5\" class=\"data row2 col5\" >7.18</td>\n",
       "                        <td id=\"T_ba065_row2_col6\" class=\"data row2 col6\" >61.10</td>\n",
       "                        <td id=\"T_ba065_row2_col7\" class=\"data row2 col7\" >4.97</td>\n",
       "                        <td id=\"T_ba065_row2_col8\" class=\"data row2 col8\" >2.00</td>\n",
       "                        <td id=\"T_ba065_row2_col9\" class=\"data row2 col9\" >242.00</td>\n",
       "                        <td id=\"T_ba065_row2_col10\" class=\"data row2 col10\" >17.80</td>\n",
       "                        <td id=\"T_ba065_row2_col11\" class=\"data row2 col11\" >392.83</td>\n",
       "                        <td id=\"T_ba065_row2_col12\" class=\"data row2 col12\" >4.03</td>\n",
       "                        <td id=\"T_ba065_row2_col13\" class=\"data row2 col13\" >34.70</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_ba065_level0_row3\" class=\"row_heading level0 row3\" >3</th>\n",
       "                        <td id=\"T_ba065_row3_col0\" class=\"data row3 col0\" >0.03</td>\n",
       "                        <td id=\"T_ba065_row3_col1\" class=\"data row3 col1\" >0.00</td>\n",
       "                        <td id=\"T_ba065_row3_col2\" class=\"data row3 col2\" >2.18</td>\n",
       "                        <td id=\"T_ba065_row3_col3\" class=\"data row3 col3\" >0.00</td>\n",
       "                        <td id=\"T_ba065_row3_col4\" class=\"data row3 col4\" >0.46</td>\n",
       "                        <td id=\"T_ba065_row3_col5\" class=\"data row3 col5\" >7.00</td>\n",
       "                        <td id=\"T_ba065_row3_col6\" class=\"data row3 col6\" >45.80</td>\n",
       "                        <td id=\"T_ba065_row3_col7\" class=\"data row3 col7\" >6.06</td>\n",
       "                        <td id=\"T_ba065_row3_col8\" class=\"data row3 col8\" >3.00</td>\n",
       "                        <td id=\"T_ba065_row3_col9\" class=\"data row3 col9\" >222.00</td>\n",
       "                        <td id=\"T_ba065_row3_col10\" class=\"data row3 col10\" >18.70</td>\n",
       "                        <td id=\"T_ba065_row3_col11\" class=\"data row3 col11\" >394.63</td>\n",
       "                        <td id=\"T_ba065_row3_col12\" class=\"data row3 col12\" >2.94</td>\n",
       "                        <td id=\"T_ba065_row3_col13\" class=\"data row3 col13\" >33.40</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_ba065_level0_row4\" class=\"row_heading level0 row4\" >4</th>\n",
       "                        <td id=\"T_ba065_row4_col0\" class=\"data row4 col0\" >0.07</td>\n",
       "                        <td id=\"T_ba065_row4_col1\" class=\"data row4 col1\" >0.00</td>\n",
       "                        <td id=\"T_ba065_row4_col2\" class=\"data row4 col2\" >2.18</td>\n",
       "                        <td id=\"T_ba065_row4_col3\" class=\"data row4 col3\" >0.00</td>\n",
       "                        <td id=\"T_ba065_row4_col4\" class=\"data row4 col4\" >0.46</td>\n",
       "                        <td id=\"T_ba065_row4_col5\" class=\"data row4 col5\" >7.15</td>\n",
       "                        <td id=\"T_ba065_row4_col6\" class=\"data row4 col6\" >54.20</td>\n",
       "                        <td id=\"T_ba065_row4_col7\" class=\"data row4 col7\" >6.06</td>\n",
       "                        <td id=\"T_ba065_row4_col8\" class=\"data row4 col8\" >3.00</td>\n",
       "                        <td id=\"T_ba065_row4_col9\" class=\"data row4 col9\" >222.00</td>\n",
       "                        <td id=\"T_ba065_row4_col10\" class=\"data row4 col10\" >18.70</td>\n",
       "                        <td id=\"T_ba065_row4_col11\" class=\"data row4 col11\" >396.90</td>\n",
       "                        <td id=\"T_ba065_row4_col12\" class=\"data row4 col12\" >5.33</td>\n",
       "                        <td id=\"T_ba065_row4_col13\" class=\"data row4 col13\" >36.20</td>\n",
       "            </tr>\n",
       "    </tbody></table>"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x7f64eb329f50>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Missing Data :  0   Shape is :  (506, 14)\n"
     ]
    }
   ],
   "source": [
    "data = pd.read_csv(f'{datasets_dir}/BHPD/origine/BostonHousing.csv', header=0)\n",
    "\n",
    "display(data.head(5).style.format(\"{0:.2f}\").set_caption(\"Few lines of the dataset :\"))\n",
    "print('Missing Data : ',data.isna().sum().sum(), '  Shape is : ', data.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 3 - Preparing the data\n",
    "### 3.1 - Split data\n",
    "We will use 70% of the data for training and 30% for validation.  \n",
    "The dataset is **shuffled** and shared between **learning** and **testing**.  \n",
    "x will be input data and y the expected output"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": 4,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original data shape was :  (506, 14)\n",
      "x_train :  (354, 13) y_train :  (354,)\n",
      "x_test  :  (152, 13) y_test  :  (152,)\n"
     ]
    }
   ],
   "source": [
    "# ---- Suffle and Split => train, test\n",
    "#\n",
    "data_train = data.sample(frac=0.7, axis=0)\n",
    "data_test  = data.drop(data_train.index)\n",
    "\n",
    "# ---- Split => x,y (medv is price)\n",
    "#\n",
    "x_train = data_train.drop('medv',  axis=1)\n",
    "y_train = data_train['medv']\n",
    "x_test  = data_test.drop('medv',   axis=1)\n",
    "y_test  = data_test['medv']\n",
    "\n",
    "print('Original data shape was : ',data.shape)\n",
    "print('x_train : ',x_train.shape, 'y_train : ',y_train.shape)\n",
    "print('x_test  : ',x_test.shape,  'y_test  : ',y_test.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.2 - Data normalization\n",
    "**Note :** \n",
    " - All input data must be normalized, train and test.  \n",
    " - To do this we will **subtract the mean** and **divide by the standard deviation**.  \n",
    " - But test data should not be used in any way, even for normalization.  \n",
    " - The mean and the standard deviation will therefore only be calculated with the train data."
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": 5,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style  type=\"text/css\" >\n",
       "</style><table id=\"T_e5177_\" ><caption>Before normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
       "                <tr>\n",
       "                        <th id=\"T_e5177_level0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
       "                        <td id=\"T_e5177_row0_col0\" class=\"data row0 col0\" >354.00</td>\n",
       "                        <td id=\"T_e5177_row0_col1\" class=\"data row0 col1\" >354.00</td>\n",
       "                        <td id=\"T_e5177_row0_col2\" class=\"data row0 col2\" >354.00</td>\n",
       "                        <td id=\"T_e5177_row0_col3\" class=\"data row0 col3\" >354.00</td>\n",
       "                        <td id=\"T_e5177_row0_col4\" class=\"data row0 col4\" >354.00</td>\n",
       "                        <td id=\"T_e5177_row0_col5\" class=\"data row0 col5\" >354.00</td>\n",
       "                        <td id=\"T_e5177_row0_col6\" class=\"data row0 col6\" >354.00</td>\n",
       "                        <td id=\"T_e5177_row0_col7\" class=\"data row0 col7\" >354.00</td>\n",
       "                        <td id=\"T_e5177_row0_col8\" class=\"data row0 col8\" >354.00</td>\n",
       "                        <td id=\"T_e5177_row0_col9\" class=\"data row0 col9\" >354.00</td>\n",
       "                        <td id=\"T_e5177_row0_col10\" class=\"data row0 col10\" >354.00</td>\n",
       "                        <td id=\"T_e5177_row0_col11\" class=\"data row0 col11\" >354.00</td>\n",
       "                        <td id=\"T_e5177_row0_col12\" class=\"data row0 col12\" >354.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_e5177_level0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
       "                        <td id=\"T_e5177_row1_col0\" class=\"data row1 col0\" >3.81</td>\n",
       "                        <td id=\"T_e5177_row1_col1\" class=\"data row1 col1\" >12.47</td>\n",
       "                        <td id=\"T_e5177_row1_col2\" class=\"data row1 col2\" >11.00</td>\n",
       "                        <td id=\"T_e5177_row1_col3\" class=\"data row1 col3\" >0.08</td>\n",
       "                        <td id=\"T_e5177_row1_col4\" class=\"data row1 col4\" >0.55</td>\n",
       "                        <td id=\"T_e5177_row1_col5\" class=\"data row1 col5\" >6.32</td>\n",
       "                        <td id=\"T_e5177_row1_col6\" class=\"data row1 col6\" >67.06</td>\n",
       "                        <td id=\"T_e5177_row1_col7\" class=\"data row1 col7\" >3.86</td>\n",
       "                        <td id=\"T_e5177_row1_col8\" class=\"data row1 col8\" >9.58</td>\n",
       "                        <td id=\"T_e5177_row1_col9\" class=\"data row1 col9\" >406.70</td>\n",
       "                        <td id=\"T_e5177_row1_col10\" class=\"data row1 col10\" >18.35</td>\n",
       "                        <td id=\"T_e5177_row1_col11\" class=\"data row1 col11\" >353.78</td>\n",
       "                        <td id=\"T_e5177_row1_col12\" class=\"data row1 col12\" >12.34</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_e5177_level0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
       "                        <td id=\"T_e5177_row2_col0\" class=\"data row2 col0\" >9.49</td>\n",
       "                        <td id=\"T_e5177_row2_col1\" class=\"data row2 col1\" >24.98</td>\n",
       "                        <td id=\"T_e5177_row2_col2\" class=\"data row2 col2\" >6.86</td>\n",
       "                        <td id=\"T_e5177_row2_col3\" class=\"data row2 col3\" >0.27</td>\n",
       "                        <td id=\"T_e5177_row2_col4\" class=\"data row2 col4\" >0.12</td>\n",
       "                        <td id=\"T_e5177_row2_col5\" class=\"data row2 col5\" >0.71</td>\n",
       "                        <td id=\"T_e5177_row2_col6\" class=\"data row2 col6\" >29.01</td>\n",
       "                        <td id=\"T_e5177_row2_col7\" class=\"data row2 col7\" >2.14</td>\n",
       "                        <td id=\"T_e5177_row2_col8\" class=\"data row2 col8\" >8.74</td>\n",
       "                        <td id=\"T_e5177_row2_col9\" class=\"data row2 col9\" >169.05</td>\n",
       "                        <td id=\"T_e5177_row2_col10\" class=\"data row2 col10\" >2.18</td>\n",
       "                        <td id=\"T_e5177_row2_col11\" class=\"data row2 col11\" >97.53</td>\n",
       "                        <td id=\"T_e5177_row2_col12\" class=\"data row2 col12\" >7.17</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_e5177_level0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
       "                        <td id=\"T_e5177_row3_col0\" class=\"data row3 col0\" >0.01</td>\n",
       "                        <td id=\"T_e5177_row3_col1\" class=\"data row3 col1\" >0.00</td>\n",
       "                        <td id=\"T_e5177_row3_col2\" class=\"data row3 col2\" >0.46</td>\n",
       "                        <td id=\"T_e5177_row3_col3\" class=\"data row3 col3\" >0.00</td>\n",
       "                        <td id=\"T_e5177_row3_col4\" class=\"data row3 col4\" >0.39</td>\n",
       "                        <td id=\"T_e5177_row3_col5\" class=\"data row3 col5\" >3.56</td>\n",
       "                        <td id=\"T_e5177_row3_col6\" class=\"data row3 col6\" >2.90</td>\n",
       "                        <td id=\"T_e5177_row3_col7\" class=\"data row3 col7\" >1.13</td>\n",
       "                        <td id=\"T_e5177_row3_col8\" class=\"data row3 col8\" >1.00</td>\n",
       "                        <td id=\"T_e5177_row3_col9\" class=\"data row3 col9\" >187.00</td>\n",
       "                        <td id=\"T_e5177_row3_col10\" class=\"data row3 col10\" >12.60</td>\n",
       "                        <td id=\"T_e5177_row3_col11\" class=\"data row3 col11\" >0.32</td>\n",
       "                        <td id=\"T_e5177_row3_col12\" class=\"data row3 col12\" >1.92</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_e5177_level0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
       "                        <td id=\"T_e5177_row4_col0\" class=\"data row4 col0\" >0.08</td>\n",
       "                        <td id=\"T_e5177_row4_col1\" class=\"data row4 col1\" >0.00</td>\n",
       "                        <td id=\"T_e5177_row4_col2\" class=\"data row4 col2\" >5.19</td>\n",
       "                        <td id=\"T_e5177_row4_col3\" class=\"data row4 col3\" >0.00</td>\n",
       "                        <td id=\"T_e5177_row4_col4\" class=\"data row4 col4\" >0.45</td>\n",
       "                        <td id=\"T_e5177_row4_col5\" class=\"data row4 col5\" >5.92</td>\n",
       "                        <td id=\"T_e5177_row4_col6\" class=\"data row4 col6\" >39.25</td>\n",
       "                        <td id=\"T_e5177_row4_col7\" class=\"data row4 col7\" >2.11</td>\n",
       "                        <td id=\"T_e5177_row4_col8\" class=\"data row4 col8\" >4.00</td>\n",
       "                        <td id=\"T_e5177_row4_col9\" class=\"data row4 col9\" >281.75</td>\n",
       "                        <td id=\"T_e5177_row4_col10\" class=\"data row4 col10\" >16.90</td>\n",
       "                        <td id=\"T_e5177_row4_col11\" class=\"data row4 col11\" >376.25</td>\n",
       "                        <td id=\"T_e5177_row4_col12\" class=\"data row4 col12\" >6.72</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_e5177_level0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
       "                        <td id=\"T_e5177_row5_col0\" class=\"data row5 col0\" >0.27</td>\n",
       "                        <td id=\"T_e5177_row5_col1\" class=\"data row5 col1\" >0.00</td>\n",
       "                        <td id=\"T_e5177_row5_col2\" class=\"data row5 col2\" >8.56</td>\n",
       "                        <td id=\"T_e5177_row5_col3\" class=\"data row5 col3\" >0.00</td>\n",
       "                        <td id=\"T_e5177_row5_col4\" class=\"data row5 col4\" >0.53</td>\n",
       "                        <td id=\"T_e5177_row5_col5\" class=\"data row5 col5\" >6.23</td>\n",
       "                        <td id=\"T_e5177_row5_col6\" class=\"data row5 col6\" >76.80</td>\n",
       "                        <td id=\"T_e5177_row5_col7\" class=\"data row5 col7\" >3.27</td>\n",
       "                        <td id=\"T_e5177_row5_col8\" class=\"data row5 col8\" >5.00</td>\n",
       "                        <td id=\"T_e5177_row5_col9\" class=\"data row5 col9\" >329.50</td>\n",
       "                        <td id=\"T_e5177_row5_col10\" class=\"data row5 col10\" >18.80</td>\n",
       "                        <td id=\"T_e5177_row5_col11\" class=\"data row5 col11\" >391.88</td>\n",
       "                        <td id=\"T_e5177_row5_col12\" class=\"data row5 col12\" >10.61</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_e5177_level0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
       "                        <td id=\"T_e5177_row6_col0\" class=\"data row6 col0\" >3.65</td>\n",
       "                        <td id=\"T_e5177_row6_col1\" class=\"data row6 col1\" >12.50</td>\n",
       "                        <td id=\"T_e5177_row6_col2\" class=\"data row6 col2\" >18.10</td>\n",
       "                        <td id=\"T_e5177_row6_col3\" class=\"data row6 col3\" >0.00</td>\n",
       "                        <td id=\"T_e5177_row6_col4\" class=\"data row6 col4\" >0.62</td>\n",
       "                        <td id=\"T_e5177_row6_col5\" class=\"data row6 col5\" >6.68</td>\n",
       "                        <td id=\"T_e5177_row6_col6\" class=\"data row6 col6\" >93.75</td>\n",
       "                        <td id=\"T_e5177_row6_col7\" class=\"data row6 col7\" >5.29</td>\n",
       "                        <td id=\"T_e5177_row6_col8\" class=\"data row6 col8\" >24.00</td>\n",
       "                        <td id=\"T_e5177_row6_col9\" class=\"data row6 col9\" >666.00</td>\n",
       "                        <td id=\"T_e5177_row6_col10\" class=\"data row6 col10\" >20.20</td>\n",
       "                        <td id=\"T_e5177_row6_col11\" class=\"data row6 col11\" >396.38</td>\n",
       "                        <td id=\"T_e5177_row6_col12\" class=\"data row6 col12\" >16.44</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_e5177_level0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
       "                        <td id=\"T_e5177_row7_col0\" class=\"data row7 col0\" >88.98</td>\n",
       "                        <td id=\"T_e5177_row7_col1\" class=\"data row7 col1\" >95.00</td>\n",
       "                        <td id=\"T_e5177_row7_col2\" class=\"data row7 col2\" >27.74</td>\n",
       "                        <td id=\"T_e5177_row7_col3\" class=\"data row7 col3\" >1.00</td>\n",
       "                        <td id=\"T_e5177_row7_col4\" class=\"data row7 col4\" >0.87</td>\n",
       "                        <td id=\"T_e5177_row7_col5\" class=\"data row7 col5\" >8.78</td>\n",
       "                        <td id=\"T_e5177_row7_col6\" class=\"data row7 col6\" >100.00</td>\n",
       "                        <td id=\"T_e5177_row7_col7\" class=\"data row7 col7\" >12.13</td>\n",
       "                        <td id=\"T_e5177_row7_col8\" class=\"data row7 col8\" >24.00</td>\n",
       "                        <td id=\"T_e5177_row7_col9\" class=\"data row7 col9\" >711.00</td>\n",
       "                        <td id=\"T_e5177_row7_col10\" class=\"data row7 col10\" >22.00</td>\n",
       "                        <td id=\"T_e5177_row7_col11\" class=\"data row7 col11\" >396.90</td>\n",
       "                        <td id=\"T_e5177_row7_col12\" class=\"data row7 col12\" >37.97</td>\n",
       "            </tr>\n",
       "    </tbody></table>"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x7f64356310d0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<style  type=\"text/css\" >\n",
       "</style><table id=\"T_0f378_\" ><caption>After normalization :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
       "                <tr>\n",
       "                        <th id=\"T_0f378_level0_row0\" class=\"row_heading level0 row0\" >count</th>\n",
       "                        <td id=\"T_0f378_row0_col0\" class=\"data row0 col0\" >354.00</td>\n",
       "                        <td id=\"T_0f378_row0_col1\" class=\"data row0 col1\" >354.00</td>\n",
       "                        <td id=\"T_0f378_row0_col2\" class=\"data row0 col2\" >354.00</td>\n",
       "                        <td id=\"T_0f378_row0_col3\" class=\"data row0 col3\" >354.00</td>\n",
       "                        <td id=\"T_0f378_row0_col4\" class=\"data row0 col4\" >354.00</td>\n",
       "                        <td id=\"T_0f378_row0_col5\" class=\"data row0 col5\" >354.00</td>\n",
       "                        <td id=\"T_0f378_row0_col6\" class=\"data row0 col6\" >354.00</td>\n",
       "                        <td id=\"T_0f378_row0_col7\" class=\"data row0 col7\" >354.00</td>\n",
       "                        <td id=\"T_0f378_row0_col8\" class=\"data row0 col8\" >354.00</td>\n",
       "                        <td id=\"T_0f378_row0_col9\" class=\"data row0 col9\" >354.00</td>\n",
       "                        <td id=\"T_0f378_row0_col10\" class=\"data row0 col10\" >354.00</td>\n",
       "                        <td id=\"T_0f378_row0_col11\" class=\"data row0 col11\" >354.00</td>\n",
       "                        <td id=\"T_0f378_row0_col12\" class=\"data row0 col12\" >354.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_0f378_level0_row1\" class=\"row_heading level0 row1\" >mean</th>\n",
       "                        <td id=\"T_0f378_row1_col0\" class=\"data row1 col0\" >-0.00</td>\n",
       "                        <td id=\"T_0f378_row1_col1\" class=\"data row1 col1\" >0.00</td>\n",
       "                        <td id=\"T_0f378_row1_col2\" class=\"data row1 col2\" >-0.00</td>\n",
       "                        <td id=\"T_0f378_row1_col3\" class=\"data row1 col3\" >0.00</td>\n",
       "                        <td id=\"T_0f378_row1_col4\" class=\"data row1 col4\" >-0.00</td>\n",
       "                        <td id=\"T_0f378_row1_col5\" class=\"data row1 col5\" >-0.00</td>\n",
       "                        <td id=\"T_0f378_row1_col6\" class=\"data row1 col6\" >-0.00</td>\n",
       "                        <td id=\"T_0f378_row1_col7\" class=\"data row1 col7\" >-0.00</td>\n",
       "                        <td id=\"T_0f378_row1_col8\" class=\"data row1 col8\" >-0.00</td>\n",
       "                        <td id=\"T_0f378_row1_col9\" class=\"data row1 col9\" >0.00</td>\n",
       "                        <td id=\"T_0f378_row1_col10\" class=\"data row1 col10\" >0.00</td>\n",
       "                        <td id=\"T_0f378_row1_col11\" class=\"data row1 col11\" >-0.00</td>\n",
       "                        <td id=\"T_0f378_row1_col12\" class=\"data row1 col12\" >-0.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_0f378_level0_row2\" class=\"row_heading level0 row2\" >std</th>\n",
       "                        <td id=\"T_0f378_row2_col0\" class=\"data row2 col0\" >1.00</td>\n",
       "                        <td id=\"T_0f378_row2_col1\" class=\"data row2 col1\" >1.00</td>\n",
       "                        <td id=\"T_0f378_row2_col2\" class=\"data row2 col2\" >1.00</td>\n",
       "                        <td id=\"T_0f378_row2_col3\" class=\"data row2 col3\" >1.00</td>\n",
       "                        <td id=\"T_0f378_row2_col4\" class=\"data row2 col4\" >1.00</td>\n",
       "                        <td id=\"T_0f378_row2_col5\" class=\"data row2 col5\" >1.00</td>\n",
       "                        <td id=\"T_0f378_row2_col6\" class=\"data row2 col6\" >1.00</td>\n",
       "                        <td id=\"T_0f378_row2_col7\" class=\"data row2 col7\" >1.00</td>\n",
       "                        <td id=\"T_0f378_row2_col8\" class=\"data row2 col8\" >1.00</td>\n",
       "                        <td id=\"T_0f378_row2_col9\" class=\"data row2 col9\" >1.00</td>\n",
       "                        <td id=\"T_0f378_row2_col10\" class=\"data row2 col10\" >1.00</td>\n",
       "                        <td id=\"T_0f378_row2_col11\" class=\"data row2 col11\" >1.00</td>\n",
       "                        <td id=\"T_0f378_row2_col12\" class=\"data row2 col12\" >1.00</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_0f378_level0_row3\" class=\"row_heading level0 row3\" >min</th>\n",
       "                        <td id=\"T_0f378_row3_col0\" class=\"data row3 col0\" >-0.40</td>\n",
       "                        <td id=\"T_0f378_row3_col1\" class=\"data row3 col1\" >-0.50</td>\n",
       "                        <td id=\"T_0f378_row3_col2\" class=\"data row3 col2\" >-1.54</td>\n",
       "                        <td id=\"T_0f378_row3_col3\" class=\"data row3 col3\" >-0.30</td>\n",
       "                        <td id=\"T_0f378_row3_col4\" class=\"data row3 col4\" >-1.42</td>\n",
       "                        <td id=\"T_0f378_row3_col5\" class=\"data row3 col5\" >-3.87</td>\n",
       "                        <td id=\"T_0f378_row3_col6\" class=\"data row3 col6\" >-2.21</td>\n",
       "                        <td id=\"T_0f378_row3_col7\" class=\"data row3 col7\" >-1.28</td>\n",
       "                        <td id=\"T_0f378_row3_col8\" class=\"data row3 col8\" >-0.98</td>\n",
       "                        <td id=\"T_0f378_row3_col9\" class=\"data row3 col9\" >-1.30</td>\n",
       "                        <td id=\"T_0f378_row3_col10\" class=\"data row3 col10\" >-2.64</td>\n",
       "                        <td id=\"T_0f378_row3_col11\" class=\"data row3 col11\" >-3.62</td>\n",
       "                        <td id=\"T_0f378_row3_col12\" class=\"data row3 col12\" >-1.45</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_0f378_level0_row4\" class=\"row_heading level0 row4\" >25%</th>\n",
       "                        <td id=\"T_0f378_row4_col0\" class=\"data row4 col0\" >-0.39</td>\n",
       "                        <td id=\"T_0f378_row4_col1\" class=\"data row4 col1\" >-0.50</td>\n",
       "                        <td id=\"T_0f378_row4_col2\" class=\"data row4 col2\" >-0.85</td>\n",
       "                        <td id=\"T_0f378_row4_col3\" class=\"data row4 col3\" >-0.30</td>\n",
       "                        <td id=\"T_0f378_row4_col4\" class=\"data row4 col4\" >-0.89</td>\n",
       "                        <td id=\"T_0f378_row4_col5\" class=\"data row4 col5\" >-0.56</td>\n",
       "                        <td id=\"T_0f378_row4_col6\" class=\"data row4 col6\" >-0.96</td>\n",
       "                        <td id=\"T_0f378_row4_col7\" class=\"data row4 col7\" >-0.82</td>\n",
       "                        <td id=\"T_0f378_row4_col8\" class=\"data row4 col8\" >-0.64</td>\n",
       "                        <td id=\"T_0f378_row4_col9\" class=\"data row4 col9\" >-0.74</td>\n",
       "                        <td id=\"T_0f378_row4_col10\" class=\"data row4 col10\" >-0.67</td>\n",
       "                        <td id=\"T_0f378_row4_col11\" class=\"data row4 col11\" >0.23</td>\n",
       "                        <td id=\"T_0f378_row4_col12\" class=\"data row4 col12\" >-0.78</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_0f378_level0_row5\" class=\"row_heading level0 row5\" >50%</th>\n",
       "                        <td id=\"T_0f378_row5_col0\" class=\"data row5 col0\" >-0.37</td>\n",
       "                        <td id=\"T_0f378_row5_col1\" class=\"data row5 col1\" >-0.50</td>\n",
       "                        <td id=\"T_0f378_row5_col2\" class=\"data row5 col2\" >-0.36</td>\n",
       "                        <td id=\"T_0f378_row5_col3\" class=\"data row5 col3\" >-0.30</td>\n",
       "                        <td id=\"T_0f378_row5_col4\" class=\"data row5 col4\" >-0.18</td>\n",
       "                        <td id=\"T_0f378_row5_col5\" class=\"data row5 col5\" >-0.13</td>\n",
       "                        <td id=\"T_0f378_row5_col6\" class=\"data row5 col6\" >0.34</td>\n",
       "                        <td id=\"T_0f378_row5_col7\" class=\"data row5 col7\" >-0.28</td>\n",
       "                        <td id=\"T_0f378_row5_col8\" class=\"data row5 col8\" >-0.52</td>\n",
       "                        <td id=\"T_0f378_row5_col9\" class=\"data row5 col9\" >-0.46</td>\n",
       "                        <td id=\"T_0f378_row5_col10\" class=\"data row5 col10\" >0.21</td>\n",
       "                        <td id=\"T_0f378_row5_col11\" class=\"data row5 col11\" >0.39</td>\n",
       "                        <td id=\"T_0f378_row5_col12\" class=\"data row5 col12\" >-0.24</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_0f378_level0_row6\" class=\"row_heading level0 row6\" >75%</th>\n",
       "                        <td id=\"T_0f378_row6_col0\" class=\"data row6 col0\" >-0.02</td>\n",
       "                        <td id=\"T_0f378_row6_col1\" class=\"data row6 col1\" >0.00</td>\n",
       "                        <td id=\"T_0f378_row6_col2\" class=\"data row6 col2\" >1.04</td>\n",
       "                        <td id=\"T_0f378_row6_col3\" class=\"data row6 col3\" >-0.30</td>\n",
       "                        <td id=\"T_0f378_row6_col4\" class=\"data row6 col4\" >0.60</td>\n",
       "                        <td id=\"T_0f378_row6_col5\" class=\"data row6 col5\" >0.50</td>\n",
       "                        <td id=\"T_0f378_row6_col6\" class=\"data row6 col6\" >0.92</td>\n",
       "                        <td id=\"T_0f378_row6_col7\" class=\"data row6 col7\" >0.66</td>\n",
       "                        <td id=\"T_0f378_row6_col8\" class=\"data row6 col8\" >1.65</td>\n",
       "                        <td id=\"T_0f378_row6_col9\" class=\"data row6 col9\" >1.53</td>\n",
       "                        <td id=\"T_0f378_row6_col10\" class=\"data row6 col10\" >0.85</td>\n",
       "                        <td id=\"T_0f378_row6_col11\" class=\"data row6 col11\" >0.44</td>\n",
       "                        <td id=\"T_0f378_row6_col12\" class=\"data row6 col12\" >0.57</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_0f378_level0_row7\" class=\"row_heading level0 row7\" >max</th>\n",
       "                        <td id=\"T_0f378_row7_col0\" class=\"data row7 col0\" >8.97</td>\n",
       "                        <td id=\"T_0f378_row7_col1\" class=\"data row7 col1\" >3.30</td>\n",
       "                        <td id=\"T_0f378_row7_col2\" class=\"data row7 col2\" >2.44</td>\n",
       "                        <td id=\"T_0f378_row7_col3\" class=\"data row7 col3\" >3.34</td>\n",
       "                        <td id=\"T_0f378_row7_col4\" class=\"data row7 col4\" >2.70</td>\n",
       "                        <td id=\"T_0f378_row7_col5\" class=\"data row7 col5\" >3.46</td>\n",
       "                        <td id=\"T_0f378_row7_col6\" class=\"data row7 col6\" >1.14</td>\n",
       "                        <td id=\"T_0f378_row7_col7\" class=\"data row7 col7\" >3.86</td>\n",
       "                        <td id=\"T_0f378_row7_col8\" class=\"data row7 col8\" >1.65</td>\n",
       "                        <td id=\"T_0f378_row7_col9\" class=\"data row7 col9\" >1.80</td>\n",
       "                        <td id=\"T_0f378_row7_col10\" class=\"data row7 col10\" >1.68</td>\n",
       "                        <td id=\"T_0f378_row7_col11\" class=\"data row7 col11\" >0.44</td>\n",
       "                        <td id=\"T_0f378_row7_col12\" class=\"data row7 col12\" >3.57</td>\n",
       "            </tr>\n",
       "    </tbody></table>"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x7f64e825c510>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<style  type=\"text/css\" >\n",
       "</style><table id=\"T_b130d_\" ><caption>Few lines of the dataset :</caption><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >crim</th>        <th class=\"col_heading level0 col1\" >zn</th>        <th class=\"col_heading level0 col2\" >indus</th>        <th class=\"col_heading level0 col3\" >chas</th>        <th class=\"col_heading level0 col4\" >nox</th>        <th class=\"col_heading level0 col5\" >rm</th>        <th class=\"col_heading level0 col6\" >age</th>        <th class=\"col_heading level0 col7\" >dis</th>        <th class=\"col_heading level0 col8\" >rad</th>        <th class=\"col_heading level0 col9\" >tax</th>        <th class=\"col_heading level0 col10\" >ptratio</th>        <th class=\"col_heading level0 col11\" >b</th>        <th class=\"col_heading level0 col12\" >lstat</th>    </tr></thead><tbody>\n",
       "                <tr>\n",
       "                        <th id=\"T_b130d_level0_row0\" class=\"row_heading level0 row0\" >473</th>\n",
       "                        <td id=\"T_b130d_row0_col0\" class=\"data row0 col0\" >0.09</td>\n",
       "                        <td id=\"T_b130d_row0_col1\" class=\"data row0 col1\" >-0.50</td>\n",
       "                        <td id=\"T_b130d_row0_col2\" class=\"data row0 col2\" >1.04</td>\n",
       "                        <td id=\"T_b130d_row0_col3\" class=\"data row0 col3\" >-0.30</td>\n",
       "                        <td id=\"T_b130d_row0_col4\" class=\"data row0 col4\" >0.52</td>\n",
       "                        <td id=\"T_b130d_row0_col5\" class=\"data row0 col5\" >0.93</td>\n",
       "                        <td id=\"T_b130d_row0_col6\" class=\"data row0 col6\" >0.02</td>\n",
       "                        <td id=\"T_b130d_row0_col7\" class=\"data row0 col7\" >-0.62</td>\n",
       "                        <td id=\"T_b130d_row0_col8\" class=\"data row0 col8\" >1.65</td>\n",
       "                        <td id=\"T_b130d_row0_col9\" class=\"data row0 col9\" >1.53</td>\n",
       "                        <td id=\"T_b130d_row0_col10\" class=\"data row0 col10\" >0.85</td>\n",
       "                        <td id=\"T_b130d_row0_col11\" class=\"data row0 col11\" >0.21</td>\n",
       "                        <td id=\"T_b130d_row0_col12\" class=\"data row0 col12\" >-0.10</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_b130d_level0_row1\" class=\"row_heading level0 row1\" >232</th>\n",
       "                        <td id=\"T_b130d_row1_col0\" class=\"data row1 col0\" >-0.34</td>\n",
       "                        <td id=\"T_b130d_row1_col1\" class=\"data row1 col1\" >-0.50</td>\n",
       "                        <td id=\"T_b130d_row1_col2\" class=\"data row1 col2\" >-0.70</td>\n",
       "                        <td id=\"T_b130d_row1_col3\" class=\"data row1 col3\" >-0.30</td>\n",
       "                        <td id=\"T_b130d_row1_col4\" class=\"data row1 col4\" >-0.39</td>\n",
       "                        <td id=\"T_b130d_row1_col5\" class=\"data row1 col5\" >2.83</td>\n",
       "                        <td id=\"T_b130d_row1_col6\" class=\"data row1 col6\" >0.22</td>\n",
       "                        <td id=\"T_b130d_row1_col7\" class=\"data row1 col7\" >-0.01</td>\n",
       "                        <td id=\"T_b130d_row1_col8\" class=\"data row1 col8\" >-0.18</td>\n",
       "                        <td id=\"T_b130d_row1_col9\" class=\"data row1 col9\" >-0.59</td>\n",
       "                        <td id=\"T_b130d_row1_col10\" class=\"data row1 col10\" >-0.44</td>\n",
       "                        <td id=\"T_b130d_row1_col11\" class=\"data row1 col11\" >0.33</td>\n",
       "                        <td id=\"T_b130d_row1_col12\" class=\"data row1 col12\" >-1.38</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_b130d_level0_row2\" class=\"row_heading level0 row2\" >256</th>\n",
       "                        <td id=\"T_b130d_row2_col0\" class=\"data row2 col0\" >-0.40</td>\n",
       "                        <td id=\"T_b130d_row2_col1\" class=\"data row2 col1\" >3.10</td>\n",
       "                        <td id=\"T_b130d_row2_col2\" class=\"data row2 col2\" >-1.06</td>\n",
       "                        <td id=\"T_b130d_row2_col3\" class=\"data row2 col3\" >-0.30</td>\n",
       "                        <td id=\"T_b130d_row2_col4\" class=\"data row2 col4\" >-1.35</td>\n",
       "                        <td id=\"T_b130d_row2_col5\" class=\"data row2 col5\" >1.59</td>\n",
       "                        <td id=\"T_b130d_row2_col6\" class=\"data row2 col6\" >-1.13</td>\n",
       "                        <td id=\"T_b130d_row2_col7\" class=\"data row2 col7\" >1.15</td>\n",
       "                        <td id=\"T_b130d_row2_col8\" class=\"data row2 col8\" >-0.75</td>\n",
       "                        <td id=\"T_b130d_row2_col9\" class=\"data row2 col9\" >-0.96</td>\n",
       "                        <td id=\"T_b130d_row2_col10\" class=\"data row2 col10\" >-1.13</td>\n",
       "                        <td id=\"T_b130d_row2_col11\" class=\"data row2 col11\" >0.33</td>\n",
       "                        <td id=\"T_b130d_row2_col12\" class=\"data row2 col12\" >-1.29</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_b130d_level0_row3\" class=\"row_heading level0 row3\" >425</th>\n",
       "                        <td id=\"T_b130d_row3_col0\" class=\"data row3 col0\" >1.27</td>\n",
       "                        <td id=\"T_b130d_row3_col1\" class=\"data row3 col1\" >-0.50</td>\n",
       "                        <td id=\"T_b130d_row3_col2\" class=\"data row3 col2\" >1.04</td>\n",
       "                        <td id=\"T_b130d_row3_col3\" class=\"data row3 col3\" >-0.30</td>\n",
       "                        <td id=\"T_b130d_row3_col4\" class=\"data row3 col4\" >1.07</td>\n",
       "                        <td id=\"T_b130d_row3_col5\" class=\"data row3 col5\" >-0.59</td>\n",
       "                        <td id=\"T_b130d_row3_col6\" class=\"data row3 col6\" >0.98</td>\n",
       "                        <td id=\"T_b130d_row3_col7\" class=\"data row3 col7\" >-0.91</td>\n",
       "                        <td id=\"T_b130d_row3_col8\" class=\"data row3 col8\" >1.65</td>\n",
       "                        <td id=\"T_b130d_row3_col9\" class=\"data row3 col9\" >1.53</td>\n",
       "                        <td id=\"T_b130d_row3_col10\" class=\"data row3 col10\" >0.85</td>\n",
       "                        <td id=\"T_b130d_row3_col11\" class=\"data row3 col11\" >-3.55</td>\n",
       "                        <td id=\"T_b130d_row3_col12\" class=\"data row3 col12\" >1.68</td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                        <th id=\"T_b130d_level0_row4\" class=\"row_heading level0 row4\" >230</th>\n",
       "                        <td id=\"T_b130d_row4_col0\" class=\"data row4 col0\" >-0.34</td>\n",
       "                        <td id=\"T_b130d_row4_col1\" class=\"data row4 col1\" >-0.50</td>\n",
       "                        <td id=\"T_b130d_row4_col2\" class=\"data row4 col2\" >-0.70</td>\n",
       "                        <td id=\"T_b130d_row4_col3\" class=\"data row4 col3\" >-0.30</td>\n",
       "                        <td id=\"T_b130d_row4_col4\" class=\"data row4 col4\" >-0.41</td>\n",
       "                        <td id=\"T_b130d_row4_col5\" class=\"data row4 col5\" >-0.48</td>\n",
       "                        <td id=\"T_b130d_row4_col6\" class=\"data row4 col6\" >0.04</td>\n",
       "                        <td id=\"T_b130d_row4_col7\" class=\"data row4 col7\" >-0.09</td>\n",
       "                        <td id=\"T_b130d_row4_col8\" class=\"data row4 col8\" >-0.18</td>\n",
       "                        <td id=\"T_b130d_row4_col9\" class=\"data row4 col9\" >-0.59</td>\n",
       "                        <td id=\"T_b130d_row4_col10\" class=\"data row4 col10\" >-0.44</td>\n",
       "                        <td id=\"T_b130d_row4_col11\" class=\"data row4 col11\" >0.25</td>\n",
       "                        <td id=\"T_b130d_row4_col12\" class=\"data row4 col12\" >-0.10</td>\n",
       "            </tr>\n",
       "    </tbody></table>"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x7f64eb329f50>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"Before normalization :\"))\n",
    "\n",
    "mean = x_train.mean()\n",
    "std  = x_train.std()\n",
    "x_train = (x_train - mean) / std\n",
    "x_test  = (x_test  - mean) / std\n",
    "\n",
    "display(x_train.describe().style.format(\"{0:.2f}\").set_caption(\"After normalization :\"))\n",
    "display(x_train.head(5).style.format(\"{0:.2f}\").set_caption(\"Few lines of the dataset :\"))\n",
    "\n",
    "x_train, y_train = np.array(x_train), np.array(y_train)\n",
    "x_test,  y_test  = np.array(x_test),  np.array(y_test)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 4 - Build a model\n",
    "About informations about : \n",
    " - [Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)\n",
    " - [Activation](https://www.tensorflow.org/api_docs/python/tf/keras/activations)\n",
    " - [Loss](https://www.tensorflow.org/api_docs/python/tf/keras/losses)\n",
    " - [Metrics](https://www.tensorflow.org/api_docs/python/tf/keras/metrics)"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": 40,
   "metadata": {},
   "outputs": [],
   "source": [
    "  def get_model_v1(shape):\n",
    "    \n",
    "    model = keras.models.Sequential()\n",
    "    model.add(keras.layers.Input(shape, name=\"InputLayer\"))\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "    model.add(keras.layers.Dense(32, activation='relu', name='Dense_n1'))\n",
    "    model.add(keras.layers.Dense(64, activation='relu', name='Dense_n2'))\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "    model.add(keras.layers.Dense(32, activation='relu', name='Dense_n3'))\n",
    "    model.add(keras.layers.Dense(1, name='Output'))\n",
    "    \n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "    model.compile(optimizer = 'adam',\n",
    "                  loss      = 'mse',\n",
    "                  metrics   = ['mae', 'mse'] )\n",
    "    return model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 5 - Train the model\n",
    "### 5.1 - Get it"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": 41,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: \"sequential_5\"\n",
      "_________________________________________________________________\n",
      "Layer (type)                 Output Shape              Param #   \n",
      "=================================================================\n",
      "Dense_n1 (Dense)             (None, 32)                448       \n",
      "_________________________________________________________________\n",
      "Dense_n2 (Dense)             (None, 64)                2112      \n",
      "_________________________________________________________________\n",
      "Dense_n3 (Dense)             (None, 32)                2080      \n",
      "_________________________________________________________________\n",
      "Output (Dense)               (None, 1)                 33        \n",
      "=================================================================\n",
      "Total params: 4,673\n",
      "Trainable params: 4,673\n",
      "Non-trainable params: 0\n",
      "_________________________________________________________________\n"
     ]
    }
   ],
   "source": [
    "model=get_model_v1( (13,) )\n",
    "\n",
    "model.summary()\n",
    "\n",
    "# img=keras.utils.plot_model( model, to_file='./run/model.png', show_shapes=True, show_layer_names=True, dpi=96)\n",
    "# display(img)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 5.2 - Train it"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": 42,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [],
   "source": [
    "history = model.fit(x_train,\n",
    "                    y_train,\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "                    epochs          = 60,\n",
    "                    batch_size      = 10,\n",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "                    verbose         = 0,\n",
    "                    validation_data = (x_test, y_test))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Step 6 - Evaluate\n",
    "### 6.1 - Model evaluation\n",
    "MAE =  Mean Absolute Error (between the labels and predictions)  \n",
    "A mae equal to 3 represents an average error in prediction of $3k."
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": 43,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "5/5 [==============================] - 0s 2ms/step - loss: 11.9059 - mae: 2.6448 - mse: 11.9059\n",
      "x_test / loss      : 11.9059\n",
      "x_test / mae       : 2.6448\n",
      "x_test / mse       : 11.9059\n"
     ]
    }
   ],
   "source": [
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
    "score = model.evaluate(x_test, y_test, verbose=1)\n",
    "\n",
    "print('x_test / loss      : {:5.4f}'.format(score[0]))\n",
    "print('x_test / mae       : {:5.4f}'.format(score[1]))\n",
    "print('x_test / mse       : {:5.4f}'.format(score[2]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 6.2 - Training history\n",
    "What was the best result during our training ?"
   ]
  },
  {
   "cell_type": "code",
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "execution_count": 44,
   "metadata": {},
Jean-Luc Parouty's avatar
Jean-Luc Parouty committed
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>loss</th>\n",
       "      <th>mae</th>\n",
       "      <th>mse</th>\n",
       "      <th>val_loss</th>\n",
       "      <th>val_mae</th>\n",
       "      <th>val_mse</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>496.808258</td>\n",
       "      <td>20.406666</td>\n",
       "      <td>496.808258</td>\n",
       "      <td>299.685791</td>\n",
       "      <td>15.153587</td>\n",
       "      <td>299.685791</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>162.919540</td>\n",
       "      <td>10.265703</td>\n",
       "      <td>162.919540</td>\n",
       "      <td>65.847511</td>\n",
       "      <td>6.263887</td>\n",
       "      <td>65.847511</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>58.518223</td>\n",
       "      <td>5.800590</td>\n",
       "      <td>58.518223</td>\n",
       "      <td>33.691109</td>\n",
       "      <td>4.296726</td>\n",
       "      <td>33.691113</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>31.010996</td>\n",
       "      <td>4.039098</td>\n",
       "      <td>31.010996</td>\n",
       "      <td>24.567926</td>\n",
       "      <td>3.534089</td>\n",
       "      <td>24.567926</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>23.336550</td>\n",
       "      <td>3.394345</td>\n",
       "      <td>23.336550</td>\n",
       "      <td>21.112747</td>\n",
       "      <td>3.387527</td>\n",
       "      <td>21.112747</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>20.368439</td>\n",
       "      <td>3.112291</td>\n",
       "      <td>20.368439</td>\n",
       "      <td>19.033449</td>\n",
       "      <td>3.166226</td>\n",
       "      <td>19.033449</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>18.681219</td>\n",
       "      <td>2.996637</td>\n",
       "      <td>18.681219</td>\n",
       "      <td>18.153992</td>\n",
       "      <td>3.020701</td>\n",
       "      <td>18.153992</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>17.302563</td>\n",