Skip to content
Snippets Groups Projects
01-Apprentissages-rapides-et-Optimisations.ipynb 50.9 KiB
Newer Older
{
  "cells": [
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "EBL97zOSNOUb"
      },
      "source": [
        "<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n",
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
        "\n",
        "# <!-- TITLE --> [OPT1] - Training setup optimization\n",
        "<!-- DESC --> The goal of this notebook is to go through a typical deep learning model training\n",
        "\n",
        "<!-- AUTHOR : Kamel Guerda (CNRS/IDRIS), Léo Hunout (CNRS/IDRIS) -->\n",
        "\n",
        "## Objectives :\n",
        "\n",
        "\n",
        "**Practice lab : Optimize your training process**"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "wmsmK2lGelCE"
      },
      "source": [
        "## Introduction\n",
        "\n",
        "This Lab takes place as a pratical exercice of the [fidle](https://fidle.cnrs.fr/) online course N°16.\n",
        "\n",
        "\n",
        "The goal of this notebook is to go through a typical deep learning model training. We will see what can be changed to optimize this training setup but also good practices to make more efficient experiments.\n",
        "\n",
        "\n",
        "This notebook makes use of:\n",
        "- The CIFAR10 dataset\n",
        "- A Resnet model\n",
        "- Pytorch\n",
        "- A GPU (the notebook can be ran on Jean-Zay if you have an account, on Google collab with a 16go gpu or at home with a dedicated gpu by scaling down the batch_size)\n",
        "\n",
        "In particular we will work on:\n",
        "- the dataloader strategy used to load data\n",
        "- the model initial weights, in particular using a pretrained model\n",
        "- the learning rate and learning rate scheduler\n",
        "- the optimizer\n",
        "- visualizing and comparing results using python, tensorboard\n",
        "- various good practices/reminders\n",
        "\n",
        "> First, you can do a complete execution of the notebook.\n",
        "\n",
        "> **Then comeback from the start and follow the instructions to edit various components for better performance. You can also change them during the first execution if you have some intuitions about what should be changed and how.**\n",
        "\n",
        "> **In order to compare performance, only change the xxx_optim variables which are the one you will use in your optimized training**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "UrJW8d_lqZ-l"
      },
      "outputs": [],
      "source": [
        "!nvidia-smi"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "527LDYwLf9gB"
      },
      "source": [
        "## Few imports"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "mPEZLMywejMG"
      },
      "outputs": [],
      "source": [
        "import os\n",
        "import time\n",
        "import random\n",
        "import numpy as np\n",
        "\n",
        "import torch\n",
        "from torch.cuda.amp import autocast, GradScaler\n",
        "from torch.optim.lr_scheduler import _LRScheduler\n",
        "\n",
        "import torchvision\n",
        "import torchvision.transforms as transforms\n",
        "import torchvision.models as models\n",
        "from torchvision.models.resnet import ResNet18_Weights\n",
        "\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "from datetime import datetime\n",
        "from torch.utils.tensorboard import SummaryWriter"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "G_DozO12fv8o"
      },
      "source": [
        "## Fix random seeds\n",
        "In order to have experiment reproductibility, it is a good practice to fix the random number generators seeds.\n",
        "\n",
        "Warning : there might be more seeds to set than you expect! Maths,visualization,transformations libraries, ..."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Y9jOl-D8ejWw"
      },
      "outputs": [],
      "source": [
        "random.seed(123)\n",
        "np.random.seed(123)\n",
        "torch.manual_seed(123)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "9nZlyar5NOUr"
      },
      "source": [
        "## Some functions\n",
        "\n",
        "Below we define a few functions that will be used further in the notebook. \n",
        "\n",
        "**Do not change them unless you know what and why you are doing it.**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "JFQtFuDWNOUt"
      },
      "outputs": [],
      "source": [
        "def iter_dataloader(dataloader, epochs, args):\n",
        "    for epoch in range(epochs):\n",
        "        for i, (images, labels) in enumerate(dataloader):\n",
        "            # distribution of images and labels to all GPUs\n",
        "            images = images.to(args['device'], non_blocking=True)\n",
        "            labels = labels.to(args['device'], non_blocking=True)\n",
        "            \n",
        "def evaluate(dataloader, model, criterion, args):\n",
        "    '''\n",
        "    A simple loop for evaluation\n",
        "    '''\n",
        "    loss = 0\n",
        "    correct = 0\n",
        "    total = 0\n",
        "    with torch.no_grad():\n",
        "        for i, (images, labels) in enumerate(dataloader):\n",
        "            # distribution of images and labels to all GPUs\n",
        "            images = images.to(args['device'], non_blocking=True)\n",
        "            labels = labels.to(args['device'], non_blocking=True)\n",
        "            outputs = model(images)\n",
        "            loss = criterion(outputs,labels)\n",
        "            _, predicted = torch.max(outputs.data, 1)\n",
        "\n",
        "            loss += loss\n",
        "            total += labels.size(0)\n",
        "            correct += (predicted == labels).sum().item()\n",
        "    loss = (loss/total).item()\n",
        "    accuracy = (correct/total)*100\n",
        "    return loss, accuracy\n",
        "\n",
        "def train_default(train_loader, val_loader, model, optimizer, criterion, args):\n",
        "    '''\n",
        "    The default simple training loop\n",
        "    '''\n",
        "    train_losses = []\n",
        "    train_accuracies = []\n",
        "    val_losses = []\n",
        "    val_accuracies = []\n",
        "    time_start = time.time()\n",
        "    for epoch in range(args['epochs']):\n",
        "        print(\"Epoch \", epoch)\n",
        "        for i, (images, labels) in enumerate(train_loader):\n",
        "            # distribution of images and labels to all GPUs\n",
        "            images = images.to(args['device'], non_blocking=True)\n",
        "            labels = labels.to(args['device'], non_blocking=True)\n",
        "            \n",
        "            # Zero the parameter gradients\n",
        "            optimizer.zero_grad()\n",
        "\n",
        "            # Forward pass\n",
        "            outputs = model(images)\n",
        "            loss = criterion(outputs, labels)\n",
        "\n",
        "            # Backward pass\n",
        "            loss.backward()\n",
        "\n",
        "            # Optimize\n",
        "            optimizer.step()\n",
        "\n",
        "        # Evaluate at the end of the epoch on the train set\n",
        "        train_loss, train_accuracy = evaluate(train_loader, model, criterion, args)\n",
        "        print(\"\\t Train loss : \", train_loss, \"& Train accuracy : \", train_accuracy)\n",
        "        train_losses.append(train_loss)\n",
        "        train_accuracies.append(train_accuracy)                \n",
        "                \n",
        "        # Evaluate at the end of the epoch on the val set\n",
        "        val_loss, val_accuracy = evaluate(val_loader, model, criterion, args)\n",
        "        print(\"\\t Validation loss : \", val_loss, \"& Validation accuracy : \", val_accuracy)\n",
        "        val_losses.append(val_loss)\n",
        "        val_accuracies.append(val_accuracy)\n",
        "        \n",
        "    duration = time.time() - time_start\n",
        "    print('Finished Training in:', duration, 'seconds with mean epoch duration:', duration/args['epochs'], ' seconds')\n",
        "    results = {'model':model,\n",
        "               'train_losses': train_losses,\n",
        "               'train_accuracies': train_accuracies,\n",
        "               'val_losses': val_losses,\n",
        "               'val_accuracies': val_accuracies,\n",
        "               'duration':duration}\n",
        "    return results\n",
        "\n",
        "def explore_lrs(dataloader, \n",
        "                model, \n",
        "                optimizer,\n",
        "                args,\n",
        "                min_learning_rate_power=-8, \n",
        "                max_learning_rate_power = 1,\n",
        "                num_lrs=10,\n",
        "                steps_per_lr=50):\n",
        "  \n",
        "    lrs = np.logspace(min_learning_rate_power, max_learning_rate_power, num=num_lrs)\n",
        "    print(\"Learning rate space : \", lrs)\n",
        "    model_init_state = model.state_dict()\n",
        "\n",
        "    lrs_losses, lrs_metric_avg, lrs_metric_var =[], [],[]\n",
        "  \n",
        "    # Iterate through learning rates to test\n",
        "    for lr in lrs:\n",
        "        print(\"Testing lr:\", '{:.2e}'.format(lr))\n",
        "        # Reset model\n",
        "        model.load_state_dict(model_init_state)\n",
        "\n",
        "        # Change learning rate in optimizer\n",
        "        for group in optimizer.param_groups:\n",
        "            group['lr'] = lr\n",
        "\n",
        "        # Reset metric tracking\n",
        "        lr_losses =[]\n",
        "\n",
        "        # Training steps\n",
        "        for step in range(steps_per_lr):\n",
        "            images, labels = next(iter(dataloader))\n",
        "            # distribution of images and labels to all GPUs\n",
        "            images = images.to(args['device'], non_blocking=True)\n",
        "            labels = labels.to(args['device'], non_blocking=True)\n",
        "            optimizer.zero_grad()\n",
        "            outputs = model(images)\n",
        "            loss = criterion(outputs, labels)\n",
        "            loss.backward()\n",
        "            optimizer.step()\n",
        "            lr_losses.append(loss.item())\n",
        "        print(lr_losses)\n",
        "\n",
        "        # Compute loss average for lr\n",
        "        lr_loss_avg = np.mean(lr_losses) \n",
        "        lr_loss_avg = lr_losses[-1]\n",
        "\n",
        "        lrs_losses.append(lr_loss_avg)\n",
        "\n",
        "        # Compute metric (discounted average gradient of the loss)\n",
        "        lr_gradients = np.gradient(lr_losses)\n",
        "        lr_metric_avg = np.mean(lr_gradients)\n",
        "        lr_metric_var = np.var(lr_gradients)\n",
        "        lrs_metric_avg.append(lr_metric_avg)    \n",
        "        lrs_metric_var.append(lr_metric_var)\n",
        "        model.load_state_dict(model_init_state)\n",
        "\n",
        "    return lrs, lrs_losses, lrs_metric_avg, lrs_metric_var\n",
        "\n",
        "def plot_eval(lrs, lrs_losses, lrs_metric_avg, lrs_metric_var):\n",
        "    print(\"lrs: \", lrs)\n",
        "    print(\"lrs_losses: \", lrs_losses)\n",
        "    print(\"lrs_metric_avg: \", lrs_metric_avg)\n",
        "    print(\"lrs_metric_var: \", lrs_metric_var)\n",
        "    fig, axs = plt.subplots(3, figsize=(10,15))\n",
        "\n",
        "    axs[0].plot(lrs, lrs_losses, color='blue', label=\"losses_avg\")\n",
        "    axs[0].set_xlabel('learning rate', fontsize=15)\n",
        "    axs[0].set_ylabel('Loss', fontsize=15)\n",
        "    axs[0].set_xscale('log')\n",
        "    axs[0].set_yscale('symlog')\n",
        "    axs[0].set_ylim([0,  min(lrs_losses)*100])\n",
        "\n",
        "    axs[1].plot(lrs, lrs_metric_avg, color='red', label=\"discounted_metric_avg\")\n",
        "    axs[1].hlines(y=0, xmin=lrs[0], xmax=lrs[-1], linewidth=2, color='black')\n",
        "    axs[1].set_xlabel('learning rate', fontsize=15)\n",
        "    axs[1].set_ylabel('Metric average', fontsize=15)\n",
        "    axs[1].set_xscale('log')\n",
        "    axs[1].set_yscale('symlog')\n",
        "    axs[1].set_ylim([-abs(lrs_metric_avg[0])*100, abs(lrs_metric_avg[0])*100])\n",
        "\n",
        "    axs[2].plot(lrs, lrs_metric_var, color='green', label=\"discounted_metric_var\")\n",
        "    axs[2].set_xlabel('learning rate', fontsize=15)\n",
        "    axs[2].set_ylabel('Metric variance', fontsize=15)\n",
        "    axs[2].set_xscale('log')\n",
        "    axs[2].set_yscale('symlog')\n",
        "    axs[2].set_ylim([0, min(lrs_metric_var)*1000])\n",
        "\n",
        "    plt.show()\n",
        "    \n",
        "def compare_trainings(results_default, results_optim):\n",
        "    fig, axs = plt.subplots(2, figsize=(10,10))\n",
        "    fig.suptitle('Performance comparison', fontsize=18)    \n",
        "    \n",
        "    train_alpha = 0.5\n",
        "    \n",
        "    # Validation losses    \n",
        "    axs[0].plot(range(len(results_default['val_losses'])), results_default['val_losses'], color='blue', label=\"default val\")\n",
        "    axs[0].plot(range(len(results_optim['val_losses'])), results_optim['val_losses'], color='red', label=\"optim val\")\n",
        "\n",
        "    # Training losses    \n",
        "    axs[0].plot(range(len(results_default['train_losses'])), results_default['train_losses'], color='blue', label=\"default train\", linestyle='--', alpha = train_alpha)\n",
        "    axs[0].plot(range(len(results_optim['train_losses'])), results_optim['train_losses'], color='red', label=\"optim train\", linestyle='--', alpha = train_alpha)\n",
        "       \n",
        "    axs[0].set_xlabel('Epochs', fontsize=14)\n",
        "    axs[0].set_ylabel('Loss', fontsize=14)\n",
        "    axs[0].set_xscale('linear')\n",
        "    axs[0].set_yscale('linear')\n",
        "    max_loss = max(results_default['train_losses']+results_default['val_losses']+results_optim['train_losses']+results_optim['val_losses'])\n",
        "    axs[0].set_ylim([0,  max_loss])\n",
        "    axs[0].legend(loc=\"upper right\")\n",
        "    \n",
        "    # Validation accuracies\n",
        "    axs[1].plot(range(len(results_default['val_accuracies'])), results_default['val_accuracies'], color='blue', label=\"default val\")\n",
        "    axs[1].plot(range(len(results_optim['val_accuracies'])), results_optim['val_accuracies'], color='red', label=\"optim val\")\n",
        "\n",
        "    # Training default accuracies\n",
        "    axs[1].plot(range(len(results_default['train_accuracies'])), results_default['train_accuracies'], color='blue', label=\"default train\", linestyle='--', alpha=train_alpha)\n",
        "    axs[1].plot(range(len(results_optim['train_accuracies'])), results_optim['train_accuracies'], color='red', label=\"optim train\", linestyle='--', alpha=train_alpha)\n",
        "    \n",
        "    axs[1].set_xlabel('Epochs', fontsize=15)\n",
        "    axs[1].set_ylabel('Accuracy', fontsize=15)\n",
        "    axs[1].set_xscale('linear')\n",
        "    axs[1].set_yscale('linear')\n",
        "    axs[1].set_ylim([0,  100])\n",
        "    axs[1].legend(loc=\"lower right\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "USjwbaqvfvT9"
      },
      "source": [
        "## Training configuration variables\n",
        "For the first run, you can let all the values given by default.\n",
        "For the optimized run, you could changing some parameters. \n",
        ">In particular, you will have to change :\n",
        ">- the batch_size\n",
        ">- the learning rate"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "vJRP94hFejjg"
      },
      "outputs": [],
      "source": [
        "args = {\n",
        "    'batch_size':64,\n",
        "    'epochs': 10,\n",
        "    'image_size': 224,\n",
        "    'learning_rate': 0.001,\n",
        "    'momentum': 0.9,\n",
        "    'weight_decay': 0.0001,\n",
        "    'download': True,\n",
        "    'device': torch.device(\"cuda\") if torch.cuda.is_available() else torch.device(\"cpu\"),\n",
        "    'dataset_root_dir': os.getcwd(),\n",
        "}\n",
        "\n",
        "#################################################\n",
        "############# Modify the code below #############\n",
        "#################################################\n",
        "args_optim = {\n",
        "    'batch_size':64,\n",
        "    'epochs': 10,\n",
        "    'image_size': 224,\n",
        "    'learning_rate': 0.001,\n",
        "    'momentum': 0.9,\n",
        "    'weight_decay': 0.0001,\n",
        "    'download': True,\n",
        "    'device': torch.device(\"cuda\") if torch.cuda.is_available() else torch.device(\"cpu\"),\n",
        "    'dataset_root_dir': os.getcwd(), \n",
        "}"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "pfQP_RbKAU6N"
      },
      "source": [
        "<details>\n",
        "<summary>Spoiler (click to reveal)</summary>\n",
        "\n",
        "```python\n",
        "args_optim = {\n",
        "    'batch_size':512,\n",
        "    'epochs': 10,\n",
        "    'image_size': 224,\n",
        "    'learning_rate': 0.001,\n",
        "    'momentum': 0.9,\n",
        "    'weight_decay': 0.01,\n",
        "    'download': True,\n",
        "    'device': torch.device(\"cuda\") if torch.cuda.is_available() else torch.device(\"cpu\"),\n",
        "    'dataset_root_dir': os.getcwd(), \n",
        "}\n",
        "```    \n",
        "</details>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "b5CbvfOAfnQ9"
      },
      "source": [
        "## Data transformation and augmentation\n",
        "Below, we define the transformations to apply to each image when loaded.\n",
        "It can serve three main purposes:\n",
        "- having the data in the desired format for the model (systematic transformation)\n",
        "- correcting/normalizing the data (systematic transformation)\n",
        "- artificially increasing the amount of data by transforming the data  (random transformation)\n",
        "\n",
        "Warning : the evaluation dataset should always be the same so you should not apply random transformations to it.\n",
        "\n",
        "> Enrich the transformations by using the provided by torchvision : https://pytorch.org/vision/0.12/transforms.html\n",
        "\n",
        "> **Change transform_optim and val_transform_optim only**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "I8d51hBifiDH"
      },
      "outputs": [],
      "source": [
        "transform = transforms.Compose([transforms.ToTensor()])     # convert the PIL Image to a tensor\n",
        "val_transform = transforms.Compose([transforms.ToTensor()]) # convert the PIL Image to a tensor\n",
        "                \n",
        "#################################################\n",
        "############# Modify the code below #############\n",
        "#################################################\n",
        "transform_optim = transforms.Compose([transforms.ToTensor()])     # convert the PIL Image to a tensor\n",
        "val_transform_optim = transforms.Compose([transforms.ToTensor()]) # convert the PIL Image to a tensor"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "VZp4xMdxrJs9"
      },
      "source": [
        "<details>\n",
        "<summary>Spoiler</summary>\n",
        "\n",
        "    \n",
        "```python\n",
        "transform_optim = transforms.Compose([ \n",
        "    transforms.RandomHorizontalFlip(),              # Horizontal Flip - Data Augmentation\n",
        "    transforms.ToTensor()                          # convert the PIL Image to a tensor\n",
        "    ])\n",
        "\n",
        "val_transform_optim = transforms.Compose([\n",
        "                transforms.ToTensor()                           # convert the PIL Image to a tensor\n",
        "                ])\n",
        "```    \n",
        "</details>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "rYIkzw02fqnd"
      },
      "source": [
        "## Dataset\n",
        "In the cell below, we define the dataset.\n",
        "Here we have two subset:\n",
        "- a training subset for model optimization\n",
        "- a test subset for model evaluation"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "RImKrDEwe-Y7"
      },
      "outputs": [],
      "source": [
        "train_dataset = torchvision.datasets.CIFAR10(root=args['dataset_root_dir']+'/CIFAR_10', train=True, download=args['download'], transform=transform)\n",
        "\n",
        "val_dataset = torchvision.datasets.CIFAR10(root=args['dataset_root_dir']+'/CIFAR_10', train=False, download=args['download'], transform=val_transform)\n",
        "\n",
        "train_dataset_optim = torchvision.datasets.CIFAR10(root=args_optim['dataset_root_dir']+'/CIFAR_10', train=True, download=args_optim['download'], transform=transform_optim)\n",
        "\n",
        "val_dataset_optim = torchvision.datasets.CIFAR10(root=args_optim['dataset_root_dir']+'/CIFAR_10', train=False, download=args_optim['download'], transform=val_transform_optim)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "tFMn2WRHgDko"
      },
      "source": [
        "## Dataloader\n",
        "The DataLoader class in PyTorch is responsible for loading and batching data from a dataset object, such as a PyTorch tensor or a NumPy array.\n",
        "It works by creating a Python iterable over the dataset and yielding a batch of data at each iteration.\n",
        "\n",
        "Those batches will be fed to the model for training or inference.\n",
        "\n",
        "The DataLoader class also provides various options for shuffling, batching, and parallelizing the data loading process, making it a useful tool for efficient and flexible data handling in PyTorch.\n",
        "> Take a look at the DataLoader documentation : https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader\n",
        "\n",
        "> Optimize the dataloader by taking advantage of parallelism and smart use of computational ressources :\n",
        ">- batch_size\n",
        ">- pin_memory\n",
        ">- prefetch_factor \n",
        ">- persistent_workers \n",
        ">- num_workers"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "r9Mp67_fgIGN"
      },
      "outputs": [],
      "source": [
        "train_loader = torch.utils.data.DataLoader(dataset=train_dataset,\n",
        "                                           batch_size=args['batch_size'],\n",
        "                                           shuffle=True,\n",
        "                                           drop_last=True)\n",
        "\n",
        "val_loader = torch.utils.data.DataLoader(dataset=val_dataset,    \n",
        "                                         batch_size=args['batch_size'],\n",
        "                                         shuffle=False,\n",
        "                                         drop_last=True)\n",
        "\n",
        "#################################################\n",
        "############# Modify the code below #############\n",
        "#################################################\n",
        "train_loader_optim = torch.utils.data.DataLoader(dataset=train_dataset,\n",
        "                                           batch_size=args_optim['batch_size'],\n",
        "                                           shuffle=True,\n",
        "                                           drop_last=True)\n",
        "\n",
        "val_loader_optim = torch.utils.data.DataLoader(dataset=val_dataset,    \n",
        "                                         batch_size=args_optim['batch_size'],\n",
        "                                         shuffle=False,\n",
        "                                         drop_last=True)\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "mvMxD20VNOU8"
      },
      "outputs": [],
      "source": [
        "%timeit -r 1 -n 1 iter_dataloader(train_loader, 1, args)\n",
        "%timeit -r 1 -n 1 iter_dataloader(train_loader_optim, 1, args_optim)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Vegex5s0gIVF"
      },
      "source": [
        "<details>\n",
        "<summary>Spoiler</summary>\n",
        "WIP : Quelques explications\n",
        "\n",
        "```python\n",
        "train_loader_optim = torch.utils.data.DataLoader(dataset=train_dataset_optim,\n",
        "                                                 batch_size=args_optim['batch_size'],\n",
        "                                                 shuffle=True,\n",
        "                                                 drop_last=True,\n",
        "                                                 num_workers=10,\n",
        "                                                 persistent_workers=True,\n",
        "                                                 pin_memory=True,\n",
        "                                                 prefetch_factor=10)\n",
        "\n",
        "val_loader_optim = torch.utils.data.DataLoader(dataset=val_dataset_optim,    \n",
        "                                               batch_size=args_optim['batch_size'],\n",
        "                                               shuffle=False,\n",
        "                                               drop_last=True,\n",
        "                                               num_workers=10,\n",
        "                                               persistent_workers=True,\n",
        "                                               pin_memory=True,\n",
        "                                               prefetch_factor=10)\n",
        "```    \n",
        "</details>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2_yVrvKvgIt0"
      },
      "source": [
        "## Model\n",
        "\n",
        "> Do not forget to verify that you use the right compute ressources for your model\n",
        "\n",
        "> By default, the model resnet18 is initialized with random weights but you could try using a pretrained model : https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html#torchvision.models.ResNet18_Weights"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "NCQgZOx6gI6Q"
      },
      "outputs": [],
      "source": [
        "model = models.resnet18()\n",
        "model = model.to(args['device'])\n",
        "model.name = 'Resnet-18'\n",
        "print(\"Stock model on device:\", next(model.parameters()).device)\n",
        "#################################################\n",
        "############# Modify the code below #############\n",
        "#################################################\n",
        "model_optim = models.resnet18()\n",
        "model_optim = model_optim.to(args_optim['device'])\n",
        "model_optim.name = 'Resnet-18'\n",
        "print(\"Optimized model on device:\", next(model_optim.parameters()).device)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "p4umlBOmghZX"
      },
      "source": [
        "<details>\n",
        "<summary>Spoiler</summary>\n",
        "    \n",
        "```python\n",
        "model_optim = models.resnet18(ResNet18_Weights)\n",
        "model_optim = model_optim.to(args_optim['device'])\n",
        "model_optim.name = 'Resnet-18'\n",
        "print(\"Optimized model on device:\", next(model_optim.parameters()).device)\n",
        "```    \n",
        "</details>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Ur1uA38ugiBl"
      },
      "source": [
        "## Loss\n",
        "We use a standart loss for classification.\n",
        "\n",
        "For the comparison, if you change the loss, change it for both.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "sxSZEKKogiJe"
      },
      "outputs": [],
      "source": [
        "criterion = torch.nn.CrossEntropyLoss()\n",
        "criterion_optim = torch.nn.CrossEntropyLoss()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "qJadxpf_giT4"
      },
      "source": [
        "## Optimizer\n",
        "\n",
        "> In order to speed up the training, you can try to use a different optimizer: https://pytorch.org/docs/stable/optim.html#base-class"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "3fsqrktLgiaJ"
      },
      "outputs": [],
      "source": [
        "optimizer = torch.optim.SGD(model.parameters(), args['learning_rate'], args['momentum'], args['weight_decay'])\n",
        "#################################################\n",
        "############# Modify the code below #############\n",
        "#################################################\n",
        "optimizer_optim = torch.optim.SGD(model.parameters(), args_optim['learning_rate'], args_optim['momentum'], args_optim['weight_decay'])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ZEcyEt1Ig21T"
      },
      "source": [
        "<details>\n",
        "<summary>Spoiler</summary>\n",
        "\n",
        "```python\n",
        "optimizer_optim = torch.optim.AdamW(model_optim.parameters(), lr = args_optim['learning_rate'], weight_decay=args_optim['weight_decay'])\n",
        "```\n",
        "</details>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "3wcKevBct--P"
      },
      "source": [
        "## Learning rate scheduler\n",
        "In order to adjust the learning rate over iterations/epochs, we can make use of a learning rate scheduler.\n",
        "\n",
        "To use a LR scheduler, you will need to :\n",
        "- instantiate the scheduler (in the coding cell below)\n",
        "- adapt the training loop (in the \"Training\" section)\n",
        "\n",
        "Take a look at this page : https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate which: \n",
        "- describes how to use a scheduler (warning : some scheduler are updated at a step level and others at an epoch level)\n",
        "- lists the available schedulers (you could also create your own starting from the _LRScheduler class)\n",
        "\n",
        "> **You can define your scheduler here.**\n",
        "\n",
        "> **You will have to modify the training loop later on.**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "ISanTSFWuBps"
      },
      "outputs": [],
      "source": [
        "scheduler = None\n",
        "#################################################\n",
        "############# Modify the code below #############\n",
        "#################################################\n",
        "scheduler_optim = None"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "KvnPRnuJvjVx"
      },
      "source": [
        "<details>\n",
        "<summary>Spoiler</summary>\n",
        "    \n",
        "```python\n",
        "scheduler_optim = torch.optim.lr_scheduler.OneCycleLR(optimizer_optim, \n",
        "                                                      max_lr=args_optim['learning_rate'], \n",
        "                                                      steps_per_epoch = len(train_loader_optim), \n",
        "                                                      epochs=args_optim['epochs'])\n",
        "```    \n",
        "</details>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "YxPlz4U3g9Yv"
      },
      "source": [
        "## Model training (reference performances)\n",
        "Once we have all our main actors, we can setup the stage that is our training loop.\n",
        "\n",
        "Below is used a typical loop as you can find in https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html\n",
        "> **Run it a first time to have a performance baseline with all the default values.**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "cy1QzZxwNOVH"
      },
      "outputs": [],
      "source": [
        "results_default = train_default(train_loader, val_loader, model, optimizer, criterion, args)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7vU3uot9v3hc"
      },
      "source": [
        "## Speeding up the hyperparameter search : Learning Rate Finder\n",
        "Wether we are using a scheduler or not, we need to determine either : \n",
        "- the constant learning rate you want to use, \n",
        "- or the maximum learning rate used by the scheduler.\n",
        "\n",
        "If you are in the first situation, you just want a good all-rounder learning rate to have a relatively fast conversion and minimize the oscillations at the end of the convergence.\n",
        "\n",
        "In the second situation, you can focus more on having the fastest inital convergence as the oscillations will be generally taken care by a decreasing learning rate strategy. Thus, we want the highest maximum learning rate possible.\n",
        "\n",
        "It would be ideal to find the best learning rate quickly in order to speedup our hyperparameter search.\n",
        "Various strategy more or less complex exists to find an estimate of this value.\n",
        "Below, we try to find the learning rate by doing a few steps on a range of learning rates. We evaluate each learning rate to determine the best one to choose for our full training.\n",
        "\n",
        "> **As this step can take quite some time, we provided you with some values for the default config which you are not supposed to change anyway. You can find them in the next spoiler**\n",
        "\n",
        "> **Uncomment explore_lrs to rerun the exploration, otherwise you can reuse the given values.**\n",
        "\n",
        "> **Be careful to re-run this cell to reset the model and optimizer,...  to have a \"fresh\" exploration each time**\n",
        "\n",
        "> **Also if you change the optimizer for the optimized run, change it also here to find the best learning rate for that optimizer.** Or rerun the cell where you defined it."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "kG45YwwY5Hut"
      },
      "outputs": [],
      "source": [
        "lrs, lrs_losses, lrs_metric_avg, lrs_metric_var = explore_lrs(train_loader_optim,\n",
        "                                                              model_optim, \n",
        "                                                              optimizer_optim,\n",
        "                                                              args_optim,\n",
        "                                                              min_learning_rate_power=-6, \n",
        "                                                              max_learning_rate_power = 1,\n",
        "                                                              num_lrs=8,\n",
        "                                                              steps_per_lr=100) "
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "pDmkRbleNOVL"
      },
      "source": [
        "<details>\n",
        "<summary>Spoiler</summary>\n",
        "    \n",
        "```python\n",
        "lrs=[1.e-06, 1.e-05, 1.e-04, 1.e-03, 1.e-02, 1.e-01, 1.e+00, 1.e+01]\n",
        "lrs_losses=  [7.502097129821777, 7.22658634185791, 5.24326229095459, 1.7600191831588745, 1.4037541151046753, 2.136382579803467, 2.1029751300811768, 446.49951171875]\n",
        "lrs_metric_avg=[0.0017601490020751954, -0.005245075225830078, -0.041641921997070314, -0.07478624820709229, -0.007052739858627319, 0.04763659238815308, 0.03924872875213623, 9.939403522014619]\n",
        "lrs_metric_var=[0.0006510000222988311, 0.0004144988674492198, 0.000668689274974986, 0.013876865854565344, 0.001481160611942387, 0.3384368026131311, 0.8817071610439394, 2157852536609.2454]\n",
        "```    \n",
        "</details>"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "gpFPWNZXv670"
      },
      "outputs": [],
      "source": [
        "plot_eval(lrs, lrs_losses, lrs_metric_avg, lrs_metric_var)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "pVw14RZ9NOVO"
      },
      "source": [
        "## Optimize the training loop\n",
        "\n",
        "> Adapt the dataset transformations, batch_size & dataloader, lr & lr_scheduler, and optimizer in order to achieve better classification results in less time. \n",
        "\n",
        "> Change this training loop to include:\n",
        "> - a learning rate scheduler : https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate\n",
        "> - a strategy such as early stopping or patience : https://www.kaggle.com/code/akhileshrai/tutorial-early-stopping-vanilla-rnn-pytorch?scriptVersionId=26440051&cellId=10#4.-Early-Stopping\n",
        "\n",
        "> **Also think about changing the call to the function if you added arguments.**\n",
        "\n",
        "> For you, we added automatic mixed precision which will be seen in the next course\n",
        "\n",
        "> **BEFORE RUNNING, WE NEED TO REINITIALIZE THE MODEL, OPTIMIZER AND SCHEDULER FOR A FAIR FIGHT. Rewrite below the changes you have brought to them.**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "hF-p2CCsNOVO"
      },
      "outputs": [],
      "source": [
        "model_optim = models.resnet18().to(args_optim['device'])\n",
        "model_optim.name = 'Resnet-18'\n",
        "optimizer_optim = torch.optim.SGD(model_optim.parameters(), args_optim['learning_rate'], args_optim['momentum'], args_optim['weight_decay'])\n",
        "scheduler_optim = None"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "q79Y1wzENOVQ"
      },
      "outputs": [],
      "source": [
        "def train_optim(train_loader, val_loader, model, optimizer, criterion, args):\n",
        "    '''\n",
        "    The default simple training loop\n",
        "    '''\n",
        "    train_losses = []\n",
        "    train_accuracies = []\n",
        "    val_losses = []\n",
        "    val_accuracies = []\n",
        "    time_start = time.time()\n",
        "    for epoch in range(args['epochs']):\n",
        "        print(\"Epoch \", epoch)\n",
        "        for i, (images, labels) in enumerate(train_loader):\n",
        "            # distribution of images and labels to all GPUs\n",
        "            images = images.to(args['device'], non_blocking=True)\n",
        "            labels = labels.to(args['device'], non_blocking=True)\n",
        "            \n",
        "            # Zero the parameter gradients\n",
        "            optimizer.zero_grad()\n",
        "\n",
        "            # Forward pass\n",
        "            outputs = model(images)\n",
        "            loss = criterion(outputs, labels)\n",
        "\n",
        "            # Backward pass\n",
        "            loss.backward()\n",
        "\n",
        "            # Optimize\n",
        "            optimizer.step()\n",
        "\n",
        "        # Evaluate at the end of the epoch on the train set\n",
        "        train_loss, train_accuracy = evaluate(train_loader, model, criterion, args)\n",
        "        print(\"\\t Train loss : \", train_loss, \"& Train accuracy : \", train_accuracy)\n",
        "        train_losses.append(train_loss)\n",
        "        train_accuracies.append(train_accuracy)                \n",
        "                \n",
        "        # Evaluate at the end of the epoch on the val set\n",
        "        val_loss, val_accuracy = evaluate(val_loader, model, criterion, args)\n",
        "        print(\"\\t Validation loss : \", val_loss, \"& Validation accuracy : \", val_accuracy)\n",
        "        val_losses.append(val_loss)\n",
        "        val_accuracies.append(val_accuracy)\n",
        "    duration = time.time() - time_start\n",
        "    print('Finished Training in:', duration, 'seconds with mean epoch duration:', duration/args['epochs'], ' seconds')\n",
        "    results = {'model':model,\n",
        "               'train_losses': train_losses,\n",
        "               'train_accuracies': train_accuracies,\n",
        "               'val_losses': val_losses,\n",
        "               'val_accuracies': val_accuracies,\n",
        "               'duration':duration}\n",
        "    return results\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Z_T19pdUNOVR"
      },
      "source": [
        "<details>\n",
        "<summary>Spoiler</summary>\n",
        "    \n",
        "```python\n",
        "def train_optim(train_loader, val_loader, model, optimizer, criterion, scheduler, args):\n",