Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"id": "w_5p3EyVknLC",
"metadata": {
"id": "w_5p3EyVknLC"
},
"source": [
"<img width=\"800px\" src=\"../fidle/img/header.svg\"></img>\n",
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
"\n",
"# <!-- TITLE --> [DRL1] - Solving CartPole with DQN\n",
"<!-- DESC --> Using a a Deep Q-Network to play CartPole - an inverted pendulum problem (PyTorch)\n",
"<!-- AUTHOR : Nathan Cassereau (IDRIS) and Bertrand Cabot (IDRIS) -->\n",
"\n",
"\n",
"\n",
"By Nathan Cassereau (IDRIS) and Bertrand Cabot (IDRIS)\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "ucB28wGpmFwi",
"metadata": {
"id": "ucB28wGpmFwi"
},
"source": [
"## Objectives\n",
"\n",
"* Understand the code behind the DQN algorithm\n",
"* Visualize the result for fun purposes :)\n",
"\n",
"This notebook implements a DQN from scratch and trains it. It is simply a vanilla DQN with a target network (sometimes referred as Double DQN). More sophisticated and recent modifications might help stabilize the training.\n",
"\n",
"Considering that we are going to use a tiny network for a simple environment, matrix multiplications are not that time consuming, and using a GPU can be detrimental as communications between CPU and GPU are no longer negligeable compared to forward and backward steps. This notebook will therefore be executed on CPU.\n",
"\n",
"The chosen environment will be imported from the gym toolkit (https://gym.openai.com/)."
]
},
{
"cell_type": "markdown",
"id": "fqQsB2Jwm-BP",
"metadata": {
"id": "fqQsB2Jwm-BP"
},
"source": [
"## Demonstration steps:\n",
"\n",
"- Define numerous hyperparameters\n",
"- Implement the Q-Network\n",
"- Implement an agent following the Double DQN algorithm\n",
"- Train it for a few minutes\n",
"- Visualize the result"
]
},
{
"cell_type": "markdown",
"id": "nRJmgZ0inpkk",
"metadata": {
"id": "nRJmgZ0inpkk"
},
"source": [
"## Installations\n",
"\n",
"Gym requires a graphical interface to render a state observation. Xvfb allows to run the notebook headless. This software is not available on Jean Zay's compute node, hence the usage of Google colab."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "y2Y71JbfgkeU",
"metadata": {
"id": "y2Y71JbfgkeU"
},
"outputs": [],
"source": [
"!pip3 install pyvirtualdisplay\n",
"!pip install pyglet==1.5.11\n",
"!apt-get install x11-utils > /dev/null 2>&1 \n",
"!apt-get install -y xvfb python-opengl > /dev/null 2>&1"
]
},
{
"cell_type": "markdown",
"id": "q6eYfBKnoOJQ",
"metadata": {
"id": "q6eYfBKnoOJQ"
},
"source": [
"## Imports\n",
"\n",
"I chose to use Pytorch to implement this DQN due to its straightforward API and personal preferences.\n",
"Gym implements the environment."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0fc91d65-4756-4432-906c-7d315d981775",
"metadata": {
"id": "0fc91d65-4756-4432-906c-7d315d981775"
},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
"\n",
"import gym\n",
"from gym import wrappers\n",
"\n",
"import random\n",
"from tqdm.notebook import tqdm\n",
"\n",
"import functools\n",
"import matplotlib.pyplot as plt\n",
"import os\n",
"import io\n",
"import base64\n",
"import glob\n",
"from IPython.display import display, HTML"
]
},
{
"cell_type": "markdown",
"id": "Hao-RYcdowHn",
"metadata": {
"id": "Hao-RYcdowHn"
},
"source": [
"## Hyperparameters\n",
"\n",
"The size of the replay buffer does not matter much. In this case, it is big enough to hold every transitions we will have in our training. This choice does have a huge impact on memory though.\n",
"\n",
"Warm-up allows the network to gather some information before the training process begins.\n",
"\n",
"The target network will only be updated once every 10k steps in order to stabilize the training.\n",
"\n",
"The exploration rate is linearly decreasing, although an exponential curve is a sound and common choice as well.\n",
"\n",
"As mentioned above, only the CPU will be used, the GPU would be useful for bigger networks, and / or environments which have a torch tensor internal state.\n",
"\n",
"Considering this is a simple DQN implementation, its stability leaves a lot to be desired. In order not to rely on luck, a decent seed was chosen."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6fX1X6y6YHXF",
"metadata": {
"id": "6fX1X6y6YHXF"
},
"outputs": [],
"source": [
"learning_rate = 0.0001\n",
"buffer_size = 200000\n",
"warmup_steps = 10000\n",
"batch_size = 32\n",
"gamma = 0.99\n",
"train_freq = 4\n",
"target_update_interval = 10000\n",
"exploration_fraction = 0.1\n",
"exploration_initial_eps = 1.0\n",
"exploration_final_eps = 0.05\n",
"device = torch.device(\"cpu\") # torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"seed = 987654321\n",
"np.random.seed(seed)\n",
"torch.manual_seed(seed)\n",
"random.seed(seed)\n",
"if torch.cuda.is_available():\n",
" torch.cuda.manual_seed(seed)"
]
},
{
"cell_type": "markdown",
"id": "TofGB-s7qfSH",
"metadata": {
"id": "TofGB-s7qfSH"
},
"source": [
"## Q-Network and Agent implementation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4VhftO9PaE9g",
"metadata": {
"id": "4VhftO9PaE9g"
},
"outputs": [],
"source": [
"class DQN(nn.Module):\n",
"\n",
" def __init__(self):\n",
" super(DQN, self).__init__()\n",
" self.layer1 = nn.Linear(4, 64)\n",
" self.layer2 = nn.Linear(64, 64)\n",
" self.layer3 = nn.Linear(64, 2)\n",
" self.relu = nn.ReLU()\n",
"\n",
" def forward(self, x):\n",
" x = self.relu(self.layer1(x))\n",
" x = self.relu(self.layer2(x))\n",
" return self.layer3(x)\n",
"\n",
" def compute_target(self, x, rewards):\n",
" with torch.no_grad():\n",
" values = torch.zeros(x.shape[0], device=device)\n",
" values[rewards != 1] = torch.max(self.forward(x[rewards != 1]), dim=-1)[0]\n",
" values = rewards + gamma * values\n",
" return values\n",
"\n",
" def predict(self, x):\n",
" if len(x.shape) < 2:\n",
" x = x[None, :]\n",
" with torch.no_grad():\n",
" x = torch.argmax(self.forward(x), dim=-1)\n",
" if x.device.type == \"cuda\":\n",
" x = x.cpu()\n",
" return x\n",
"\n",
"class Agent:\n",
"\n",
" def __init__(self, env):\n",
" self.env = env\n",
" self.q_network = DQN().to(device)\n",
" self.target_network = DQN().to(device)\n",
" self.target_network.eval()\n",
" self.synchronize()\n",
" self.optimizer = torch.optim.Adam(self.q_network.parameters(), lr=learning_rate)\n",
" self.criterion = nn.MSELoss()\n",
" self.buffer = []\n",
" self.n_updates = 0\n",
" \n",
" def add_transition(self, state, action, reward, nextState):\n",
" self.buffer.append((state, action, reward, nextState))\n",
" if len(self.buffer) > buffer_size:\n",
" self.buffer.pop(random.randrange(len(self.buffer)))\n",
"\n",
" def sample(self):\n",
" transitions = random.sample(self.buffer, batch_size)\n",
" states, actions, rewards, nextStates = zip(*transitions)\n",
" states = torch.stack(states).to(device)\n",
" actions = torch.cat(actions).to(device)\n",
" rewards = torch.cat(rewards).to(device)\n",
" nextStates = torch.stack(nextStates).to(device)\n",
" return states, actions, rewards, nextStates\n",
" \n",
" def train_step(self, step):\n",
" if step % target_update_interval == 0:\n",
" self.synchronize()\n",
" if step < warmup_steps or step % train_freq != 0:\n",
" return 0.\n",
"\n",
" states, actions, rewards, nextStates = self.sample()\n",
" output = self.q_network(states)\n",
" output = torch.gather(output, 1, actions.unsqueeze(-1)).view(-1)\n",
" expectedOutput = self.target_network.compute_target(nextStates, rewards).view(-1)\n",
" self.optimizer.zero_grad()\n",
" loss = self.criterion(output, expectedOutput)\n",
" loss.backward()\n",
" torch.nn.utils.clip_grad_norm_(self.q_network.parameters(), 10)\n",
" self.optimizer.step()\n",
" self.n_updates += 1\n",
" return loss.item()\n",
"\n",
" def synchronize(self):\n",
" self.target_network.load_state_dict(self.q_network.state_dict())\n",
"\n",
" def play(self, state, exploration_rate=0.):\n",
" if random.random() > exploration_rate:\n",
" return self.q_network.predict(state.to(device))\n",
" else:\n",
" shape = (state.shape[0],) if len(state.shape) > 1 else (1,)\n",
" return torch.randint(0, 2, size=shape)\n",
"\n",
" @functools.lru_cache(maxsize=None)\n",
" def exploration_slope(self, total_steps):\n",
" return (exploration_initial_eps - exploration_final_eps) / (exploration_fraction * total_steps)\n",
"\n",
" def exploration(self, step, total_steps):\n",
" eps = exploration_initial_eps - step * self.exploration_slope(total_steps)\n",
" return max(eps, exploration_final_eps)\n",
"\n",
" def train(self, total_steps):\n",
" obs = torch.from_numpy(env.reset()).float()\n",
"\n",
" n_episodes = 0\n",
" length_current_episode = 0\n",
" lengths = []\n",
" avg_reward = 0\n",
" loss_backup = 0.\n",
" acc_loss = 0.\n",
" acc_loss_count = 0\n",
" self.rewards = []\n",
"\n",
" with tqdm(range(total_steps), desc=\"Training agent\", unit=\"steps\") as pbar:\n",
" for step in pbar:\n",
" eps = self.exploration(step, total_steps)\n",
"\n",
" action = self.play(obs, eps)\n",
" new_obs, _, done, info = env.step(action.item())\n",
" reward = torch.tensor([1.0 if not done else -1.0], dtype=torch.float32)\n",
" new_obs = torch.from_numpy(new_obs).float()\n",
"\n",
" self.add_transition(obs, action, reward, new_obs)\n",
" loss = self.train_step(step)\n",
" if loss != 0:\n",
" acc_loss += loss\n",
" acc_loss_count += 1\n",
"\n",
" if done:\n",
" obs = torch.from_numpy(env.reset()).float()\n",
" n_episodes += 1\n",
" lengths.append(length_current_episode)\n",
" self.rewards.append(length_current_episode)\n",
" length_current_episode = 0\n",
" if len(lengths) >= 25:\n",
" avg_reward = sum(lengths) / len(lengths)\n",
" if acc_loss_count != 0:\n",
" loss_backup = acc_loss / acc_loss_count\n",
" else:\n",
" loss_backup = \"??\"\n",
" acc_loss = 0.\n",
" acc_loss_count = 0\n",
" lengths = []\n",
" else:\n",
" obs = new_obs\n",
" length_current_episode += 1\n",
"\n",
" pbar.set_postfix({\n",
" \"episodes\": n_episodes,\n",
" \"avg_reward\": avg_reward,\n",
" \"loss\": loss_backup,\n",
" \"exploration_rate\": eps,\n",
" \"n_updates\": self.n_updates,\n",
" })"
]
},
{
"cell_type": "markdown",
"id": "Kne9b7vCql3N",
"metadata": {
"id": "Kne9b7vCql3N"
},
"source": [
"## Defining the environment"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "BXw4RmGpFkZm",
"metadata": {
"id": "BXw4RmGpFkZm"
},
"outputs": [],
"source": [
"env = gym.make(\"CartPole-v1\")\n",
"env.seed(seed+2)\n",
"env.reset()"
]
},
{
"cell_type": "markdown",
"id": "i93WQNsbqo68",
"metadata": {
"id": "i93WQNsbqo68"
},
"source": [
"## Training our agent"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "rAm6v_0HiEge",
"metadata": {
"id": "rAm6v_0HiEge"
},
"outputs": [],
"source": [
"agent = Agent(env)\n",
"agent.train(120000)"
]
},
{
"cell_type": "markdown",
"id": "PPT-tl4Rqroj",
"metadata": {
"id": "PPT-tl4Rqroj"
},
"source": [
"## Episodes length\n",
"\n",
"A very noisy curve. It does reach satisfying levels though."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "IoCnHaZKgHqI",
"metadata": {
"id": "IoCnHaZKgHqI"
},
"outputs": [],
"source": [
"fig = plt.figure(figsize=(20, 12))\n",
"plt.plot(agent.rewards)\n",
"plt.xlabel(\"Episodes\")\n",
"plt.ylabel(\"Episode length\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "0fuolKppq1Ak",
"metadata": {
"id": "0fuolKppq1Ak"
},
"source": [
"## Result visualisation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "GXT1q5ckh0dG",
"metadata": {
"id": "GXT1q5ckh0dG"
},
"outputs": [],
"source": [
"from pyvirtualdisplay import Display\n",
"\n",
"virtual_display = Display(visible=0, size=(1400, 900))\n",
"virtual_display.start()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "710b8294-4f75-49b5-a54a-777439ce8799",
"metadata": {
"id": "710b8294-4f75-49b5-a54a-777439ce8799"
},
"outputs": [],
"source": [
"env = gym.make(\"CartPole-v1\")\n",
"env.seed(4)\n",
"env = wrappers.Monitor(env, \"./CartPole-v1/\", force=True)\n",
"\n",
"obs = env.reset()\n",
"i = 0\n",
"\n",
"while True:\n",
" action = agent.q_network.predict(torch.from_numpy(obs).float().to(device))\n",
" \n",
" obs, rewards, done, info = env.step(action.item())\n",
" env.render()\n",
" if done:\n",
" break\n",
" else:\n",
" i += 1\n",
"env.close()\n",
"print(f\"Survived {i} steps\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c7ad6655-02b7-436e-a7ae-93a7222b100e",
"metadata": {
"id": "c7ad6655-02b7-436e-a7ae-93a7222b100e"
},
"outputs": [],
"source": [
"def ipython_show_video(path):\n",
" \"\"\"Shamelessly stolen from https://stackoverflow.com/a/51183488/9977878\n",
" \"\"\"\n",
" if not os.path.isfile(path):\n",
" raise NameError(\"Cannot access: {}\".format(path))\n",
"\n",
" video = io.open(path, 'r+b').read()\n",
" encoded = base64.b64encode(video)\n",
"\n",
" display(HTML(\n",
" data=\"\"\"\n",
" <video alt=\"test\" controls>\n",
" <source src=\"data:video/mp4;base64,{0}\" type=\"video/mp4\" />\n",
" </video>\n",
" \"\"\".format(encoded.decode('ascii'))\n",
" ))\n",
"\n",
"ipython_show_video(glob.glob(\"/content/CartPole-v1/*.mp4\")[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "31e6af84-489e-4665-919e-8234462c1f0a",
"metadata": {
"id": "31e6af84-489e-4665-919e-8234462c1f0a"
},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "drl(2).ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}