Skip to content
Snippets Groups Projects

Resolve "Fix default parameters for the periodic bubble example"

3 files
+ 157
4
Compare changes
  • Side-by-side
  • Inline
Files
3
@@ -26,7 +26,7 @@ def delta(Ys, l0):
@@ -26,7 +26,7 @@ def delta(Ys, l0):
Y0 = 1
Y0 = 1
for Yi in Ys:
for Yi in Ys:
Y0 = Y0*Yi
Y0 = Y0*Yi
return 0.02*l0*(np.random.rand(*Y0.shape)-0.5)
return 0.1*l0*(np.random.rand(*Y0.shape)-0.5)
def init_concentration(data, coords, l0):
def init_concentration(data, coords, l0):
X = coords[-1]
X = coords[-1]
@@ -58,7 +58,7 @@ def compute(args):
@@ -58,7 +58,7 @@ def compute(args):
PoissonRotational, AdaptiveTimeStep, \
PoissonRotational, AdaptiveTimeStep, \
Enstrophy, MinMaxFieldStatistics, StrangSplitting, \
Enstrophy, MinMaxFieldStatistics, StrangSplitting, \
ParameterPlotter, Integrate, HDF_Writer, \
ParameterPlotter, Integrate, HDF_Writer, \
DirectionalSymbolic
DirectionalSymbolic, ComputeMeanField
from hysop.methods import SpaceDiscretization, Remesh, TimeIntegrator, \
from hysop.methods import SpaceDiscretization, Remesh, TimeIntegrator, \
ComputeGranularity, Interpolation
ComputeGranularity, Interpolation
@@ -73,7 +73,7 @@ def compute(args):
@@ -73,7 +73,7 @@ def compute(args):
# Constants
# Constants
l0 = 1.5 #initial thickness of the profile
l0 = 1.5 #initial thickness of the profile
(Sc, tau, Vp, Rs, Xo, Xn, N) = (0.70, 25, 0.04, 2.0, (-600,0), (600,750), (1537, 512))
(Sc, tau, Vp, Rs, Xo, Xn, N) = (0.70, 25, 0.04, 2.0, (-600,0), (600,750), (1537, 487))
#(Sc, tau, Vp, Rs, Xo, Xn, N) = (7.00, 25, 0.04, 2.0, (-110,0,0), (65,100,100), (1537, 512, 512))
#(Sc, tau, Vp, Rs, Xo, Xn, N) = (7.00, 25, 0.04, 2.0, (-110,0,0), (65,100,100), (1537, 512, 512))
nu_S = 1.0/Sc
nu_S = 1.0/Sc
@@ -246,6 +246,17 @@ def compute(args):
@@ -246,6 +246,17 @@ def compute(args):
S: npts,
S: npts,
_lambda: npts})
_lambda: npts})
 
#> Operator to compute and save mean fields
 
axes = list(range(1, dim))
 
view = [slice(None,None,None),]*dim
 
view[0] = (-200.0,+200.0)
 
view = tuple(view)
 
io_params = IOParams(filename='horizontally_averaged_profiles', frequency=0)
 
compute_mean_fields = ComputeMeanField(name='mean',
 
fields={C: (view, axes), S: (view, axes)},
 
variables={C: npts, S: npts},
 
io_params=io_params)
 
### Adaptive timestep operator
### Adaptive timestep operator
dx = np.min(np.divide(box.length, np.asarray(npts)-1))
dx = np.min(np.divide(box.length, np.asarray(npts)-1))
S_dt = 0.5*(dx**2)/nu_S
S_dt = 0.5*(dx**2)/nu_S
@@ -285,6 +296,7 @@ def compute(args):
@@ -285,6 +296,7 @@ def compute(args):
problem.insert(poisson,
problem.insert(poisson,
splitting,
splitting,
dump_fields,
dump_fields,
 
compute_mean_fields,
min_max_U, min_max_W,
min_max_U, min_max_W,
adapt_dt)
adapt_dt)
problem.build()
problem.build()
@@ -353,7 +365,8 @@ if __name__=='__main__':
@@ -353,7 +365,8 @@ if __name__=='__main__':
box_origin=(0.0,), box_length=(1.0,),
box_origin=(0.0,), box_length=(1.0,),
tstart=0.0, tend=500.0,
tstart=0.0, tend=500.0,
dt=1e-6, cfl=0.5, lcfl=0.125,
dt=1e-6, cfl=0.5, lcfl=0.125,
dump_freq=10)
dump_times=tuple(float(x) for x in range(500)),
 
dump_freq=0)
parser.run(compute)
parser.run(compute)
Loading