Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
hysop
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
particle_methods
hysop
Commits
3dc9fd9d
"VAE.Lightning/03-VAE-Lightning-with-MNIST-post.ipynb" did not exist on "fbbb034ca462bd0ffba3055ad0ebb80d094916a8"
Commit
3dc9fd9d
authored
8 years ago
by
Keck Jean-Baptiste
Browse files
Options
Downloads
Patches
Plain Diff
began kernel autotuner
parent
9513cb95
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
hysop/gpu/gpu_stretching.py
+16
-19
16 additions, 19 deletions
hysop/gpu/gpu_stretching.py
hysop/gpu/tools.py
+121
-0
121 additions, 0 deletions
hysop/gpu/tools.py
with
137 additions
and
19 deletions
hysop/gpu/gpu_stretching.py
+
16
−
19
View file @
3dc9fd9d
...
@@ -58,7 +58,6 @@ class GPUStretching(DiscreteOperator, GPUOperator):
...
@@ -58,7 +58,6 @@ class GPUStretching(DiscreteOperator, GPUOperator):
self
.
order
=
2
if
self
.
method
[
SpaceDiscretisation
]
is
FDC2
else
4
self
.
order
=
2
if
self
.
method
[
SpaceDiscretisation
]
is
FDC2
else
4
# Worksize handling
# Worksize handling
#TODO
self
.
_cl_work_size
=
0
self
.
_cl_work_size
=
0
## GPU allocations
## GPU allocations
...
@@ -112,21 +111,22 @@ class GPUStretching(DiscreteOperator, GPUOperator):
...
@@ -112,21 +111,22 @@ class GPUStretching(DiscreteOperator, GPUOperator):
raise
NotImplementedError
(
msg
)
raise
NotImplementedError
(
msg
)
def
_gen_cl_src
(
self
):
def
_gen_cl_src
(
self
):
topo
=
self
.
velocity
.
topology
typegen
=
self
.
cl_env
.
typegen
mesh
=
topo
.
mesh
topo
=
self
.
velocity
.
topology
dim
=
self
.
dim
dim
=
self
.
dim
mesh
=
topo
.
mesh
gwi
=
(
256
,
256
,
256
)
gwi
=
mesh
.
lwi
=
(
4
,
4
,
4
)
lwi
=
(
8
,
8
,
8
)
codegen
,
prg
=
self
.
_gen_and_build_kernel
(
lwi
,
dump_src
=
True
)
codegen
,
prg
=
self
.
_gen_and_build_kernel
(
lwi
,
dump_src
=
True
)
cache_bytes
=
codegen
.
cache_alloc_bytes
(
local_size
=
lwi
)
cache_bytes
=
codegen
.
cache_alloc_bytes
(
local_size
=
lwi
)
self
.
local_mem
=
cl
.
LocalMemory
(
cache_bytes
)
self
.
local_mem
=
cl
.
LocalMemory
(
cache_bytes
)
self
.
size_local_alloc
+=
cache_bytes
self
.
size_local_alloc
+=
cache_bytes
from
hysop.codegen.structs.mesh_info
import
MeshInfoStruct
from
hysop.codegen.structs.mesh_info
import
MeshInfoStruct
mesh_info
=
MeshInfoStruct
.
build_instance_from_mesh
(
self
.
cl_env
.
typegen
,
mesh
)
mesh_info
=
MeshInfoStruct
.
build_instance_from_mesh
(
typegen
,
mesh
)
mesh_info_buffer
=
cl
.
Buffer
(
self
.
cl_env
.
ctx
,
cl
.
mem_flags
.
READ_ONLY
|
cl
.
mem_flags
.
COPY_HOST_PTR
,
mesh_info_buffer
=
cl
.
Buffer
(
self
.
cl_env
.
ctx
,
cl
.
mem_flags
.
READ_ONLY
|
cl
.
mem_flags
.
COPY_HOST_PTR
,
hostbuf
=
mesh_info
)
hostbuf
=
mesh_info
)
self
.
mesh_info_buffer
=
mesh_info_buffer
self
.
mesh_info_buffer
=
mesh_info_buffer
...
@@ -165,20 +165,17 @@ class GPUStretching(DiscreteOperator, GPUOperator):
...
@@ -165,20 +165,17 @@ class GPUStretching(DiscreteOperator, GPUOperator):
return
codegen
,
prg
return
codegen
,
prg
def
_compute_stretching
(
self
,
simulation
,
to_gpu
=
True
,
to_host
=
True
):
def
_compute_stretching
(
self
,
simulation
):
if
to_gpu
:
for
field
in
self
.
input
:
field
.
toDevice
()
input_events
=
[
evt
for
input
in
self
.
input
for
evt
in
input
.
events
]
dt
=
self
.
cl_env
.
typegen
.
make_floatn
(
simulation
.
time_step
,
1
)
dt
=
self
.
cl_env
.
typegen
.
make_floatn
(
simulation
.
time_step
,
1
)
kernel_args
=
[
dt
]
+
self
.
velocity
.
gpu_data
+
self
.
vorticity
.
gpu_data
\
kernel_args
=
[
dt
]
+
self
.
velocity
.
gpu_data
+
self
.
vorticity
.
gpu_data
\
+
[
self
.
mesh_info_buffer
]
+
[
self
.
local_mem
]
+
[
self
.
mesh_info_buffer
,
self
.
local_mem
]
input_events
=
[
evt
for
input
in
self
.
input
for
evt
in
input
.
events
]
stretching_evt
=
self
.
kernels
[
'
stretching
'
](
*
kernel_args
,
wait_for
=
input_events
)
stretching_evt
=
self
.
kernels
[
'
stretching
'
](
*
kernel_args
,
wait_for
=
input_events
)
output_events
=
[
stretching_evt
]
if
to_host
:
self
.
vorticity
.
events
.
append
(
output_events
)
self
.
vorticity
.
toHost
()
def
apply
(
self
,
simulation
):
def
apply
(
self
,
simulation
):
self
.
_compute
(
simulation
)
self
.
_compute
(
simulation
)
...
...
This diff is collapsed.
Click to expand it.
hysop/gpu/tools.py
+
121
−
0
View file @
3dc9fd9d
...
@@ -13,6 +13,127 @@ FLOAT_GPU, DOUBLE_GPU = np.float32, np.float64
...
@@ -13,6 +13,127 @@ FLOAT_GPU, DOUBLE_GPU = np.float32, np.float64
__cl_env
=
None
__cl_env
=
None
class
KernelError
(
Exception
):
def
__init__
(
self
,
msg
,
err
):
super
(
KernelError
,
self
).
__init__
(
msg
)
self
.
msg
=
msg
self
.
err
=
err
def
__str__
(
self
):
return
self
.
err
+
'
:
'
+
self
.
msg
class
OpenClKernelStatistics
(
object
):
def
__init__
(
self
,
events
=
None
):
if
events
is
not
None
:
p0
=
events
[
0
].
profile
t0
=
p0
.
end
-
p0
.
start
total
=
0
maxi
=
t0
mini
=
t0
for
evt
in
events
:
dt
=
evt
.
profile
.
end
-
evt
.
profile
.
start
total
+=
dt
if
dt
<
mini
:
mini
=
dt
if
dt
>
maxi
:
maxi
=
dt
self
.
tot
=
total
self
.
min
=
mini
self
.
max
=
maxi
self
.
mean
=
total
/
len
(
events
)
else
:
self
.
tot
=
0
self
.
min
=
0
self
.
max
=
0
self
.
mean
=
0
def
__str__
(
self
):
mini
=
self
.
min
*
1e-6
maxi
=
self
.
max
*
1e-6
total
=
self
.
tot
*
1e-6
mean
=
self
.
mean
*
1e-6
return
'
min={:.2f}ms, max={:.2f}ms, mean={:.2f}ms
'
.
format
(
mini
,
maxi
,
mean
)
class
KernelAutotuner
(
object
):
"""
OpenCl kernel work group size autotuner.
"""
def
__init__
(
self
,
work_dim
,
runs
=
10
):
"""
Initialize a KernelAutotuner.
Parameters
----------
work_dim: int
Work dimension used in targetted OpenCL kernels.
"""
self
.
work_dim
=
work_dim
self
.
nruns
=
nruns
self
.
_load_default_filters
()
def
add_filter
(
fname
,
f
):
self
.
filters
[
fname
]
=
f
return
self
def
bench
(
self
,
ctx
,
device
,
global_size
,
args
,
kernel
=
None
,
kernel_generator
=
None
,
**
kargs
):
assert
isinstance
(
args
,
list
)
if
(
kernel
is
None
)
^
(
kernel_generator
is
None
):
raise
ValueError
(
'
Either kernel or kernel_generator should not be None!
'
)
if
(
kernel_generator
is
None
):
kernel_generator
=
lambda
**
kargs
:
(
kernel
,
args
)
for
local_size
in
_get_wi_candidates
(
ctx
,
device
,
global_size
,
**
kargs
):
kernel
,
args
=
kernel_generator
(
ctx
,
device
,
global_size
,
**
kargs
)
stats
=
self
.
_bench_one
(
global_size
,
local_size
,
kernels
,
args
)
print
'
{}
\t
{}
'
.
format
(
local_size
,
stats
)
def
_bench_one
(
global_size
,
local_size
,
kernel
,
kargs
):
evts
=
[]
with
cl
.
CommandQueue
(
ctx
,
device
,
cl
.
command_queue_properties
.
PROFILING_ENABLE
)
as
queue
:
for
i
in
xrange
(
self
.
nruns
):
evt
=
stretching_kernel
(
queue
,
global_size
,
local_size
,
*
kargs
)
evts
.
append
(
evt
)
stats
=
OpenClKernelStatistics
(
evts
)
return
stats
def
_get_wi_candidates
(
ctx
,
device
,
global_size
,
**
kargs
):
pows
=
[]
size
=
device
.
max_work_group_size
while
(
size
>
0
):
pows
.
append
(
size
)
size
>>=
1
candidates
=
itertools
.
product
(
pows
,
pows
,
pows
)
for
f
in
self
.
filters
.
values
:
F
=
f
(
ctx
=
ctx
,
device
=
device
,
global_size
=
global_size
,
**
kargs
)
candidates
=
itertools
.
ifilter
(
F
,
candidates
)
return
candidates
def
_load_default_filters
(
self
):
self
.
filters
=
{}
self
.
add_filter
(
'
dim_reqs
'
,
self
.
_dim_filter
)
self
.
add_filter
(
'
ordering
'
,
self
.
_ordering_filter
)
self
.
add_filter
(
'
minmax_wi
'
self
.
_minmax_workitems_filter
)
#filters
def
_dim_filter
(
self
,
device
,
**
kargs
):
work_dim
=
self
.
work_dim
max_wi_dim
=
device
.
max_work_item_dimensions
return
lambda
local_size
:
(
work_dim
<=
max_wi_dim
)
and
(
local_size
[
work_dim
:]
==
1
).
all
()
def
_ordering_filter
(
self
,
**
kargs
):
return
lambda
local_size
:
(
local_size
[
2
]
<=
local_size
[
1
])
and
(
local_size
[
1
]
<=
local_size
[
0
])
def
_global_size_filter
(
self
,
global_size
,
**
kargs
):
return
lambda
local_size
:
(
local_size
[
0
]
<=
global_size
[
0
])
and
(
local_size
[
1
]
<=
global_size
[
1
])
and
(
local_size
[
2
]
<=
global_size
[
2
])
def
_minmax_workitems_filter
(
self
,
device
,
**
kargs
):
def
filter
(
local_size
):
max_wi_size
=
device
.
max_work_item_sizes
wi
=
1
for
i
in
xrange
(
3
):
wi
*=
local_size
[
i
]
return
(
wi
>=
max_wi_size
/
8
)
and
(
wi
<=
max_wi_size
)
class
OpenCLEnvironment
(
object
):
class
OpenCLEnvironment
(
object
):
"""
OpenCL environment informations and useful functions.
"""
OpenCL environment informations and useful functions.
"""
"""
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment