Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
hysop
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
particle_methods
hysop
Commits
2d5aa44a
Commit
2d5aa44a
authored
8 years ago
by
Jean-Baptiste Keck
Browse files
Options
Downloads
Plain Diff
Merge branch 'master' of gitlab.com:keckj/hysop
parents
3138757e
5b4a90f0
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
hysop/gpu/gpu_stretching.py
+16
-19
16 additions, 19 deletions
hysop/gpu/gpu_stretching.py
hysop/gpu/tools.py
+121
-0
121 additions, 0 deletions
hysop/gpu/tools.py
with
137 additions
and
19 deletions
hysop/gpu/gpu_stretching.py
+
16
−
19
View file @
2d5aa44a
...
@@ -58,7 +58,6 @@ class GPUStretching(DiscreteOperator, GPUOperator):
...
@@ -58,7 +58,6 @@ class GPUStretching(DiscreteOperator, GPUOperator):
self
.
order
=
2
if
self
.
method
[
SpaceDiscretisation
]
is
FDC2
else
4
self
.
order
=
2
if
self
.
method
[
SpaceDiscretisation
]
is
FDC2
else
4
# Worksize handling
# Worksize handling
#TODO
self
.
_cl_work_size
=
0
self
.
_cl_work_size
=
0
## GPU allocations
## GPU allocations
...
@@ -112,21 +111,22 @@ class GPUStretching(DiscreteOperator, GPUOperator):
...
@@ -112,21 +111,22 @@ class GPUStretching(DiscreteOperator, GPUOperator):
raise
NotImplementedError
(
msg
)
raise
NotImplementedError
(
msg
)
def
_gen_cl_src
(
self
):
def
_gen_cl_src
(
self
):
topo
=
self
.
velocity
.
topology
typegen
=
self
.
cl_env
.
typegen
mesh
=
topo
.
mesh
topo
=
self
.
velocity
.
topology
dim
=
self
.
dim
dim
=
self
.
dim
mesh
=
topo
.
mesh
gwi
=
(
256
,
256
,
256
)
gwi
=
(
256
,
256
,
256
)
lwi
=
(
4
,
4
,
4
)
lwi
=
(
8
,
8
,
8
)
codegen
,
prg
=
self
.
_gen_and_build_kernel
(
lwi
,
dump_src
=
True
)
codegen
,
prg
=
self
.
_gen_and_build_kernel
(
lwi
,
dump_src
=
True
)
cache_bytes
=
codegen
.
cache_alloc_bytes
(
local_size
=
lwi
)
cache_bytes
=
codegen
.
cache_alloc_bytes
(
local_size
=
lwi
)
self
.
local_mem
=
cl
.
LocalMemory
(
cache_bytes
)
self
.
local_mem
=
cl
.
LocalMemory
(
cache_bytes
)
self
.
size_local_alloc
+=
cache_bytes
self
.
size_local_alloc
+=
cache_bytes
from
hysop.codegen.structs.mesh_info
import
MeshInfoStruct
from
hysop.codegen.structs.mesh_info
import
MeshInfoStruct
mesh_info
=
MeshInfoStruct
.
build_instance_from_mesh
(
self
.
cl_env
.
typegen
,
mesh
)
mesh_info
=
MeshInfoStruct
.
build_instance_from_mesh
(
typegen
,
mesh
)
mesh_info_buffer
=
cl
.
Buffer
(
self
.
cl_env
.
ctx
,
cl
.
mem_flags
.
READ_ONLY
|
cl
.
mem_flags
.
COPY_HOST_PTR
,
mesh_info_buffer
=
cl
.
Buffer
(
self
.
cl_env
.
ctx
,
cl
.
mem_flags
.
READ_ONLY
|
cl
.
mem_flags
.
COPY_HOST_PTR
,
hostbuf
=
mesh_info
)
hostbuf
=
mesh_info
)
self
.
mesh_info_buffer
=
mesh_info_buffer
self
.
mesh_info_buffer
=
mesh_info_buffer
...
@@ -165,20 +165,17 @@ class GPUStretching(DiscreteOperator, GPUOperator):
...
@@ -165,20 +165,17 @@ class GPUStretching(DiscreteOperator, GPUOperator):
return
codegen
,
prg
return
codegen
,
prg
def
_compute_stretching
(
self
,
simulation
,
to_gpu
=
True
,
to_host
=
True
):
def
_compute_stretching
(
self
,
simulation
):
if
to_gpu
:
for
field
in
self
.
input
:
field
.
toDevice
()
input_events
=
[
evt
for
input
in
self
.
input
for
evt
in
input
.
events
]
dt
=
self
.
cl_env
.
typegen
.
make_floatn
(
simulation
.
time_step
,
1
)
dt
=
self
.
cl_env
.
typegen
.
make_floatn
(
simulation
.
time_step
,
1
)
kernel_args
=
[
dt
]
+
self
.
velocity
.
gpu_data
+
self
.
vorticity
.
gpu_data
\
kernel_args
=
[
dt
]
+
self
.
velocity
.
gpu_data
+
self
.
vorticity
.
gpu_data
\
+
[
self
.
mesh_info_buffer
]
+
[
self
.
local_mem
]
+
[
self
.
mesh_info_buffer
,
self
.
local_mem
]
input_events
=
[
evt
for
input
in
self
.
input
for
evt
in
input
.
events
]
stretching_evt
=
self
.
kernels
[
'
stretching
'
](
*
kernel_args
,
wait_for
=
input_events
)
stretching_evt
=
self
.
kernels
[
'
stretching
'
](
*
kernel_args
,
wait_for
=
input_events
)
output_events
=
[
stretching_evt
]
if
to_host
:
self
.
vorticity
.
events
.
append
(
output_events
)
self
.
vorticity
.
toHost
()
def
apply
(
self
,
simulation
):
def
apply
(
self
,
simulation
):
self
.
_compute
(
simulation
)
self
.
_compute
(
simulation
)
...
...
This diff is collapsed.
Click to expand it.
hysop/gpu/tools.py
+
121
−
0
View file @
2d5aa44a
...
@@ -13,6 +13,127 @@ FLOAT_GPU, DOUBLE_GPU = np.float32, np.float64
...
@@ -13,6 +13,127 @@ FLOAT_GPU, DOUBLE_GPU = np.float32, np.float64
__cl_env
=
None
__cl_env
=
None
#class KernelError(Exception):
#def __init__(self, msg, err):
#super(KernelError,self).__init__(msg)
#self.msg = msg
#self.err = err
#def __str__(self):
#return self.err + ': ' + self.msg
#class OpenClKernelStatistics(object):
#def __init__(self, events=None):
#if events is not None:
#p0 = events[0].profile
#t0 = p0.end - p0.start
#total = 0
#maxi = t0
#mini = t0
#for evt in events:
#dt = evt.profile.end - evt.profile.start
#total += dt
#if dt<mini:
#mini = dt
#if dt>maxi:
#maxi = dt
#self.tot = total
#self.min = mini
#self.max = maxi
#self.mean = total/len(events)
#else:
#self.tot = 0
#self.min = 0
#self.max = 0
#self.mean = 0
#def __str__(self):
#mini = self.min * 1e-6
#maxi = self.max * 1e-6
#total = self.tot * 1e-6
#mean = self.mean * 1e-6
#return 'min={:.2f}ms, max={:.2f}ms, mean={:.2f}ms'.format(mini,maxi,mean)
#class KernelAutotuner(object):
#"""OpenCl kernel work group size autotuner.
#"""
#def __init__(self,work_dim, runs=10):
#"""Initialize a KernelAutotuner.
#Parameters
#----------
#work_dim: int
#Work dimension used in targetted OpenCL kernels.
#"""
#self.work_dim = work_dim
#self.nruns = nruns
#self._load_default_filters()
#def add_filter(fname, f):
#self.filters[fname] = f
#return self
#def bench(self,ctx,device,global_size,args,kernel=None,kernel_generator=None,**kargs):
#assert isinstance(args, list)
#if (kernel is None) ^ (kernel_generator is None):
#raise ValueError('Either kernel or kernel_generator should not be None!')
#if (kernel_generator is None):
#kernel_generator = lambda **kargs: (kernel, args)
#for local_size in _get_wi_candidates(ctx,device,global_size,**kargs):
#kernel, args = kernel_generator(ctx,device,global_size,**kargs)
#stats = self._bench_one(global_size,local_size,kernels,args)
#print '{}\t{}'.format(local_size,stats)
#def _bench_one(global_size,local_size,kernel,kargs):
#evts = []
#with cl.CommandQueue(ctx,device,cl.command_queue_properties.PROFILING_ENABLE) as queue:
#for i in xrange(self.nruns):
#evt = stretching_kernel(queue, global_size, local_size, *kargs)
#evts.append(evt)
#stats = OpenClKernelStatistics(evts)
#return stats
#def _get_wi_candidates(ctx,device,global_size,**kargs):
#pows = []
#size = device.max_work_group_size
#while(size>0):
#pows.append(size)
#size >>= 1
#candidates = itertools.product(pows,pows,pows)
#for f in self.filters.values:
#F = f(ctx=ctx,device=device,global_size=global_size,**kargs)
#candidates = itertools.ifilter(F, candidates)
#return candidates
#def _load_default_filters(self):
#self.filters = {}
#self.add_filter('dim_reqs',self._dim_filter)
#self.add_filter('ordering',self._ordering_filter)
#self.add_filter('minmax_wi'self._minmax_workitems_filter)
#filters
#def _dim_filter(self, device,**kargs):
#work_dim = self.work_dim
#max_wi_dim = device.max_work_item_dimensions
#return lambda local_size: (work_dim<=max_wi_dim) and (local_size[work_dim:]==1).all()
#def _ordering_filter(self, **kargs):
#return lambda local_size: (local_size[2]<=local_size[1]) and (local_size[1]<=local_size[0])
#def _global_size_filter(self, global_size, **kargs):
#return lambda local_size: (local_size[0]<=global_size[0]) and (local_size[1]<=global_size[1]) and (local_size[2]<=global_size[2])
#def _minmax_workitems_filter(self, device,**kargs):
#def filter(local_size):
#max_wi_size = device.max_work_item_sizes
#wi=1
#for i in xrange(3):
#wi*=local_size[i]
#return (wi>=max_wi_size/8) and (wi<=max_wi_size)
class
OpenCLEnvironment
(
object
):
class
OpenCLEnvironment
(
object
):
"""
OpenCL environment informations and useful functions.
"""
OpenCL environment informations and useful functions.
"""
"""
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment